Allogeneic Stem Cell Transplantation in Relapsed/Refractory Multiple Myeloma Treatment: Is It Still Relevant?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Details of alloSCT
2.3. Definitions
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. The alloSCT Outcomes
3.3. The Complications of alloSCT
3.4. Long Term Survivors
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stewart, A.K.; Rajkumar, S.V.; Dimopoulos, M.A.; Masszi, T.; Špička, I.; Oriol, A.; Hájek, R.; Rosiñol, L.; Siegel, D.S.; Mihaylov, G.G.; et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 2015, 372, 142–152. [Google Scholar] [CrossRef]
- Siegel, D.S.; Dimopoulos, M.A.; Ludwig, H.; Facon, T.; Goldschmidt, H.; Jakubowiak, A.; San-Miguel, J.; Obreja, M.; Blaedel, J.; Stewart, A.K. Improvement in overall survival with carfilzomib, lenalidomide, and dexamethasone in patients with relapsed or refractory multiple myeloma. J. Clin. Oncol. 2018, 36, 728–734. [Google Scholar] [CrossRef]
- Suzuki, K.; Dimopoulos, M.A.; Takezako, N.; Okamoto, S.; Shinagawa, A.; Matsumoto, M.; Kosugi, H.; Yoon, S.S.; Huang, S.Y.; Qin, X.; et al. Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: Subgroup analyses of the phase 3 POLLUX study. Blood Cancer J. 2018, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Mateos, M.V.; Spencer, A.; Nooka, A.K.; Pour, L.; Weisel, K.; Cavo, M.; Laubach, J.P.; Cook, G.; Iida, S.; Benboubker, L.; et al. Daratumumab-Based regimens are highly effective and well tolerated in relapsed or refractory multiple myeloma regardless of patient age: Subgroup analysis of the phase 3 CASTOR and POLLUX studies. Haematologica 2020, 105, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagouri, F.; Terpos, E.; Kastritis, E.; Dimopoulos, M.A. Emerging antibodies for the treatment of multiple myeloma. Expert Opin. Emerg. Drugs 2016, 21, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Tricot, G.; Vesole, D.H.; Jagannath, S.; Hilton, J.; Munshi, N.; Barlogie, B. Graft-Versus-Myeloma effect: Proof of principle. Blood 1996, 87, 1196–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.T.; Armand, P. Clinical endpoints in allogeneic hematopoietic stem cell transplantation studies: The cost of freedom. Biol. Blood Marrow Transplant. 2013, 19, 860–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giralt, S.; Garderet, L.; Durie, B.; Cook, G.; Gahrton, G.; Bruno, B.; Hari, P.; Lokhorst, H.; McCarthy, P.; Krishnan, A.; et al. American society of blood and marrow transplantation, european society of blood and marrow transplantation, blood and marrow transplant clinical trials network, and international myeloma working group consensus conference on salvage hematopoietic cell transplantation in patients with relapsed multiple myeloma. Biol. Blood Marrow Transplant. 2015, 21, 2039–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobh, M.; Michallet, M.; Gahrton, G.; Iacobelli, S.; van Biezen, A.; Schönland, S.; Petersen, E.; Schaap, N.; Bonifazi, F.; Volin, L.; et al. Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: Trends and outcomes over 25 years. A study by the EBMT chronic malignancies working party. Leukemia 2016, 30, 2047–2054. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Tang, L.; Fan, F.; Jiang, Q.; Sun, C.; Hu, Y. Allogeneic stem-cell transplantation for multiple myeloma: A systematic review and meta-analysis from 2007 to 2017. Cancer Cell Int. 2018, 18, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waxman, A.J.; Mink, P.J.; Devesa, S.S.; Anderson, W.F.; Weiss, B.M.; Kristinsson, S.Y.; McGlynn, K.A.; Landgren, O. Racial disparities in incidence and outcome in multiple myeloma: A population-based study. Blood 2010, 116, 5501–5506. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S. Introduction: Health of the health care system in Korea. Soc. Work Public Health 2010, 25, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Glucksberg, H.; Storb, R.; Fefer, A.; Buckner, C.D.; Neiman, P.E.; Clift, R.A.; Lerner, K.G.; Thomas, E.D. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974, 18, 295–304. [Google Scholar] [CrossRef]
- Jagasia, M.H.; Greinix, H.T.; Arora, M.; Williams, K.M.; Wolff, D.; Cowen, E.W.; Palmer, J.; Weisdorf, D.; Treister, N.S.; Cheng, G.S.; et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol. Blood Marrow Transplant. 2015, 21, 389–401.e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, S.V.; Harousseau, J.L.; Durie, B.; Anderson, K.C.; Dimopoulos, M.; Kyle, R.; Blade, J.; Richardson, P.; Orlowski, R.; Siegel, D.; et al. Consensus recommendations for the uniform reporting of clinical trials: Report of the international myeloma workshop consensus panel 1. Blood 2011, 117, 4691–4695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtan, S.G.; DeFor, T.E.; Lazaryan, A.; Bejanyan, N.; Arora, M.; Brunstein, C.G.; Blazar, B.R.; MacMillan, M.L.; Weisdorf, D.J. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood 2015, 125, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Lonial, S.; Boise, L.H.; Kaufman, J. How I treat high-risk myeloma. Blood 2015, 126, 1536–1543. [Google Scholar] [CrossRef] [Green Version]
- Pawarode, A.; Mineishi, S.; Reddy, P.; Braun, T.M.; Khaled, Y.A.; Choi, S.W.; Magenau, J.M.; Harris, A.C.; Connelly, J.A.; Kitko, C.L.; et al. Reducing treatment-related mortality did not improve outcomes of allogeneic myeloablative hematopoietic cell transplantation for high-risk multiple myeloma: A university of michigan prospective series. Biol. Blood Marrow Transplant. 2016, 22, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Badros, A.; Barlogie, B.; Morris, C.; Zangari, M.; Fassas, A.; van Rhee, F.; Cottler-Fox, M.; Jacobson, J.; Thertulien, R.; et al. Prognostic factors in allogeneic transplantation for patients with high-risk multiple myeloma after reduced intensity conditioning. Exp. Hematol. 2003, 31, 73–80. [Google Scholar] [CrossRef]
- El-Cheikh, J.; Crocchiolo, R.; Furst, S.; Stoppa, A.M.; Ladaique, P.; Faucher, C.; Calmels, B.; Lemarie, C.; De Colella, J.M.; Granata, A.; et al. Long-Term outcome after allogeneic stem-cell transplantation with reduced-intensity conditioning in patients with multiple myeloma. Am. J. Hematol. 2013, 88, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.; Bergantim, R.; Caires, H.R.; Seca, H.; Guimarães, J.E.; Vasconcelos, M.H. Multiple myeloma: Available therapies and causes of drug resistance. Cancers 2020, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solimando, A.G.; Da Vià, M.C.; Cicco, S.; Leone, P.; Di Lernia, G.; Giannico, D.; Desantis, V.; Frassanito, M.A.; Morizio, A.; Delgado Tascon, J.; et al. High-Risk multiple myeloma: Integrated clinical and omics approach dissects the neoplastic clone and the tumor microenvironment. J. Clin. Med. 2019, 8, 997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.; Cavo, M.; Sonneveld, P.; Rosinol, L.; Attal, M.; Pezzi, A.; Goldschmidt, H.; Lahuerta, J.J.; Marit, G.; Palumbo, A.; et al. Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early MM progression-related death. J. Clin. Oncol. 2014, 32, 2173–2180. [Google Scholar] [CrossRef] [Green Version]
- Gerull, S.; Goerner, M.; Benner, A.; Hegenbart, U.; Klein, U.; Schaefer, H.; Goldschmidt, H.; Ho, A.D. Long-Term outcome of nonmyeloablative allogeneic transplantation in patients with high-risk multiple myeloma. Bone Marrow Transplant. 2005, 36, 963–969. [Google Scholar] [CrossRef]
- Dhakal, B.; D’Souza, A.; Martens, M.; Kapke, J.; Harrington, A.M.; Pasquini, M.; Saber, W.; Drobyski, W.R.; Zhang, M.J.; Hamadani, M.; et al. Allogeneic hematopoietic cell transplantation in multiple myeloma: Impact of disease risk and post allograft minimal residual disease on survival. Clin. Lymphoma Myeloma Leuk. 2016, 16, 379–386. [Google Scholar] [CrossRef]
- Greil, C.; Engelhardt, M.; Ihorst, G.; Schoeller, K.; Bertz, H.; Marks, R.; Zeiser, R.; Duyster, J.; Einsele, H.; Finke, J.; et al. Allogeneic transplantation of multiple myeloma patients may allow long-term survival in carefully selected patients with acceptable toxicity and preserved quality of life. Haematologica 2019, 104, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Franssen, L.E.; Raymakers, R.A.; Buijs, A.; Schmitz, M.F.; van Dorp, S.; Mutis, T.; Lokhorst, H.M.; van de Donk, N.W. Outcome of allogeneic transplantation in newly diagnosed and relapsed/refractory multiple myeloma: Long-Term follow-up in a single institution. Eur. J. Haematol. 2016, 97, 479–488. [Google Scholar] [CrossRef]
- Björkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Beksac, M.; Bosi, A.; et al. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: Long-Term follow-up. J. Clin. Oncol. 2011, 29, 3016–3022. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, K.; Kim, S.J.; Lee, J.H.; Yoon, S.S.; Mun, Y.C.; Lee, J.J.; Eom, H.S.; Kim, J.S.; Min, C.K. A Phase I/II, Open-Label, Prospective, multicenter study to evaluate the efficacy and safety of lower doses of bortezomib plus busulfan and melphalan as a conditioning regimen in patients with multiple myeloma undergoing autologous peripheral blood stem cell transplantation: The KMM103 study. Biol. Blood Marrow Transplant. 2019, 25, 1312–1319. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016, 91, 719–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensinger, W.I. Is there still a role for allogeneic stem-cell transplantation in multiple myeloma? Best Pract. Res. Clin. Haematol. 2007, 20, 783–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahrton, G.; Svensson, H.; Cavo, M.; Apperly, J.; Bacigalupo, A.; Björkstrand, B.; Bladé, J.; Cornelissen, J.; de Laurenzi, A.; Facon, T.; et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: A comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br. J. Haematol. 2001, 113, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Sahebi, F.; Shen, Y.; Thomas, S.H.; Rincon, A.; Murata-Collins, J.; Palmer, J.; Krishnan, A.Y.; Karanes, C.; Htut, M.; Somlo, G.; et al. Late relapses following reduced intensity allogeneic transplantation in patients with multiple myeloma: A long-term follow-up study. Br. J. Haematol. 2013, 160, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | Patients (n = 24) |
---|---|
Median age, years (range) | 52 (37–65) |
Sex, n (%) Male/Female | 15 (62.5)/9 (37.5) |
MM with plasmacytoma/plasma cell leukemia | 8 (33.3) |
Durie Salmon stage at diagnosis | |
1/2/3 | 2 (8.3)/5 (20.8)/10 (41.7) |
Unknown | 7 (29.2) |
ISS stage at diagnosis | |
1/2/3 | 4 (16.7)/7 (29.2)/6 (25.0) |
Unknown | 7 (29.2) |
Type of light chains | |
Kappa/Lambda | 8 (33.3)/13 (54.2) |
Unknown | 3 (12.5) |
Isotype of M-protein | |
IgG/IgA/IgM | 11 (45.8)/2 (8.3)/0 |
IgD/light chain | 0/4 (16.7) |
Unknown | 7 (29.2) |
Cytogenetics | |
High risk */Standard risk | 3 (12.5)/10 (41.7) |
Unknown | 11 (45.8) |
Median previous treatment lines, numbers (range) | 5 (1–9) |
Previous treatment | |
Bortezomib-based treatment/refractoriness | 21 (87.5)/14/21 (66.7) |
Thalidomide-based treatment/refractoriness | 21 (87.5)/14/21 (66.7) |
Lenalidomide-based treatment/refractoriness | 6 (25.0)/4/6 (66.7) |
One autoSCT/Two autoSCT/refractoriness | 18 (75.0)/2 (8.3)/20/20 (100.0) |
The information of alloSCT | |
Pre-alloSCT status | |
CR/VGPR/PR | 3 (12.5)/3 (12.5)/7 (29.2) |
SD/PD | 8 (33.3)/3 (12.5) |
Donors | |
Sibling/Matched-unrelated/Haploidentical | 17 (70.8)/6 (25.0)/1 (4.2) |
HLA matching | |
Full matching | 20 (83.3) |
9/10/8/10/4/8 | 1 (4.2)/2 (8.3)/1 (4.2) |
Conditioning regimens | |
MAC regimen | 7 (29.2) |
RIC regimens | 17 (70.8) |
GVHD prophylaxis | |
Cyclosporine/Tacrolimus/MTX | 21 (87.5)/3 (12.5)/4 (16.7) |
Anti-thymocyte globulin | 12 (50) |
Post-cyclophosphamide | 1 (4.2) |
Donor-Recipient sex | |
M-M/F-F/M-F/F-M | 9 (37.5)/4 (16.7)/6 (25.0)/5 (20.8) |
Median infused cells (CD34+) (range) | 4.58 (1.77–28.68) × 106/kg |
Median levels of M protein before alloSCT, (range) | 0.45 (0–6.9) |
Median time from diagnosis to alloSCT, months (range) | 39.4 (5.0–130.0) |
Outcomes after alloSCT | Patients (n = 24) |
---|---|
Median follow-up periods after alloSCT, months (range) | 10.8 (0.5–73.5) |
Best response after alloSCT | |
CR/VGPR/PR | 10 (41.7)/1 (4.2)/4 (16.7) |
SD/PD | 6 (25.0)/0 |
Unknown | 3 (12.5) |
Median time to neutrophil engraftment, days (range) | 13 (9–23) |
Median time to platelet engraftment | 17.5 (13–90) |
Relapse after alloSCT | |
Cumulative incidence of relapse (one year) | 62.5% (±9.9) |
Further treatment after alloSCT | |
Yes | 7 (29.2) |
GVHD after alloSCT | |
Acute GVHD (≥ Grade 2) | 7 (29.2) |
Cumulative incidence of acute GVHD (100 days) | 30.6% (±9.7) |
Skin/GI tract/Liver | 3 (12.5)/1 (4.2)/4 (16.7) |
Chronic GVHD (≥ Grade 2) | 2 (8.3) |
Cumulative incidence of chronic GVHD (1 year) | 13.7% (±9.2) |
Lung | 2 (8.3) |
Non-relapse mortality (within one year) | 9 (37.5) |
Cause of death | |
Sepsis | 5 (20.8) |
Intracranial hemorrhage | 2 (8.3) |
Acute GVHD and infections | 1 (4.2) |
PCP and CMV infection | 1 (4.2) |
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | 2-Year RFS (%) | p Value | HR | 95% CI | p value | 2-Year OS (%) | p Value | HR | 95% CI | p Value | |
Age, years | ≥52 | 25.0 (±12.5) | 0.686 | 47.6 (±15.0) | 0.636 | ||||||
<52 | 33.3 (±13.6) | 41.7 (±14.2) | |||||||||
Periods | 2003–2009 | 25.0 (±15.3) | 0.195 | 37.5 (±17.1) | 0.202 | ||||||
2010–2017 | 31.3 (±11.6) | 47.7 (±12.9) | |||||||||
Durie Salmon stage | 1 | 50.0 (±35.4) | 0.351 | 50.0 (±35.4) | 0.513 | ||||||
2 | 80.0 (±17.9) | 80.0 (±17.9) | |||||||||
3 | 10.0 (±9.5) | 30.0 (±14.5) | |||||||||
ISS stage | 1 | 75.0 (±21.7) | 0.007 | 1 | 0.041 | 75.0 (±21.7) | 0.005 | 1 | 0.058 | ||
2 | 28.6 (±17.1) | 2.125 | 0.462–9.767 | 0.333 | 57.1 (±18.7) | 1.210 | 0.125–11.707 | 0.869 | |||
3 | 0 | 10.238 | 1.513–69.278 | 0.017 | 0 | 6.433 | 0.683–60.735 | 0.104 | |||
High-risk myeloma [18] | High-risk | 20.0 (±10.3) | 0.879 | 36.7 (±12.9) | 0.878 | ||||||
None | 44.4 (±16.6) | 55.6 (±16.6) | |||||||||
Cytogenetics | High | 66.7 (±27.2) | 0.232 | 66.7 (±27.2) | 0.970 | ||||||
Standard | 20.0 (±12.6) | 46.7 (±16.6) | |||||||||
HLA matching | Full match | 25.9 (±9.7) | 0.320 | 42.9 (±14.4) | 0.947 | ||||||
Mismatch | 50.0 (±25.0) | 50.0 (±25.0) | |||||||||
Conditioning regimens | MAC | 14.3 (±13.2) | 0.880 | 34.3 (±19.5) | 0.807 | ||||||
RIC | 35.3 (±11.6) | 47.1 (±12.1) | |||||||||
Previous treatment lines | ≥5 | 16.7 (±8.8) | 0.006 | 3.035 | 0.772–11.932 | 0.112 | 36.4 (±11.7) | 0.137 | |||
<5 | 66.7 (±19.2) | 1 | 66.7 (±19.2) | ||||||||
Pre-alloSCT status | CR | 66.7 (±27.2) | 0.130 | 50.0 (±35.4) | 0.026 | 1 | 0–1.963E278 | 0.969 | |||
Non-CR | 23.8 (±9.3) | 35.9 (±10.8) | 272,589.913 | ||||||||
Infused cells (CD34+) | ≥4.58 | 33.3 (±13.6) | 0.145 | 50.0 (±14.4) | 0.182 | ||||||
<4.58 | 25.0 (±12.5) | 38.9 (±14.7) | |||||||||
Pre-alloSCT M-protein | ≥0.45 | 25.0 (±12.5) | 0.220 | 38.1 (±14.7) | 0.101 | ||||||
<0.45 | 33.3 (±13.6) | 50.0 (±14.4) |
Age | ISS Stage | Previous Treatments | Cytogenetics | Pre-alloSCT Status | Donors/HLA Matching | Conditioning Regimens | Infused CD34 + | Chimerism after alloSCT | Relapse/RFS | Treatment after alloSCT | OS after alloSCT(Years) | OS (Years) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
54 | 2 | TD#3►VD#5►AutoSCT►LD#16►DCEP#3 | IgH rearrangement/Plasmacytoma | PR | Sibling/8/8 | Bu-Flu (MAC) | 4.66 | Complete | Relapse/22.8 months | PomD#15►KD#1 | 3.6 | 6.7 |
61 | 1 | TD#3►VD#6►AutoSCT►LD#7►PomD#4 | N/A | SD | Sibling/8/8 | Bu-Flu (RIC) | 3.38 | Complete | Relapse/29.9 months | Daratumumab#14►KD#1 | 3.7 | 9.0 |
37 | 2 | VTD#5 | IgH rearrangement, Rb1 deletion. P53 deletion /Plasmacytoma | PR | Unrelated/ 10/10 | TBI (300 rad, 4 days)/Mel (MAC) | 5.88 | Complete | Non-relapse/41.0 months | None | 3.4 | 4.0 |
57 | 1 | TD#4►autoSCT►VD#9 | Normal cytogenetics /Plasmacytoma | CR | Unrelated/8/10 | Bu-Flu (RIC) | 28.68 | Complete | Non-relapse/73.5 months | None | 6.1 | 9.7 |
65 | 2 | PAD#3►autoSCT►CTD#4►autoSCT►VD#3 | Normal cytogenetics | VGPR | Sibling/6/6 | Bu-Flu (RIC) | 7.94 | Complete | Relapse/ 8.2 months | VD#5►LD#6►PomD#4►bendamustine#7 | 3.0 | 6.2 |
Reference | Pawarode A, et al. [19] | El-Cheikh J, et al. [21] | Our Study |
---|---|---|---|
Country | USA | France | Korea |
Number of patients | 22 patients with high-risk or advanced refractory MM | Total 53 patients/22 patients (42%) with higher-risk disease | Total 24 patients/15 patients with high-risk feature (62.5%) |
Median previous treatment lines | 2 (1–4) | – | 5 (1–9) |
NRM/relapse rate | One-year NRM: 19%/37% at one year | One-year NRM: 17%/– | One-year NRM: 38.3%/62.5% at one year |
RFS/OS | Three-year RFS: 15%/three-year OS: 29% | 10-year RFS: 24%/10-year OS: 32% | Two-year RFS: 29.2%/two-year OS: 44.3% |
Cumulative incidence of acute GVHD/chronic GVHD | 23% at day 180 (grade 3–4)/68% at one year | 38% at two-year (grade 2–4)/59% at two years | 30.6% at day 100/13.7% at one year |
Comments | Prospective study/Using MA regimen but reduced-toxicity regimen, consisting of fludarabine and busulfan | RIC regimens/long-term outcomes (minimum follow-up of five years) | Using MAC and RIC regimens |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Byun, J.M.; Yoon, S.-S.; Koh, Y.; Shin, D.-Y.; Hong, J.; Kim, I. Allogeneic Stem Cell Transplantation in Relapsed/Refractory Multiple Myeloma Treatment: Is It Still Relevant? J. Clin. Med. 2020, 9, 2354. https://doi.org/10.3390/jcm9082354
Park H, Byun JM, Yoon S-S, Koh Y, Shin D-Y, Hong J, Kim I. Allogeneic Stem Cell Transplantation in Relapsed/Refractory Multiple Myeloma Treatment: Is It Still Relevant? Journal of Clinical Medicine. 2020; 9(8):2354. https://doi.org/10.3390/jcm9082354
Chicago/Turabian StylePark, Hyunkyung, Ja Min Byun, Sung-Soo Yoon, Youngil Koh, Dong-Yeop Shin, Junshik Hong, and Inho Kim. 2020. "Allogeneic Stem Cell Transplantation in Relapsed/Refractory Multiple Myeloma Treatment: Is It Still Relevant?" Journal of Clinical Medicine 9, no. 8: 2354. https://doi.org/10.3390/jcm9082354
APA StylePark, H., Byun, J. M., Yoon, S.-S., Koh, Y., Shin, D.-Y., Hong, J., & Kim, I. (2020). Allogeneic Stem Cell Transplantation in Relapsed/Refractory Multiple Myeloma Treatment: Is It Still Relevant? Journal of Clinical Medicine, 9(8), 2354. https://doi.org/10.3390/jcm9082354