Comparative Response of Huanglongbing-Affected Sweet Orange Trees to Nitrogen and Zinc Fertilization under Microsprinkler Irrigation
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Study Site
2.2. Experimental Design and Treatment Application
2.3. Soil Sampling and Analysis
2.4. Soil Nitrate and Ammonium Analysis
2.5. Adsorption Study
2.6. Leaf Collection and Analysis
2.7. Growth, Fruit Yield, and Juice Quality Measurements
2.8. Statistical Analysis
3. Result and Discussion
3.1. Soil Ammonium and Nitrate Distribution
3.2. Soil Zn Distribution and Adsorption in a Sandy Soil
3.3. Seasonal Leaf Response to Zinc
3.4. Growth and Yield Response to Nitrogen and Zinc
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alva, A.K.; Paramasivam, S.; Hostler, K.H.; Easterwood, G.W.; Southwell, J.E. Effects of nitrogen rates on dry matter and nitrogen accumulation in citrus fruits and fruit yield. J. Plant Nutr. 2001, 24, 561–572. [Google Scholar] [CrossRef]
- Alva, A.K. Nitrogen best management practice for citrus trees II. Nitrogen fate, transport, and components of N budget. Sci. Hortic. 2006, 109, 223–233. [Google Scholar] [CrossRef]
- Obreza, T.A.; Schumann, A. Keeping Water and Nutrients in the Florida Citrus Tree Root Zone. HortTechnology 2010, 20, 67–73. [Google Scholar] [CrossRef]
- Alva, A.K.; Paramasivam, S.; Obreza, T.A.; Schumann, A.W. Nitrogen best management practice for citrus trees: I. Fruit yield, quality, and leaf nutritional status. Sci. Hortic. 2006, 107, 233–244. [Google Scholar] [CrossRef]
- Spann, T.M.; Schumann, A.W. The role of plant nutrients in disease development with emphasis on citrus and huanglongbing. Proc. Fla. State Hort. Soc. 2009, 122, 169–171. [Google Scholar]
- Pustika, A.B.; Subandiyah, S.; Holford, P.; Beattie, G.A.C.; Iwanami, T.; Masaoka, Y. Interactions between plant nutrition and symptom expression in mandarin trees infected with the disease huanglongbing. Australas. Plant Dis. Notes 2008, 3, 112. [Google Scholar] [CrossRef] [Green Version]
- Handique, U.; Ebel, R.C.; Morgan, K.T. Influence of Soil-Applied Fertilizer on Greening Development in New Growth Flushes of Sweet Orange. In Proceedings of the Florida State Horticultural Society, Alexandria, VA, USA, December 2012; pp. 36–39. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Influence+of+soil-applied+fertilizer+on+greening+development+in+new+growth+flushes+of+sweet+orange.&btnG= (accessed on 20 October 2020).
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, D.; Degryse, F.; da Silva, R.C.; Baird, R.; McLaughlin, M.J. Chapter Five-Agronomic Effectiveness of Zinc Sources as Micronutrient Fertilizer. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2016; Volume 139, pp. 215–267. [Google Scholar]
- Halbert, S.E.; Manjunath, K.L. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Fla. Entomol. 2004, 87, 330–353. [Google Scholar] [CrossRef]
- McLaren, R.G.; Swift, R.S.; Quin, B.F. EDTA-extractable copper, zinc, and manganese in soils of the Canterbury Plains. N. Z. J. Agric. Res. 1984, 27, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Zekri, M.; Obreza, T.A. Micronutrient Deficiencies in Citrus: Iron, Zinc, and Manganese; Elec. Data Info. Source, SL204; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2003; pp. 1–3. [Google Scholar]
- Obreza, T.; Morgan, K. Nutrition of Florida Citrus Trees; Elec. Data Info. Source, SL253; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2008. [Google Scholar]
- Morgan, K.T.; Rouse, R.E.; Ebel, R.C. Foliar Applications of Essential Nutrients on Growth and Yield of ‘Valencia’ Sweet Orange Infected with Huanglongbing. HortScience 2016, 51, 1482–1493. [Google Scholar] [CrossRef]
- Atta, A.A.; Morgan, K.T.; Hamido, S.A.; Kadyampakeni, D.M. Effect of Essential Nutrients on Roots Growth and Lifespan of Huanglongbing Affected Citrus Trees. Plants 2020, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Atta, A.A.; Morgan, K.T.; Hamido, S.A.; Kadyampakeni, D.M.; Mahmoud, K.A. Water and soil nutrient dynamics of huanglongbing-affected citrus trees as impacted by ground-applied nutrients. Agronomy 2020, 10, 1485. [Google Scholar] [CrossRef]
- Descriptions, O.S.S. Natural Resources Conservation Service, United States Department of Agriculture. Electronic Document. 2012. Available online: https://scholar.google.com/scholar?lookup=0&q=Descriptions,+O.S.S.+Natural+Resources+Conservation+Service,+United+States+Department+of+Agriculture.+Electronic+Document%3B+2012.&hl=en&as_sdt=0,10 (accessed on 20 October 2020).
- Bouyoucos, G.J. Directions for making mechanical analyses of soils by the hydrometer method. Soil Sci. 1936, 42, 225–230. [Google Scholar] [CrossRef]
- Schofield, R.K.; Taylor, A.W. The Measurement of Soil pH. Soil Sci. Soc. Am. J. 1955, 19, 164–167. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Agronomy Monographs; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 2015; pp. 539–579. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 2018; pp. 363–375. [Google Scholar] [CrossRef]
- Uthman, Q.O.; Kadyampakeni, D.M.; Nkedi-Kizza, P. Manganese adsorption, availability, and uptake in citrus under microsprinkler irrigation. Agrosyst. Geosci. Environ. 2020, 3. [Google Scholar] [CrossRef]
- Uthman, Q.O.; Kadyampakeni, D.M.; Nkedi-Kizza, P. Boron availability and uptake in huanglongbing-affected citrus trees on a Florida entisol. J. Plant Nutr. 2020, 43, 1248–1258. [Google Scholar] [CrossRef]
- Kadyampakeni, D.M.; Morgan, K.T.; Schumann, A.W.; Nkedi-Kizza, P. Effect of irrigation pattern and timing on root density of young citrus trees infected with Huanglongbing disease. HortTechnology 2014, 24, 209–221. [Google Scholar] [CrossRef]
- Gambrell, R.P. Manganese. In SSSA Book Series; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 2018; pp. 665–682. [Google Scholar] [CrossRef]
- Hanlon, E.; Gonzalez, J.; Bartos, J. IFAS Extension Soil Testing Laboratory (ESTL) and Analytical Research Laboratory (ARL) Chemical Procedures and Training Manual. 2002. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Extension+Soil+Testing+Laboratory+%28ESTL%29+and+Analytical+Research+Laboratory+%28ARL%29+Chemical+Procedures+and+Training+Manual&btnG= (accessed on 20 October 2020).
- Harbridge, J. Determination of Nitrate in 2M KCl Soil Extracts by Flow Injection Analysis QuikChem Method 12-107-04-1-J.; Lachat Instruments: Loveland, CO, USA, 2007; Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Determination+of+nitrate+in+2M+KCl+soil+extracts+by+flow+injection+analysis+QuikChem+Method&btnG= (accessed on 20 October 2020).
- Obreza, T.A.; Rouse, R.E. Fertilizer Effects on Early Growth and Yield of ‘Hamlin’ Orange Trees. HortScience 1993, 28, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, W.F. Florida Citrus Quality Tests; UF/IFAS Extension: Gainesville FL, USA, 1991. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in Sand S-PLUS. In Statistics and Computing; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Vienna, Austria. 2013. Available online: http://cran.univ-paris1.fr/web/packages/dplR/vignettes/intro-dplR.pdf (accessed on 20 October 2020).
- Harris, W.G.; Carlisle, V.W.; Chesser, S.L. Clay Mineralogy as Related to Morphology of Florida Soils with Sandy Epipedons. Soil Sci. Soc. Am. J. 1987, 51, 1673–1677. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; Azevedo, R.A.; Mattos, D. Towards soil management with Zn and Mn: Estimates of fertilisation efficacy ofCitrustrees. Ann. Appl. Biol. 2015, 166, 484–495. [Google Scholar] [CrossRef]
- Marschner, H. Zinc Uptake from Soils. In Zinc in Soils and Plants; Springer: Dordrecht, The Netherlands, 1993; pp. 59–77. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 515. [Google Scholar]
- Bukovac, M.J.; Wittwer, S.H. Absorption and Mobility of Foliar Applied Nutrients. Plant Physiol. 1957, 32, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittwer, S.H.; Teubner, F.G. Foliar Absorption of Mineral Nutrients. Annu. Rev. Plant Physiol. 1959, 10, 13–30. [Google Scholar] [CrossRef]
- Swanson, C.A.; Whitney, J.B. Studies on the translocation of foliar-applied p32 and other radioisotopes in bean plants. Am. J. Bot. 1953, 40, 816–823. [Google Scholar] [CrossRef]
- Wallihan, E.F.; Heymann-Herschberg, L. Some Factors Affecting Absorption and Translocation of Zinc in Citrus Plants. Plant Physiol. 1956, 31, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.H.F.; Machado, B.A.; Rodrigues, E.S.; Montanha, G.S.; Rossi, M.L.; Otto, R.; Linhares, F.S.; Carvalho, H.W.P. In Vivo Evaluation of Zn Foliar Uptake and Transport in Soybean Using X-ray Absorption and Fluorescence Spectroscopy. J. Agric. Food Chem. 2019, 67, 12172–12181. [Google Scholar] [CrossRef]
- Rouse, R.E.; Ozores-Hampton, M.; Roka, F.M.; Roberts, P. Rehabilitation of Huanglongbing-affected Citrus Trees Using Severe Pruning and Enhanced Foliar Nutritional Treatments. HortScience 2017, 52, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Quaggio, J.A.; Mattos, D.; Cantarella, H. Fruit yield and quality of sweet oranges affected by nitrogen, phosphorus and potassium fertilization in tropical soils. Fruits 2006, 61, 293–302. [Google Scholar] [CrossRef]
Soil Depth | Soil Texture | Bulk Density | Soil pH | Organic Matter | KD | ||
---|---|---|---|---|---|---|---|
(cm) | Sand (%) | Silt (%) | Clay (%) | g cm−3 | (%) | L kg−1 | |
0–15 | 95.9 | 0.5 | 3.7 | 1.56 ± 0.03 | 6.27 ± 0.08 | 0.55 ± 0.04 | 6.47 |
15–30 | 96.8 | 0.7 | 2.5 | 1.67 ± 0.05 | 6.30 ± 0.12 | 0.30 ± 0.02 | 2.68 |
30–45 | 97.1 | 0.4 | 2.5 | 1.61 ± 0.02 | 6.31 ± 0.13 | 0.21 ± 0.02 | 0.05 |
45–60 | 97.4 | 0.6 | 2.0 | 1.63 ± 0.02 | 6.30 ± 0.14 | 0.19 ± 0.01 | 0.05 |
Zn | ||
---|---|---|
Soil Depth, cm | Control | Soil |
Jun-2018 | _________________mg kg−1_______________ | |
0–15 | 24.7 ± 0.5 | 35.7 ± 0.7 |
15–30 | 10.5 ± 0.6 | 8.7 ± 0.3 |
30–45 | 5.1 ± 0.2 | 4.7 ± 0.1 |
45–60 | 5.6 ± 0.2 | 4.8 ± 0.1 |
Feb-2019 | ||
0–15 | 28.8 ± 0.5 | 31.6 ± 0.6 |
15–30 | 13.9 ± 0.5 | 15.2 ± 0.6 |
30–45 | 8.9 ± 0.4 | 6.9 ± 0.3 |
45–60 | 6.4 ± 0.4 | 4.1 ± 0.1 |
Sep-2019 | ||
0–15 | 23.0 ± 0.6 | 74.6 ± 2.6 |
15–30 | 17.5 ± 0.7 | 34.7 ± 1.1 |
30–45 | 11.2 ± 0.6 | 29.5 ± 0.8 |
45–60 | 8.6 ± 0.5 | 15.7 ± 0.6 |
Nitrogen Rate, kg ha−1 | |||
---|---|---|---|
Treatment | 168 | 224 | 280 |
2018 | ____________________t ha−1______________________ | ||
Control | 28.0 ± 0.1 | 26.5 ± 0.2 | 24.7 ± 0.3 |
Foliar x1 | 26.8 ± 0.3 | 24.2 ± 0.1 | 29.8 ± 0.3 |
Foliar x2 | 27.9 ± 0.1 | 25.3 ± 0.2 | 25.3 ± 0.4 |
Soil x1 | 23.9 ± 0.3 | 28.5 ± 0.5 | 27.3 ± 0.2 |
2019 | |||
Control | 24.9 ± 0.1 | 21.4 ± 0.4 | 19.3 ± 0.3 |
Foliar x1 | 21.5 ± 0.3 | 20.3 ± 0.4 | 19.9 ± 0.2 |
Foliar x2 | 19.7 ± 0.2 | 18.2 ± 0.1 | 20.7 ± 0.4 |
Soil x1 | 19.9 ± 0.1 | 19.4 ± 0.4 | 17.3 ± 0.1 |
2020 | |||
Control | 26.4 ± 0.2 | 29.4 ± 0.3 | 29.0 ± 0.3 |
Foliar x1 | 29.3 ± 0.0 | 28.6 ± 0.2 | 28.3 ± 0.5 |
Foliar x2 | 28.6 ± 0.4 | 30.3 ± 0.4 | 27.5 ± 0.2 |
Soil x1 | 28.1 ± 0.2 | 27.9 ± 0.3 | 31.3 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uthman, Q.O.; Kadyampakeni, D.M.; Nkedi-Kizza, P.; Barlas, N.T.; Atta, A.A.; Morgan, K.T. Comparative Response of Huanglongbing-Affected Sweet Orange Trees to Nitrogen and Zinc Fertilization under Microsprinkler Irrigation. Agriculture 2020, 10, 489. https://doi.org/10.3390/agriculture10100489
Uthman QO, Kadyampakeni DM, Nkedi-Kizza P, Barlas NT, Atta AA, Morgan KT. Comparative Response of Huanglongbing-Affected Sweet Orange Trees to Nitrogen and Zinc Fertilization under Microsprinkler Irrigation. Agriculture. 2020; 10(10):489. https://doi.org/10.3390/agriculture10100489
Chicago/Turabian StyleUthman, Qudus O., Davie M. Kadyampakeni, Peter Nkedi-Kizza, Neriman T. Barlas, Alisheikh A. Atta, and Kelly T. Morgan. 2020. "Comparative Response of Huanglongbing-Affected Sweet Orange Trees to Nitrogen and Zinc Fertilization under Microsprinkler Irrigation" Agriculture 10, no. 10: 489. https://doi.org/10.3390/agriculture10100489
APA StyleUthman, Q. O., Kadyampakeni, D. M., Nkedi-Kizza, P., Barlas, N. T., Atta, A. A., & Morgan, K. T. (2020). Comparative Response of Huanglongbing-Affected Sweet Orange Trees to Nitrogen and Zinc Fertilization under Microsprinkler Irrigation. Agriculture, 10(10), 489. https://doi.org/10.3390/agriculture10100489