Prevalence of Antibodies to SARS-CoV-2 in Italian Adults and Associated Risk Factors
Abstract
:1. Introduction
2. Experimental Methods
2.1. Participants
2.2. Endpoint
2.3. Detection of Infection
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
3.1. Participant Demographics and Exposures
3.2. Prevalence of Sars-CoV-2 Antibodies
3.3. Factors Associated with Anti-Sars-CoV-2 Antibodies Positivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Available online: http://www.salute.gov.it/portale/nuovocoronavirus/ (accessed on 30 April 2020).
- Bassetti, M.; Vena, A.; Giacobbe, D.R. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Investig. 2020, 50, e13209. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.U.; Kim, M.J.; Ra, S.H.; Lee, J.; Bae, S.; Jung, J.; Kim, S.-H. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect. 2020, 26, 948.e1–948.e3. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 2000180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thursky, K.; Cordova, S.P.; Smith, D.; Kelly, H. Working towards a simple case definition for influenza surveillance. J. Clin. Virol. 2003, 27, 170–179. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Pegoraro, M.; Militello, V.; Caloi, C.; Peretti, A.; Gaino, S.; Bassi, A.; Bovo, C.; Cascio, G.L. Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG and IgM chemiluminescence immunoassays. Clin. Chem. Lab. Med. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Padoan, A.; Cosma, C.; Sciacovelli, L.; Faggian, D.; Plebani, M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin. Chem. Lab. Med. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92. [Google Scholar] [CrossRef]
- Stringhini, S.; Wisniak, A.; Piumatti, G.; Azman, A.S.; Lauer, S.A.; Baysson, H.; De Ridder, D.; Petrovic, D.; Schrempft, S.; Marcus, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): A population-based study. Lancet 2020, 396, 313–319. [Google Scholar] [CrossRef]
- Pollan, M.; Perez-Gomez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernan, M.A.; Perez-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; De Larrea, N.F.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020. [Google Scholar] [CrossRef]
- Soriano, V.; Meirino, R.; Corral, O.; Guallar, M.P. SARS-CoV-2 antibodies in adults in Madrid, Spain. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Petersen, M.S.; Strom, M.; Christiansen, D.H.; Fjallsbak, J.P.; Eliasen, E.H.; Johansen, M.; Veyhe, A.S.; Kristiansen, M.F.; Gaini, S.; Møller, L.F.; et al. Seroprevalence of SARS-CoV-2-Specific Antibodies, Faroe Islands. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Biggs, H.M.; Harris, J.B.; Breakwell, L.; Dahlgren, F.S.; Abedi, G.R.; Szablewski, C.M.; Drobeniuc, J.; Bustamante, N.D.; Almendares, O.; Schnall, A.H.; et al. Estimated Community Seroprevalence of SARS-CoV-2 Antibodies—Two Georgia Counties, 28 April–3 May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Menachemi, N.; Yiannoutsos, C.T.; Dixon, B.E.; Duszynski, T.J.; Fadel, W.F.; Wools-Kaloustian, K.K.; Needleman, N.U.; Box, K.; Caine, V.; Norwood, C.; et al. Population Point Prevalence of SARS-CoV-2 Infection Based on a Statewide Random Sample—Indiana, 25–29 April 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Knabbe, C.; Vollmer, T. SARS-CoV-2 IgG seroprevalence in blood donors located in three different federal states, Germany, March to June 2020. Eurosurveillance 2020, 25, 2001285. [Google Scholar] [CrossRef] [PubMed]
- Havers, F.P.; Reed, C.; Lim, T.; Montgomery, J.M.; Klena, J.D.; Hall, A.J.; Fry, A.M.; Cannon, D.L.; Chiang, C.-F.; Gibbons, A.; et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, 23 March–12 May 2020. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef]
- Amorim Filho, L.; Szwarcwald, C.L.; Mateos, S.O.G.; Leon, A.; Medronho, R.A.; Veloso, V.G.; Lopes, J.I.F.; De Moraes Sobrino Porto, L.C.; Chieppe, A.; Werneck, G.L. Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro, Brazil. Rev. Saude Publica 2020, 54, 69. [Google Scholar]
- Percivalle, E.; Cambie, G.; Cassaniti, I.; Nepita, E.V.; Maserati, R.; Ferrari, A.; Di Martino, R.; Isernia, P.; Mojoli, F.; Bruno, R.; et al. Prevalence of SARS-CoV-2 specific neutralising antibodies in blood donors from the Lodi Red Zone in Lombardy, Italy, as at 06 April 2020. Eurosurveillance 2020, 25, 2001031. [Google Scholar] [CrossRef]
- Sood, N.; Simon, P.; Ebner, P.; Eichner, D.; Reynolds, J.; Bendavid, E.; Bhattacharya, J. Seroprevalence of SARS-CoV-2-Specific Antibodies Among Adults in Los Angeles County, California, on 10–11 April 2020. JAMA 2020, 323, 2425–2427. [Google Scholar] [CrossRef]
- Tan, L.F.; Seetharaman, S. Preventing the Spread of COVID-19 to Nursing Homes: Experience from a Singapore Geriatric Centre. J. Am. Geriatr. Soc. 2020, 68, 942. [Google Scholar] [CrossRef]
- Abrams, H.R.; Loomer, L.; Gandhi, A. Grabowski DCCharacteristics of, U.S. Nursing Homes with COVID-19 Cases. J. Am. Geriatr. Soc. 2020, 68. [Google Scholar] [CrossRef] [PubMed]
- McMichael, T.M.; Currie, D.W.; Clark, S.; Pogosjans, S.; Kay, M.; Schwartz, N.G.; Lewis, J.; Baer, A.; Kawakami, V.; Lukoff, M.D.; et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N. Engl. J. Med. 2020, 382, 2005–2011. [Google Scholar] [CrossRef]
- Stone, P.W.; Herzig, C.T.; Pogorzelska-Maziarz, M.; Carter, E.; Bjarnadottir, R.I.; Semeraro, P.K.; Cohen, C.C.; Travers, J.; Schweon, S. Understanding infection prevention and control in nursing homes: A qualitative study. Geriatr. Nurs. 2015, 36, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzig, C.T.; Stone, P.W.; Castle, N.; Pogorzelska-Maziarz, M.; Larson, E.L.; Dick, A.W. Infection Prevention and Control Programs in US Nursing Homes: Results of a National Survey. J. Am. Med. Dir. Assoc. 2016, 17, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Pena, S.A.; Davis, S.S.; Lu, X.; Sakthivel, S.K.K.; Peret, T.C.T.; Rose, E.B.; Smelser, C.; Schneider, E.; Stone, N.D.; Watson, J. Severe Respiratory Illness Associated with Human Metapneumovirus in Nursing Home, New Mexico, USA. Emerg. Infect. Dis. 2019, 25, 383–384. [Google Scholar] [CrossRef] [Green Version]
- Ursic, T.; Miksic, N.G.; Lusa, L.; Strle, F.; Petrovec, M. Viral respiratory infections in a nursing home: A six-month prospective study. BMC Infect. Dis. 2016, 16, 637. [Google Scholar] [CrossRef] [Green Version]
- Seynaeve, D.; Augusseau-Riviere, B.; Couturier, P.; Morel-Baccard, C.; Landelle, C.; Bosson, J.L.; Gavazzi, G.; Mallaret, M.-R. Outbreak of Human Metapneumovirus in a Nursing Home: A Clinical Perspective. J. Am. Med. Dir. Assoc. 2020, 21, 104–109.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoya, A.; Cassone, M.; Mody, L. Infections in Nursing Homes: Epidemiology and Prevention Programs. Clin. Geriatr. Med. 2016, 32, 585–607. [Google Scholar] [CrossRef]
- De Maria, A.; Varese, P.; Dentone, C.; Barisione, E.; Bassetti, M. High prevalence of olfactory and taste disorder during SARS-CoV-2 infection in outpatients. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Butowt, R.; Bilinska, K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem. Neurosci. 2020, 11, 1200–1203. [Google Scholar] [CrossRef] [Green Version]
- Al-Tawfiq, J.A. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med. Infect. Dis. 2020, 35, 101608. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, G. Sixty seconds on the contact tracing app. BMJ 2020, 369, m1818. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, A.; Liu, M.; Wang, Q.; Chen, J.; Xia, S.; Ling, Y.; Zhang, Y.; Xun, J.; Lu, L.; et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020. [CrossRef]
- Fang, B.; Meng, Q.H. The laboratory’s role in combating COVID-19. Crit. Rev. Clin. Lab. Sci. 2020, 57, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 Serological Tests: How Well Do They Actually Perform? Diagnostics 2020, 10, 453. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N = 3609 (%) |
---|---|
Sex | |
Female | 2007 (55.6) |
Male | 1602 (44.4) |
Age groups (Years) | |
18–35 | 556 (15.4) |
36–45 | 631 (17.4) |
46–55 | 929 (25.7) |
>55 | 1493 (41.4) |
Region | |
Lombardia | 3065 (84.9) |
Liguria | 544 (15.1) |
Administrative department | |
Varese | 1430 (39.6) |
Pavia | 871 (24.1) |
Milano | 764 (21.2) |
Genova | 492 (13.6) |
Savona | 52 (1.4) |
Resident in a long-term care facility | 207 (5.7) |
n (%) | Sars-CoV-2 IgG+ or IgM (95% Confidence Interval) | |
---|---|---|
Medical Center | 1885 (52.2) | 11.5% (10.1%–13.0%) |
Istituto Diagnostico Varelli | 1180 (32.7) | 8.0% (6.5%–9.7%) |
Casa della salute di Genova | 544 (15.1) | 16.2% (13.2%–19.5%) |
Characteristics | Tested | SARS-CoV-2 IgG+ or IgM+ | Univariate Analysis | ||
---|---|---|---|---|---|
N | n (%) | OR | 95% CI | p-Value | |
Sex | |||||
Female | 2007 | 251 (12.5) | 1.36 | 1.12–1.65 | 0.002 |
Male | 1602 | 147 (9.2) | Ref | Ref | Ref |
Age group (Years) | |||||
18–35 | 556 | 66 (11.9) | 1.10 | 0.83–1.46 | 0.50 |
36–45 | 631 | 45 (7.1) | 0.57 | 0.41–0.79 | 0.001 |
46–55 | 929 | 90 (9.7) | 0.82 | 0.64–1.05 | 0.24 |
>55 | 1493 | 197 (13.2) | 1.44 | 1.17–1.78 | 0.001 |
Living in a long-term care facility | |||||
No | 3402 | 312 (9.2) | Ref | Ref | Ref |
Yes | 207 | 86 (41.5) | 7.56 | 5.58–10.23 | 0.001 |
Occupational exposure | |||||
No | 3430 | 363 (10.6) | Ref | Ref | Ref |
Yes | 178 | 35 (19.7) | 2.60 | 1.76–3.88 | 0.001 |
Private Exposure | |||||
No | 3469 | 376 (10.8) | Ref | Ref | Ref |
Yes | 140 | 21 (15.0) | 1.45 | 0.90–2.36 | 0.12 |
Occurrence of Symptoms in the previous month | |||||
No symptoms | 3147 | 226 (7.2) | Ref | Ref | Ref |
Influenza-like illness | 427 | 427 (34.2) | 6.71 | 5.27–8.54 | 0.001 |
Loss of sense or taste | 35 | 26 (74.3) | 37.33 | 17.28–80.64 | 0.001 |
Characteristics | OR | 95% CI | p-Value |
---|---|---|---|
Male sex | 0.79 | 0.63–1.01 | 0.06 |
Age 36–45 | 1.40 | 0.99–1.93 | 0.06 |
Age > 55 | 1.17 | 0.88–1.55 | 0.27 |
Living in a long-term care facility | 4.53 | 3.19–6.45 | 0.001 |
Occupational exposure | 2.36 | 1.59–3.50 | 0.001 |
Prior history of influenza-like illness | 4.86 | 3.75–6.30 | 0.001 |
Prior history of loss of sense or taste | 41.00 | 18.94–88.71 | 0.001 |
Author | Country; Area | Number of Participants | Prevalence of Anti-SARS-CoV-2 Antibodies |
---|---|---|---|
Petersen M.S. [13] | Faroe Islands; Nationwide study | 1075 | 0.6% |
Biggs H. [14] | U.S.; two metropolitan Atlanta counties | 696 | 2.5% |
Menachemi N. [15] | U.S; Indiana | 3658 | 2.79% |
Fischer B. [16] | Germany; three federal states | 3186 | 0.91% |
Pollan M. [11] | Spain; Nationwide study | 61,075 | 5.0% |
Havers F. [17] | U.S; 10 sites | 16,025 | From 1.0% (San Francisco) to 6.9% (New York City) |
Amorim Filho L. [18] | Brazil; Rio de Janeiro | 2857 | 4.0% |
Percivalle E. [19] | Italy; Lodi area | 390 | 23.0% |
Soriano V. [12] | Spain, Madrid | 674 | 13.8% |
Stringhini S. [10] | Switzerland, Geneve | 2766 | 9.7% |
Sood N. [20] | U.S., Los Angeles | 1702 | 4.3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vena, A.; Berruti, M.; Adessi, A.; Blumetti, P.; Brignole, M.; Colognato, R.; Gaggioli, G.; Giacobbe, D.R.; Bracci-Laudiero, L.; Magnasco, L.; et al. Prevalence of Antibodies to SARS-CoV-2 in Italian Adults and Associated Risk Factors. J. Clin. Med. 2020, 9, 2780. https://doi.org/10.3390/jcm9092780
Vena A, Berruti M, Adessi A, Blumetti P, Brignole M, Colognato R, Gaggioli G, Giacobbe DR, Bracci-Laudiero L, Magnasco L, et al. Prevalence of Antibodies to SARS-CoV-2 in Italian Adults and Associated Risk Factors. Journal of Clinical Medicine. 2020; 9(9):2780. https://doi.org/10.3390/jcm9092780
Chicago/Turabian StyleVena, Antonio, Marco Berruti, Andrea Adessi, Pietro Blumetti, Michele Brignole, Renato Colognato, Germano Gaggioli, Daniele Roberto Giacobbe, Luisa Bracci-Laudiero, Laura Magnasco, and et al. 2020. "Prevalence of Antibodies to SARS-CoV-2 in Italian Adults and Associated Risk Factors" Journal of Clinical Medicine 9, no. 9: 2780. https://doi.org/10.3390/jcm9092780
APA StyleVena, A., Berruti, M., Adessi, A., Blumetti, P., Brignole, M., Colognato, R., Gaggioli, G., Giacobbe, D. R., Bracci-Laudiero, L., Magnasco, L., Signori, A., Taramasso, L., Varelli, M., Vendola, N., Ball, L., Robba, C., Battaglini, D., Brunetti, I., Pelosi, P., & Bassetti, M. (2020). Prevalence of Antibodies to SARS-CoV-2 in Italian Adults and Associated Risk Factors. Journal of Clinical Medicine, 9(9), 2780. https://doi.org/10.3390/jcm9092780