Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting of Amaranth Leaves
2.2. Chemical Analysis
2.3. Amino Acid Determination
2.4. Phenolic Compounds Determination
2.5. Statistical Analysis
3. Results
3.1. Proximate Composition of Amaranth Leaves Harvested at Different Stages
3.2. Mineral Composition of Early and Late Harvested Leaves
3.3. Amino Acid Profiles of Amaranth Leaves Harvested at Different Stages
3.4. Phenolic Compounds and Pearson’s Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOAC | Association of Official Analytical Chemist |
LSD | Least Significance Difference |
LC-MS | Liquid Chromatograph-Mass Spectrometer |
QTDF | A quadrupole time-of-flight |
DM | dry matter |
CP | crude protein |
CF | crude fiber |
NDF | neutral detergent fiber |
ADF | acid detergent fiber |
ADL | acid detergent lignin |
GE | gross energy |
EE | ether extracts |
Ca | calcium |
Mg | magnesium |
K | potassium |
Na | sodium |
P | phosphorus |
Rut | rutin |
Hyp | hyperoside |
Try | tryptophan |
Que | quercetin 3-O-rhamnosyl-glucoside |
Kru | kaempferol rutinoside |
References
- Sarker, U.; Oba, S. Protein, dietary fiber, minerals, antioxidant pigments and phytochemicals and antioxidant activity in selected red morph Amaranthus leafy vegetable. PLoS ONE 2019, 14, e0222517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. The United Nations Children’s Fund (UNICEF), International Council for the Control of Iodine Deficiency Disorders (ICCIDD) Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers; WHO: Switzerland, Geneva, 2007. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Suitability of Amaranthus species for alleviating human dietary deficiencies. S. Afr. J. Bot. 2018, 115, 65–73. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries. Amaranthus Production Guidelines; Resource Centre, Directorate Agricultural Information Services: Pretoria, South Africa, 2010. [Google Scholar]
- Manyelo, T.G.; Sebola, N.A.; van Rensburg, E.J.; Mabelebele, M. The probable use of Genus amaranthus as feed material for monogastric animals. Animals 2020, 10, 1504. [Google Scholar]
- Jimenez-Aguilar, D.M.; Grusak, M.A. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food Compost. Anal. 2017, 58, 3–39. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Fasuyi, A.O.; Akindahunsi, A.O. Nutritional evaluation of Amaranthus cruentus leaf meal-based broiler diets supplemented with cellulase/glucanase/xylanase enzymes. Am. J. Food Technol. 2009, 4, 108–118. [Google Scholar] [CrossRef]
- Tagwira, M.; Tagwira, F.; Dugger, R.; Okum, B. Using grain amaranth to fight malnutrition. RUFORUM 2006, 1, 201–206. [Google Scholar]
- Fasuyi, A.O.; Dairo, F.A.S.; Adeniji, A.O. Protein supplementary quality of tropical vegetable (Amaranthus cruentus) leaf meal in broiler starter diets: Bio-nutritional evaluation. Int. J. Agric. 2007, 2, 976–986. [Google Scholar]
- Venskutonis, P.R.; Kraujalis, P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar]
- Mamiro, P.S.; Mwanri, A.W.; Mongi, R.J.; Chivaghula, T.J.; Nyagaya, M.; Ntwenya, J. Effect of cooking on tannin and phytate content in different bean (Phaseolus vulgaris) varieties grown in Tanzania. Afr. J. Biotechnol. 2017, 16, 1186–1191. [Google Scholar]
- Ahmed, M.; Abd El, T.; Mostafa, S.A.K. Utilization of polyethylene glycol and tannase enzyme to reduce the negative effect of tannins on digestibility, milk production and animal performance. Asian J. Anim. Vet. Adv. 2018, 13, 201–209. [Google Scholar]
- Alemayehu, F.; Reta, M.A.; Bendevis, S.E.J. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J. Agron. Crop. Sci. 2015, 201, 321–329. [Google Scholar]
- Ma, J.; Sun, G.; Shah, A.M.; Fan, X.; Li, S.; Yu, X. Effects of different growth stages of amaranth silage on the rumen degradation of dairy cows. Animals 2019, 9, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-Govea, F.E.; Muck, R.E.; Albrecht, K.A. Yield, nutritive value and silage fermentation of kura clover-reed canarygrass and lucerne herbages in northern USA. Grass Forage Sci. 2009, 64, 374–383. [Google Scholar] [CrossRef]
- Sebola, N.A.; Mlambo, V.; Mokoboki, H.K. Chemical characterisation of Moringa oleifera (MO) leaves and the apparent digestibility of MO leaf meal-based diets offered to three chicken strains. Agrofor. Syst. 2019, 93, 149–160. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Meineri, G.; Longato, E.; Tassone, S. Chemical composition, in vitro digestibility and fatty acid profile of Amaranthus caudatus herbage during its growth cycle. Anim. Nutr. Feed Technol. 2018, 18, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Soetan, K.; Oyewole, O.E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods an animal feeds: A review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Agbaire, P.O. Levels of anti-nutritional factors in some common leafy edible vegetables of southern Nigeria. Afr. J. Food Sci. Technol. 2012, 3, 99–101. [Google Scholar]
- Association of Official Analytical Chemist. Official Methods of Analysis, 19th ed.; AOAC International: Rockville, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, and neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar]
- Statistical Analysis Software. SAS User’s Guide: Statistics, 9th ed.; SAS Institute, Inc.: Raleigh, CA, USA, 2010. [Google Scholar]
- Department of Agriculture, Forestry and Fisheries. Annual Report; Resource Centre, Directorate Agricultural Information Services: Pretoria, South Africa, 2017.
- Sarmadi, B.; Rouzbehan, Y.; Rezaei, J. Influences of growth stage and nitrogen fertilizer on chemical composition, phenolics, in situ degradability and in vitro ruminal variables in amaranth forage. Anim. Feed Sci. Technol. 2016, 215, 73–84. [Google Scholar] [CrossRef]
- Ahmed, K.; Shaheen, M.; Mirzaei, F.; Khan, Z.I.; Gondal, S.; Fardous, A.; Hussain, A.; Arshad, F.; Mehmood, T. Proximate analysis: Relative feed values of various forage plants for ruminants investigated in semi-arid region of Punjab, Pakistan. J. Agric. Sci. 2013, 4, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Le Gall, H.; Philippe, F.; Domon, J.M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell wall metabolism in response to abiotic stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, D.; Rouzbehan, Y.; Rezaei, J. Effect of harvest date and nitrogen fertilization. J. Sci. Technol. 2012, 171, 6–13. [Google Scholar]
- Hue, K.T.; Thanh Van, D.; Ledin, I.; Wredle, E.; Spörndly, E. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield. Asian Austral. J. Anim. Sci. 2012, 25, 1691–1700. [Google Scholar] [CrossRef]
- He, H.P.; Corke, H. Oil and squalene in Amaranthus grain and leaf. J. Agric. Food Chem. 2004, 51, 7913–7920. [Google Scholar]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar]
- Klasing, K.C. Nutritional Requirements of Poultry. In MSD Veterinary Manual; University of California: Oakland, CA, USA, 2015. [Google Scholar]
- Herdt, T.H. Nutritional Requirements of Ruminant. In MSD Veterinary Manual; Michigan State University: East Lansing, MI, USA, 2014. [Google Scholar]
- Michael, E. Differences between an Acid Detergent Fiber and a Neutral Detergent Fiber. Sciencing.com. 2017. Available online: https://sciencing.com/differences-fiber-neutral-detergent-fiber-8723938.html (accessed on 16 July 2020).
- Modi, A.T. Growth temperature and plant age influence on nutritional quality of Amaranthus leaves and seed germination capacity. Water SA 2006, 33, 369–376. [Google Scholar]
- Li, X.; Zhang, D.; Bryden, W.L. Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Anim. Prod. Sci. 2017, 57, 2304–2310. [Google Scholar] [CrossRef]
- Baloš, M.; Jakšić, S.; Knežević, S.; Miloš, K. Electrolytes—Sodium, potassium and chlorides in poultry nutrition elektroliti—Natrijum, kalijum i hloridi u ishrani živine. Arch. Vet. Med. 2016, 9, 1820–9955. [Google Scholar]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food Processing for Increasing Consumption: The Case of Legumes. 2018. Available online: https://www.scribd.com/book/378677055/Food-Processing-for-Increased-Quality-and-Consumption (accessed on 23 June 2020).
- Birmani, M.W.; Raza, A.; Nawab, A.; Tang, S.; Ghani, M.W.; Li, G.; Xiao, M.; An, L. Importance of arginine as immune regulator in animal nutrition. Int. J. Vet. Sci. Res. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akubugwo, I.E.; Obasi, N.A.; Chinyere, G.C.; Ugbogu, A.E. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. Afr. J. Biotechnol. 2007, 6, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Shields, M. Pharmacognosy: Fundamentals, Applications and Strategies; Elsevier: Atlanta, GA, USA, 2017; pp. 295–313. [Google Scholar] [CrossRef]
- Kanika, P.; Patel, K.D. The beneficial role of rutin: A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Elsevier: Allahabad, India, 2019; pp. 457–479. [Google Scholar]
- Muhammet, A.; Adhithiya, C.; Huajun, J.; Vellareddy, A.; Kanthasamy, A.; Anumantha, G.K. Chapter 32—Quercetin. In Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Cambridge, MA, USA, 2016; pp. 447–452. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.F.; Gilmara, A.; Ferri, C.; Pedro, H.; Santos, S.C. Influence of foliar nutrients on phenol levels in leaves of Eugenia uniflora. Rev. Bras. Farmacogn. 2011, 21, 581–586. [Google Scholar] [CrossRef]
- Qin, G.; Yan, C.; Lu, H. Influence of heave metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings. Bull. Environ. Contam. Toxicol. 2007, 78, 440–444. [Google Scholar]
- Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoid in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem. 2010, 58, 1026–1031. [Google Scholar] [CrossRef]
- Hair, J.F.; Andrson, J.R.; Tatham, R.E.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice-Hall International, Inc.: London, UK, 1998. [Google Scholar]
Nutrient | Stage of Harvesting | Probability | |
---|---|---|---|
EHL | LHL | ||
DM | 92.65 a ± 0.73 | 91.38 b ± 0.72 | 0.0031 |
CP | 23.23 a ± 3.91 | 16.46 b ± 0.71 | 0.0001 |
CF | 17.14 b ± 0.35 | 17.74 a ± 0.36 | 0.0136 |
NDF | 15.40 a ± 0.071 | 14.45 b ± 0.071 | 0.0055 |
ADF | 7.14 a ± 0.31 | 6.61 b ± 0.30 | 0.0173 |
ADL | 1.95 a ± 0.35 | 1.35 b ± 0.34 | 0.0136 |
GE | 14.50 a ± 1.19 | 12.44 b ± 1.18 | 0.0012 |
EE | 1.12 b ± 0.24 | 1.52 a ± 0.26 | 0.0299 |
Starch | 0.38 b ± 0.43 | 1.11 a ± 0.45 | 0.0093 |
Ash | 21.18 a ± 2.01 | 17.70 b ± 1.99 | 0.0004 |
Nutrient | Stage of Harvesting | Probability | |
---|---|---|---|
EHL | LHL | ||
Calcium | 43,287 b ± 0.74 | 56,000 a ± 0.075 | 0.0001 |
Phosphorus | 2044.93 a ± 0.06 | 1371.30 b ± 0.07 | 0.0001 |
Magnesium | 15,295 b ± 0.30 | 20,350 a ± 0.31 | 0.0001 |
Potassium | 14,995 a ± 0.13 | 12,950 b ± 0.11 | 0.0001 |
Sodium | 287.87 b ± 0.02 | 428.21 a ± 0.03 | 0.0001 |
Copper | 8.95 a ± 0.071 | 3.45 b ± 0.071 | 0.0002 |
Manganese | 583.28 a ± 0.04 | 335.95 b ± 0.02 | 0.0001 |
Iron | 372.34 a ± 0.03 | 279.95 b ± 0.02 | 0.0001 |
Zinc | 42.44 a ± 0.07 | 29.95 b ± 0.05 | 0.0001 |
Stage of Harvesting | Probability | ||
---|---|---|---|
EHL | LHL | ||
Essential Amino Acids | |||
Histidine | 0.29 a ± 0.07 | 0.22 a ± 0.06 | 0.541 |
Arginine | 0.90 a ± 0.19 | 0.59 b ± 0.18 | 0.033 |
Threonine | 0.85 a ± 0.06 | 0.58 b ± 0.07 | 0.035 |
Lysine | 1.73 a ± 0.29 | 1.23 b ± 0.27 | 0.007 |
Tyrosine | 0.52 a ± 0.13 | 0.35 a ± 0.14 | 0.289 |
Methionine | 0.34 a ± 0.08 | 0.24 a ± 0.07 | 0.271 |
Valine | 1.51 b ± 0.19 | 1.84 a ± 0.18 | 0.008 |
Leucine | 1.55 a ± 0.28 | 1.07 b ± 0.27 | 0.011 |
Non-Essential Amino Acids | |||
Serine | 0.90 a ± 0.18 | 0.60 b ± 0.17 | 0.026 |
Glycine | 0.94 a ± 0.13 | 0.73 a ± 0.11 | 0.116 |
Aspartic acid | 2.16 a ± 0.47 | 1.36 b ± 0.46 | 0.003 |
Glutamine | 2.94 a ± 0.67 | 1.78 b ± 0.65 | 0.001 |
Alanine | 1.27 a ± 0.21 | 0.92 b ± 0.23 | 0.027 |
Proline | 0.87 a ± 0.16 | 0.62 b ± 0.15 | 0.054 |
Isoleucine | 0.83 a ± 0.13 | 0.57 a ± 0.10 | 0.064 |
Phenylalanine | 0.66 a ± 0.11 | 0.49 a ± 0.09 | 0.120 |
Phenolic Compound | Stage of Harvesting | Probability | |
---|---|---|---|
EHL | LHL | ||
Rutin | 1222.79 a ± 104.42 | 1041.92 b ± 104.40 | 0.0001 |
Hyperoside | 206.45 a ± 43.84 | 130.52 b ± 43.83 | 0.0001 |
Tryptophan | 87.77 a ± 28.95 | 37.62 b ± 28.93 | 0.0001 |
Quercetin 3-O-rhamnosyl-glucoside | 79.31 a ± 3.66 | 73.03 b ± 3.64 | 0.0001 |
Kaempferol rutinoside | 188.80 a ± 14.89 | 164.00 b ± 14.86 | 0.0001 |
Rut | Hyp | Try | Que | Kru | Ca | Mg | Mn | K | Na | P | CP | CF | NDF | ADF | ADL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rut | 1 | |||||||||||||||
Hyp | 1 *** | 1 | ||||||||||||||
Try | 1 *** | 1 *** | 1 | |||||||||||||
Que | 1 *** | 1 *** | 1 *** | 1 | ||||||||||||
Kru | 0.962 * | 0.962 * | 0.962 * | 0.962 * | 1 | |||||||||||
Ca | −1 *** | −1 *** | −1 *** | −1 *** | −0.96 * | 1 | ||||||||||
Mg | −1 *** | −1 *** | −1 *** | −1 *** | −0.96 * | 1 *** | 1 | |||||||||
Mn | 1 *** | 1 *** | 1 *** | 1 *** | 0.962 * | −1 *** | −1 *** | 1 | ||||||||
K | 1 *** | 1 *** | 1 *** | 1 *** | 0.962 * | −1 *** | −1 *** | 1 *** | 1 | |||||||
Na | −1 *** | −1 *** | −1 *** | −1 *** | −0.96 * | 1 *** | 1 *** | −1 *** | −1 *** | 1 | ||||||
P | 1 *** | 1 *** | 1 *** | 1 *** | 0.962 * | −1 *** | −1 *** | 1 *** | 1 *** | −1 *** | 1 | |||||
CP | 1 *** | 1 *** | 1 *** | 1 *** | 0.964 * | −1 *** | −1 *** | 1 *** | 1 *** | −1 *** | 1 *** | 1 | ||||
CF | −0.99 ** | −0.99 ** | −0.99 ** | −0.99 ** | −0.92 | 0.986 ** | 0.986 ** | −0.99 ** | −0.99 ** | 0.987 ** | −0.99 ** | −0.98 * | 1 | |||
NDF | 0.995 ** | 0.995 ** | 0.995 ** | 0.995 ** | 0.977 * | −0.99 ** | −0.99 ** | 0.995 ** | 0.995 ** | −0.99 ** | 0.995 * | 0.996 ** | −0.96 * | 1 | ||
ADF | 0.983 * | 0.983 * | 0.983 * | 0.983 * | 0.981 * | −0.98 * | −0.98 * | 0.983 * | 0.983 * | −0.98 * | 0.983 * | 0.985 * | −0.94 | 0.997 ** | 1 | |
ADL | 0.986 ** | 0.986 ** | 0.986 ** | 0.987 ** | 0.98 | −0.99 ** | −0.99 ** | 0.986 ** | 0.986 ** | −0.99 ** | 0.986 ** | 0.989 ** | −0.95 * | 0.998 ** | 1 | 1 |
Principal Component 1 (PC 1) | |
---|---|
Rutin | 0.883360 |
Hyperoside | 0.370870 |
Tryptophan | 0.244940 |
Quercetin 3-O-rhamnosyl-rhamnosyl-glucoside | 0.030672 |
Kaempferol rutinoside | 0.145560 |
Eigenvalue % variance | 20961.1 |
Cumulative % | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manyelo, T.G.; Sebola, N.A.; Mabelebele, M. Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions. Agriculture 2020, 10, 432. https://doi.org/10.3390/agriculture10100432
Manyelo TG, Sebola NA, Mabelebele M. Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions. Agriculture. 2020; 10(10):432. https://doi.org/10.3390/agriculture10100432
Chicago/Turabian StyleManyelo, Tlou Grace, Nthabiseng Amenda Sebola, and Monnye Mabelebele. 2020. "Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions" Agriculture 10, no. 10: 432. https://doi.org/10.3390/agriculture10100432
APA StyleManyelo, T. G., Sebola, N. A., & Mabelebele, M. (2020). Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions. Agriculture, 10(10), 432. https://doi.org/10.3390/agriculture10100432