Telomeres, DNA Damage and Ageing: Potential Leads from Ayurvedic Rasayana (Anti-Ageing) Drugs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jin, K.; Simpkins, J.W.; Ji, X.; Leis, M.; Stambler, I. The Critical Need to Promote Research of Aging and Aging-Related Diseases to Improve Health and Longevity of the Elderly Population. Aging Dis. 2015, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, E.H. Switching and Signaling at the Telomere. Cell 2001, 106, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Greider, C.W.; Blackburn, E.H. Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef]
- Mu, J.; Wei, L.X. Telomere and Telomerase in Oncology. Cell Res. 2002, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Flores, I.; Benetti, R.; Blasco, M.A. Telomerase Regulation and Stem Cell Behaviour. Curr. Opin. Cell Biol. 2006, 18, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.; Fang, E.F.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. DNA Damage, DNA Repair, Aging, and Neurodegeneration. CSH Perspect. Med. 2015, 5, a025130. [Google Scholar] [CrossRef] [Green Version]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Amin, H. Rasayana Therapy: Ayurvedic contribution to improve quality of life. World J. Pharmacol. Res. Tech. 2015, 4, 23–33. [Google Scholar]
- Balasubramani, S.P.; Venkatasubramanian, P.; Kukkupuni, S.K.; Patwardhan, B. Plant-based Rasayana drugs from Ayurveda. Chin. J. Integr. Med. 2011, 17, 88–94. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, K.; Saharia, K.; Pradhan, D.; Subramaniam, J.R. Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann. Neurosci. 2013, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Akhoon, B.A.; Pandey, S.; Tiwari, S.; Pandey, R. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp. Gerontol. 2016, 78, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Raguraman, V.; Subramaniam, J. Withania somnifera Root Extract Enhances Telomerase Activity in the Human HeLa Cell Line. Adv. Biosci. Biotechnol. 2016, 7, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Yadav, A.; Gupta, R.; Aggarwal, N. Antigenotoxic effect of Withania somnifera (Ashwagandha) extract against DNA damage induced by hydrogen peroxide in cultured human peripheral blood lymphocytes. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 713–719. [Google Scholar] [CrossRef]
- Sharma, R.; Amin, H.; Prajapati, P.; Ruknuddin, G. Therapeutic Vistas of Guduchi (Tinospora cordifolia): A medico-historical memoir. J. Res. Educ. Ind. Med. 2014, 20, 113–128. [Google Scholar]
- Sharma, R.; Kumar, V.; Ashok, B.K.; Galib, R.; Prajapati, P.K.; Ravishankar, B. Evaluation of hypoglycaemic and anti-hyperglycaemic activities of Guduchi Ghana in Swiss albino mice. Int. J. Green Pharm. 2013, 7, 145–148. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, V.; Ashok, B.K.; Galib, R.; Prajapati, P.K.; Ravishankar, B. Hypoglycemic and anti-hyperglycemic activity of Guduchi Satva in experimental animals. Ayu 2013, 34, 417. [Google Scholar] [CrossRef] [Green Version]
- Masuma, R.; Okuno, T.; Kabir Choudhuri, M.S.; Saito, T.; Kurasaki, M. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells. J. Environ. Sci. Health Part B 2014, 49, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Ambasta, S.K.; Shashikant, S.U.K. Genoprotective effects of ethanolic stem extracts of Tinospora cordifolia on sodium arsenite-induced DNA damage in swiss mice lymphocytes by comet assay. Asian J. Pharm. Clin. Res. 2019, 12, 208–212. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Fragkiadaki, P.; Docea, A.O.; Alegakis, A.K.; Sarandi, E.; Thanasoula, M.; Spandidos, D.A.; Tsatsakis, A.; Razgonova, M.P.; Calina, D. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 2019, 20, 3701–3708. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.E.; Harris, C.J.; Quinn, J.F.; Soumyanath, A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol. 2016, 180, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Somboonwong, J.; Kankaisre, M.; Tantisira, B.; Tantisira, M.H. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: An experimental animal study. BMC Complement. Altern. Med. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondhi, N.; Bhardwaj, R.; Kaur, S.; Chandel, M.; Kumar, N.; Singh, B. Inhibition of H2O2-induced DNA damage in single cell gel electrophoresis assay (comet assay) by castasterone isolated from leaves of Centella asiatica. Health 2010, 2, 595. [Google Scholar] [CrossRef] [Green Version]
- Rai, D.; Bhatia, G.; Palit, G.; Pal, R.; Singh, S.; Singh, H.K. Adaptogenic effect of Bacopa monniera (Brahmi). Pharmacol. Biochem. Behav. 2003, 75, 823–830. [Google Scholar] [CrossRef]
- Russo, A.; Izzo, A.A.; Borrelli, F.; Renis, M.; Vanella, A. Free radical scavenging capacity and protective effect of Bacopa monniera L. on DNA damage. Phytother. Res. 2003, 17, 870–875. [Google Scholar] [CrossRef]
- Anand, T.; Naika, M.; Swamy, M.S.; Khanum, F. Antioxidant and DNA Damage Preventive Properties of Bacopa Monniera (L) Wettst. Free Radic. Antioxid. 2011, 1, 84–90. [Google Scholar] [CrossRef]
- Anand, T.; Pandareesh, M.D.; Bhat, P.V.; Venkataramana, M. Anti-apoptotic mechanism of Bacoside rich extract against reactive nitrogen species induced activation of iNOS/Bax/caspase 3 mediated apoptosis in L132 cell line. Cytotechnology 2014, 66, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.K.; Srimal, R.C.; Srivastava, A.K.; Garg, N.K.; Dhawan, B.N. Neuropsychopharmacological Effects of Bacosides A and B. In Proceedings of the Fourth Conference on the Neurobiology of Learning and Memory, Irvine, CA, USA, 17–20 October 1990. [Google Scholar]
- Amin, H.; Sharma, R.; Vyas, H.; Vyas, M.; Prajapati, P.K.; Dwivedi, R. Nootropic (medhya) effect of Bhāvita Śaṇkhapuṣpī tablets: A clinical appraisal. Anc. Sci. Life 2014, 34, 109. [Google Scholar] [CrossRef]
- Amin, H.; Sharma, R. Nootropic efficacy of Satvavajaya Chikitsa and Ayurvedic drug therapy: A comparative clinical exposition. Int. J. Yoga 2015, 8, 109. [Google Scholar] [CrossRef]
- Rachitha, P.; Krupashree, K.; Jayashree, G.V.; Kandikattu, H.K.; Amruta, N.; Gopalan, N.; Rao, M.K.; Khanum, F. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J. Tradit. Complement. Med. 2018, 8, 483–496. [Google Scholar] [CrossRef]
- Dirican, E.; Turkez, H. In vitro studies on protective effect of Glycyrrhiza glabra root extracts against cadmium-induced genetic and oxidative damage in human lymphocytes. Cytotechnology 2014, 66, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Shetty, T.K.; Satav, J.G.; Nair, C.K. Protection of DNA and microsomal membranes in vitro by Glycyrrhiza glabra L. against gamma irradiation. Phytother. Res. 2002, 16, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Reigada, I.; Moliner, C.; Valero, M.S.; Weinkove, D.; Langa, E.; Gómez Rincón, C. Antioxidant and Antiaging Effects of Licorice on the Caenorhabditis elegans Model. J. Med. Food 2020, 23, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, D.; Nair, C.K. Protection of DNA and membrane from γ-radiation induced damage by the extract of Acorus calamus Linn.: An in vitro study. Environ. Toxicol. Pharmacol. 2010, 29, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Sharma, R.; Gautam, D.S.; Kuca, K.; Nepovimova, E.; Martins, N. Role of Vacha (Acorus calamus Linn.) in Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. J. Clin. Med. 2020, 9, 1176. [Google Scholar] [CrossRef] [Green Version]
- Plant, J. Effects of essential oils on telomere length in human cells. Med. Aromat. Plants 2016, 5, 1–6. [Google Scholar]
- Kaur, P.; Dhull, S.B.; Sandhu, K.S.; Salar, R.K.; Purewal, S.S. Tulsi (Ocimum tenuiflorum) seeds: In vitro DNA damage protection, bioactive compounds and antioxidant potential. J. Food Meas. Charact. 2018, 12, 1530–1538. [Google Scholar] [CrossRef]
- Shalini, V.K.; Srinivas, L. Lipid peroxide induced DNA damage: Protection by turmeric (Curcuma longa). Mol. Cell. Biochem. 1987, 77, 3–10. [Google Scholar] [CrossRef]
- Srinivas, L.; Shalini, V.K. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS. Free Radic. Biol. Med. 1991, 11, 277–283. [Google Scholar] [CrossRef]
- Shalini, V.K.; Srinivas, L. Fuel smoke condensate induced DNA damage in human lymphocytes and protection by turmeric (Curcuma longa). Mol. Cell. Biochem. 1990, 95, 21–30. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Fu, Z.; Zhu, B.; Wang, J.; Guan, S.; Hua, Z. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bryan, H.K.; Olayanju, A.; Goldring, C.E.; Park, B.K. The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem. Pharmacol. 2013, 85, 705–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.R.; Xiao, F.; Yuan, P.; Chen, Y.; Gao, Q.K.; Parnell, L.D.; Meydani, M.; Ordovas, J.M.; Li, D.; Lai, C.Q. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. Age 2013, 35, 1133–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuanalo-Contreras, K.; Park, K.W.; Mukherjee, A.; Peña, L.M.; Soto, C. Delaying aging in Caenorhabditis elegans with protein aggregation inhibitors. Biochem. Biophys. Res. Commun. 2017, 482, 62–67. [Google Scholar] [CrossRef]
- Swain, U.; Sindhu, K.K.; Boda, U.; Pothani, S.; Giridharan, N.V.; Raghunath, M.; Rao, K.S. Studies on the molecular correlates of genomic stability in rat brain cells following Amalaki Rasyana therapy. Mech. Ageing Dev. 2012, 133, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.; Anandan, E.M.; Mony, R.S.; Muraleedharan, T.S.; Valiathan, M.S.; Mutsuddi, M.; Lakhotia, S.C. In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS ONE 2012, 7, e37113. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, V.; Tripathi, B.K.; Mutsuddi, M.; Lakhotia, S.C. Ayurvedic Amalaki Rasayana and Rasa-Sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases. Curr. Sci. 2013, 104, 1711–1723. [Google Scholar]
- Guruprasad, K.P.; Dash, S.; Shivakumar, M.B.; Shetty, P.R.; Raghu, K.S.; Shamprasad, B.R.; Udupi, V.; Acharya, R.V.; Vidya, P.B.; Nayak, J.; et al. Influence of Amalaki Rasayana on telomerase activity and telomere length in human blood mononuclear cells. J. Ayurveda Integr. Med. 2017, 8, 105–112. [Google Scholar] [CrossRef]
- Vishwanatha, U.; Guruprasad, K.P.; Gopinath, P.M.; Acharya, R.V.; Prasanna, B.V.; Nayak, J.; Ganesh, R.; Rao, J.; Shree, R.; Anchan, S.; et al. Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals. J. Ethnopharmacol. 2016, 191, 387–397. [Google Scholar] [CrossRef]
- Ramakrishna, V.; Gupta, K.P.; Setty, H.O.; Kondapi, K.A. Neuroprotective effect of Emblica officinalis extract against H2O2 induced DNA damage and repair in neuroblastoma cells. J. Homeopath. Ayurvedic Med. Sci. 2014, 1, 1–5. [Google Scholar]
- Raghu, K.S.; Shamprasad, B.R.; Kabekkodu, S.P.; Paladhi, P.; Joshi, M.B.; Valiathan, M.S.; Guruprasad, K.P.; Satyamoorthy, K. Age dependent neuroprotective effects of medhya rasayana prepared from Clitoria ternatea Linn. in stress induced rat brain. J. Ethnopharmacol. 2017, 197, 173–183. [Google Scholar] [CrossRef]
- Guruprasad, K.P.; Subramanian, A.; Singh, V.J.; Sharma, R.S.K.; Gopinath, P.M.; Sewram, V.; Varier, P.M.; Satyamoorthy, K. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells. BMC Complement. Altern. Med. 2012, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Martins, N.; Kuca, K.; Chaudhary, A.; Kabra, A.; Rao, M.M.; Prajapati, P.K. Chyawanprash A Traditional Indian Bioactive Health Supplement. Biomolecules 2019, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.T.; Denniston, K.; Chopra, D. Therapeutic uses of Triphala in Ayurvedic medicine. J. Altern. Complement. Med. 2017, 23, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.; Martins, N. Telomeres, DNA Damage and Ageing: Potential Leads from Ayurvedic Rasayana (Anti-Ageing) Drugs. J. Clin. Med. 2020, 9, 2544. https://doi.org/10.3390/jcm9082544
Sharma R, Martins N. Telomeres, DNA Damage and Ageing: Potential Leads from Ayurvedic Rasayana (Anti-Ageing) Drugs. Journal of Clinical Medicine. 2020; 9(8):2544. https://doi.org/10.3390/jcm9082544
Chicago/Turabian StyleSharma, Rohit, and Natália Martins. 2020. "Telomeres, DNA Damage and Ageing: Potential Leads from Ayurvedic Rasayana (Anti-Ageing) Drugs" Journal of Clinical Medicine 9, no. 8: 2544. https://doi.org/10.3390/jcm9082544