Effects of Smoking and Smoking Cessation on the Intestinal Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Processing and Analysis of Fecal Samples
2.3.1. DNA Extraction
2.3.2. Sequencing
2.3.3. Analysis
2.4. Measurements of Inflammatory Markers
2.5. Arterial Measures
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Baseline Correlations between Bacterial Taxa Abundances, TMAO, Microbial Diversity Scores, and Smoking Measures
3.3. Effects of Smoking Cessation and Continued Smoking on Microbiota Abundances, Diversity Scores after 2 and 12 weeks
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ley, R.E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 2010, 26, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Costea, P.I.; Hildebrand, F.; Arumugam, M.; Bäckhed, F.; Blaser, M.J.; Bushman, F.D.; De Vos, W.M.; Ehrlich, S.D.; Fraser, C.; Hattori, M.; et al. Publisher Correction: Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 2018, 3, 388. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Koeth, R.A.; Wang, Z.; Levison, B.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Gu, X.; Buffa, J.A.; Hurd, A.G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S.M.; Cody, D.B.; Levison, B.; et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 2018, 24, 1407–1417. [Google Scholar] [CrossRef]
- Wang, Z.; Roberts, A.; Buffa, J.A.; Levison, B.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med. 2009, 1, 6ra14. [Google Scholar] [CrossRef] [Green Version]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host–microbiota mutualism. Nat. Rev. Genet. 2011, 9, 233–243. [Google Scholar] [CrossRef]
- Dill-McFarland, K.A.; Tang, Z.-Z.; Kemis, J.H.; Kerby, R.L.; Chen, G.; Palloni, A.; Sorenson, B.T.J.; Rey, F.E.; Herd, P. Close social relationships correlate with human gut microbiota composition. Sci. Rep. 2019, 9, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol. 2018, 200, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.R.; Berger, S.; Vogel, T.M. Human Pathogens Abundant in the Bacterial Metagenome of Cigarettes. Environ. Heal. Perspect. 2010, 118, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Prescott, N.J.; Pessoa-Lopes, P.; Mathew, C.G.; Sanderson, J.; Hart, A.L.; et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota*. Inflamm. Bowel Dis. 2012, 18, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, L.; Zeitz, J.; Mwinyi, J.; Sutter-Minder, E.; Rehman, A.; Ott, S.J.; Steurer-Stey, C.; Frei, A.; Frei, P.; Scharl, M.; et al. Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE 2013, 8, e59260. [Google Scholar] [CrossRef]
- Kreznar, J.H.; Keller, M.P.; Traeger, L.L.; Rabaglia, M.E.; Schueler, K.L.; Stapleton, D.S.; Zhao, W.; Vivas, E.I.; Yandell, B.S.; Broman, A.T.; et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 2017, 18, 1739–1750. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.J.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011, 6, 610–618. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Pielou, E. The measurement of diversity in different types of biological collections. J. Theor. Boil. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Levison, B.; Hazen, J.E.; Donahue, L.; Li, X.-M.; Hazen, S.L. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Biochem. 2014, 455, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Johnson, H.M.; Gossett, L.K.; Piper, M.E.; Aeschlimann, S.E.; Korcarz, C.E.; Baker, T.B.; Fiore, M.C.; Stein, J.H. Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial. J. Am. Coll. Cardiol. 2010, 55, 1988–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torriani, F.J.; Komarow, L.; Parker, R.A.; Cotter, B.R.; Currier, J.S.; Dubé, M.P.; Fichtenbaum, C.J.; Gerschenson, M.; Mitchell, C.K.; Murphy, R.L.; et al. Endothelial Function in Human Immunodeficiency Virus-Infected Antiretroviral-Naive Subjects Before and After Starting Potent Antiretroviral Therapy: The actg (aids clinical trials group) study 5152s. J. Am. Coll. Cardiol. 2008, 52, 569–576. [Google Scholar] [CrossRef]
- Kasselman, L.J.; Vernice, N.A.; DeLeon, J.; Reiss, A.B. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis 2018, 271, 203–213. [Google Scholar] [CrossRef]
- Battson, M.L.; Lee, D.M.; Weir, T.L.; Gentile, C.L. The gut microbiota as a novel regulator of cardiovascular function and disease. J. Nutr. Biochem. 2018, 56, 1–15. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Schwiertz, A.; Taras, D.; Schafer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Hevia, A.; Milani, C.; López, P.; Cuervo, A.; Arboleya, S.; Duranti, S.; Turroni, F.; González, S.; Suárez, A.; Gueimonde, M.; et al. Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. mBio 2014, 5, e01548-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giongo, A.; Gano, K.A.; Crabb, D.B.; Mukherjee, N.; Novelo, L.L.; Casella, G.; Drew, J.C.; Ilonen, J.; Knip, M.; Hyöty, H.; et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2010, 5, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, A.N.; Choudhury, B.P.; Fischbach, M.A. The Biosynthesis of Lipooligosaccharide from Bacteroides thetaiotaomicron. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Yun, Y.; Kim, S.J.; Lee, E.-J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, H.-N.; Lee, J.H. Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. J. Clin. Med. 2018, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, D.H.; Rennard, S.I.; Nides, M.; Oncken, C.; Azoulay, S.; Billing, C.B.; Watsky, E.J.; Gong, J.; Williams, K.E.; Reeves, K.R.; et al. Varenicline, an α4β2 Nicotinic Acetylcholine Receptor Partial Agonist, vs Sustained-Release Bupropion and Placebo for Smoking CessationA Randomized Controlled Trial. JAMA 2006, 296, 47. [Google Scholar] [CrossRef]
- King, C.C.; Piper, M.E.; Gepner, A.D.; Fiore, M.C.; Baker, T.B.; Stein, J.H. Longitudinal Impact of Smoking and Smoking Cessation on Inflammatory Markers of Cardiovascular Disease Risk. Arter. Thromb. Vasc. Boil. 2016, 37, 374–379. [Google Scholar] [CrossRef] [Green Version]
Mean | Standard Deviation | Range | |
---|---|---|---|
Age (years) | 51.4 | 11.2 | 26–71 |
Male/Females (%) | 42.0/58.0 | - | - |
Cigarettes/day | 15.1 | 6.4 | 5.1–35.0 |
Pack-years | 22.7 | 12.0 | 2.5–52.0 |
Exhale Carbon monoxide (ppm) | 17.6 | 9.3 | 5–41 |
Body-mass index (kg/m2) | 29.6 | 8.4 | 20.7–67.9 |
Heart rate (bpm) | 72.3 | 10.7 | 57–100 |
Systolic blood pressure (mmHg) | 131.4 | 16.5 | 102–162 |
Diastolic blood pressure (mmHg) | 77.6 | 9.0 | 66–95 |
Non-high-density lipoprotein cholesterol | 160.3 | 52.6 | 69–274 |
Glucose (mg/dL) | 92.4 | 9.7 | 70–109 |
C-reactive protein (mg/L) | 4.6 | 7.5 | 0.1–39.5 |
Trimethylamine N-oxide (microM) | 3.75 | 2.11 | 1.11–13.18 |
White blood cell count (K/μL) | 8.4 | 2.2 | 4.6–13.9 |
Carotid-femoral pulse wave velocity (m/s) | 7.46 | 1.84 | 4.80–12.95 |
Brachial artery flow-mediated dilation (%) | 4.57 | 2.91 | 0.55–12.05 |
Carotid plaque score (0–12) | 3.0 | 2.8 | 0–10 |
Mean | Standard Deviation | Range | |
---|---|---|---|
Microbiota Relative Abundances (%) | |||
Actinobacteria | 4.17 | 4.37 | 0.0–15.90 |
Cyanobacteria | 0.04 | 0.13 | 0.0–0.72 |
Verrucomicrobia | 0.70 | 2.55 | 0.0–14.41 |
Euryarchaeota | 0.10 | 0.24 | 0.0–0.96 |
Bacteroidetes | 23.40 | 10.5 | 8.10–49.30 |
Firmicutes | 70.20 | 10.0 | 46.10–88.70 |
Fusobacteria | 0.011 | 0.44 | 0.0–2.52 |
Proteobacteria | 1.26 | 1.02 | 0.0–5.70 |
Alpha-Diversity Measures (units) | |||
Pielou’s evenness | 0.77 | 0.06 | 0.58–0.84 |
Faith PD | 8.32 | 1.68 | 4.78–12.11 |
Shannon | 5.14 | 0.60 | 3.05–6.12 |
Beta | Standard Error | p-Value | |
---|---|---|---|
Microbiota Relative Abundances (%) | |||
Actinobacteria | 1.2 | 0.8 | 0.15 |
Cyanobacteria | 0.0 | 0.0 | 0.17 |
Verrucomicrobia | 0.0 | 0.1 | 0.92 |
Euryarchaeota | 0.0 | 0.4 | 0.99 |
Bacteroidetes | 7.4 | 3.5 | 0.048 |
Firmicutes | −7.6 | 3.4 | 0.036 |
Fusobacteria | −0.1 | 0.1 | 0.53 |
Proteobacteria | 0.3 | 0.6 | 0.67 |
Alpha-Diversity Measures (units) | |||
Pielou’s evenness | −0.01 | 0.02 | 0.61 |
Faith PD | −0.10 | 0.85 | 0.91 |
Shannon | −0.13 | 0.23 | 0.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sublette, M.G.; Cross, T.-W.L.; Korcarz, C.E.; Hansen, K.M.; Murga-Garrido, S.M.; Hazen, S.L.; Wang, Z.; Oguss, M.K.; Rey, F.E.; Stein, J.H. Effects of Smoking and Smoking Cessation on the Intestinal Microbiota. J. Clin. Med. 2020, 9, 2963. https://doi.org/10.3390/jcm9092963
Sublette MG, Cross T-WL, Korcarz CE, Hansen KM, Murga-Garrido SM, Hazen SL, Wang Z, Oguss MK, Rey FE, Stein JH. Effects of Smoking and Smoking Cessation on the Intestinal Microbiota. Journal of Clinical Medicine. 2020; 9(9):2963. https://doi.org/10.3390/jcm9092963
Chicago/Turabian StyleSublette, Marcus G., Tzu-Wen L. Cross, Claudia E. Korcarz, Kristin M. Hansen, Sofia M. Murga-Garrido, Stanley L. Hazen, Zeneng Wang, Madeline K. Oguss, Federico E. Rey, and James H. Stein. 2020. "Effects of Smoking and Smoking Cessation on the Intestinal Microbiota" Journal of Clinical Medicine 9, no. 9: 2963. https://doi.org/10.3390/jcm9092963
APA StyleSublette, M. G., Cross, T. -W. L., Korcarz, C. E., Hansen, K. M., Murga-Garrido, S. M., Hazen, S. L., Wang, Z., Oguss, M. K., Rey, F. E., & Stein, J. H. (2020). Effects of Smoking and Smoking Cessation on the Intestinal Microbiota. Journal of Clinical Medicine, 9(9), 2963. https://doi.org/10.3390/jcm9092963