Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genomic DNA Extraction and Genotyping
2.3. RNA Extraction and Gene Expression Analysis of Pup1 and AG1
2.4. Phenotyping under Different P Concentrations of Soil and Hydroponic Conditions
2.5. Phenotyping Germinability under Anaerobic Conditions
2.6. Plant Growth Conditions in Paddy Field
3. Results
3.1. Genomic Structure of I-PA
3.2. Independent Pup1 Function of I-PA under Different P Supply Conditions
3.3. Independent AG1 Function of I-PA under Anaerobic Conditions at the Germination Stage
3.4. Improved Tillering Ability of I-PA during the Early Growth Stage in the Paddy Field
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Miro, B.; Ismail, A.M. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front. Plant Sci. 2013, 4, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kretzschmar, T.; Pelayo, M.A.F.; Trijatmiko, K.R.; Gabunada, L.F.M.; Alam, R.; Jimenez, R.; Mendioro, M.S.; Slamet-Loedin, I.H.; Sreenivasulu, N.; Bailey-Serres, J.; et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 2015, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Angaji, S.A.; Septiningsih, E.M.; Mackill, D.J.; Ismail, A.M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 2010, 172, 159–168. [Google Scholar] [CrossRef]
- Wissuwa, M. Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil 2005, 269, 57–68. [Google Scholar] [CrossRef]
- Wissuwa, M.; Wegner, J.; Ae, N.; Yano, M. Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor. Appl. Genet. 2002, 105, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Gamuyao, R.; Chin, J.H.; Pariasca-Tanaka, J.; Pesaresi, P.; Catausan, S.; Dalid, C.; Slamet-Loedin, I.; Tecson-Mendoza, E.M.; Wissuwa, M.; Heuer, S. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 2012, 488, 535. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.H.; Lu, X.; Haefele, S.M.; Gamuyao, R.; Ismail, A.; Wissuwa, M.; Heuer, S. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor. Appl. Genet. 2010, 120, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.H.; Gamuyao, R.; Dalid, C.; Bustamam, M.; Prasetiyono, J.; Moeljopawiro, S.; Wissuwa, M.; Heuer, S. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 2011, 156, 1202–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chithrameenal, K.; Alagarasan, G.; Raveendran, M.; Robin, S.; Meena, S.; Ramanathan, A.; Ramalingam, J. Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight and blast resistance. PLoS ONE 2018, 13, e0204144. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.M.U.; Ignacio, J.C.I.; Casal, C.; Gonzaga, Z.J.; Mendioro, M.S.; Septiningsih, E.M. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breed. Biotechnol. 2015, 3, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Khan, M.I.R.; Entila, F.; Dixit, S.; Sta Cruz, P.C.; Panna Ali, M.; Pittendrigh, B.; Septiningsih, E.M.; Ismail, A.M. Responses of AG1 and AG2 QTL introgression lines and seed pre-treatment on growth and physiological processes during anaerobic germination of rice under flooding. Sci. Rep. 2020, 10, 10214. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.; Thompson, W.F. Rapid Isolation of High Molecular-Weight Plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheon, K.-S.; Baek, J.; Cho, Y.-I.; Jeong, Y.-M.; Lee, Y.-Y.; Oh, J.; Won, Y.J.; Kang, D.-Y.; Oh, H.; Kim, S.L. Single nucleotide polymorphism (SNP) discovery and kompetitive allele-specific PCR (KASP) marker development with Korean japonica rice varieties. Plant Breed. Biotechnol. 2018, 6, 391–403. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Forno, D.A.; Cock, J.H. Laboratory manual for physiological studies of rice. In Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute: Laguna, Philippines, 1971. [Google Scholar]
- Alia, N.; Durranib, S.; Abbasc, M.; Ullaha, I.; Ishfaqa, M.; Akbara, N.; Rehmana, A.; Waheedc, A. Different approaches in direct seeded rice system to avert weed infestation. Int. J. Sci. Eng. Res. 2018, 9, 1538–1558. [Google Scholar] [CrossRef]
- Wing, R.A.; Purugganan, M.D.; Zhang, Q.F. The rice genome revolution: From an ancient grain to Green Super Rice. Nat. Rev. Genet. 2018, 19, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Rao, G.J.N.; Varier, M.; Prakash, A.; Prasad, D. Improved Tapaswini having four BB resistance genes pyramided with six genes/QTLs, resistance/tolerance to biotic and abiotic stresses in rice. Sci. Rep. 2018, 8, 2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissuwa, M.; Kretzschmar, T.; Rose, T.J. From promise to application: Root traits for enhanced nutrient capture in rice breeding. J. Exp. Bot. 2016, 67, 3605–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Conditions | Germination | Low P and Aerobic | ||
---|---|---|---|---|
NILs | Anoxia | Hypoxia | ||
I-Pup1 | poor | poor | good | |
I-AG1 | good | good | poor | |
I-PA | good | good | good | |
IR64 | poor | poor | poor |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, N.-H.; Han, J.-H.; Jang, S.; Song, K.; Koh, H.-J.; Lee, J.-H.; Yoo, S.; Chin, J.H. Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.). Agriculture 2020, 10, 453. https://doi.org/10.3390/agriculture10100453
Shin N-H, Han J-H, Jang S, Song K, Koh H-J, Lee J-H, Yoo S, Chin JH. Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.). Agriculture. 2020; 10(10):453. https://doi.org/10.3390/agriculture10100453
Chicago/Turabian StyleShin, Na-Hyun, Jae-Hyuk Han, Su Jang, Kihwan Song, Hee-Jong Koh, Jong-Hee Lee, Soocheul Yoo, and Joong Hyoun Chin. 2020. "Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.)" Agriculture 10, no. 10: 453. https://doi.org/10.3390/agriculture10100453