Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Crop Management
2.2. Weather Information of Study Site
2.3. Plant Sampling and Measurement
2.4. Statistical Analysis
2.4.1. Constructing Critical N Dilution Curves
2.4.2. Maximum and Minimum N Dilution Curves
2.4.3. N Nutrition Index Calculation
2.4.4. Determining Accumulated N Deficit
2.4.5. Relative Yield Calculation
2.4.6. Relative Root Mean Squared Error (rRMSE)
3. Results
3.1. Constructing the Maximum, Critical, and Minimum N Dilution Curves Based on Different DM Components
3.2. Relationships between PDM-Based and LDM/SDM/LAI-Based NNI and AND Values
3.3. NNI and AND Values from Four Critical N Dilution Curves
3.4. Relationships between RY and NNI Based on the Four N Dilution Curves
3.5. Comparing the Newly Calculated Curves with Other Critical N Dilution Curves
4. Discussion
4.1. Comparison of Different Organ Indicator-Based Nitrogen Dilution Curves
4.2. Application of N Dilution Curves in Winter Wheat Production
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Nitrogen. In Principles of Plant Nutrition; Springer: Dordrecht, The Netherlands, 2001; pp. 397–434. [Google Scholar]
- Guo, J.; Hu, X.; Gao, L.; Xie, K.; Ning, L.; Shen, Q.; Hu, S.; Guo, S. The rice production practices of high yield and high nitrogen use efficiency in Jiangsu, China. Sci. Rep. 2017, 7, 2101. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Wei, W.; Qiao, L.; Zhang, F.; Christie, P.; Jiang, R.; Dobermann, A.; Goulding, K.W.T.; Fan, J.; Fan, M. Agronomic and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice farming systems. Eur. J. Agron. 2018, 93, 40–49. [Google Scholar] [CrossRef]
- Liu, X.-J.; Qiang, C.; Yuan, Z.-F.; Xia, L.; Wang, X.-L.; Tian, Y.-C.; Cao, W.-X.; Yan, Z. Leaf area index based nitrogen diagnosis in irrigated lowland rice. J. Integr. Agric. 2018, 17, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Aziz, O.; Hussain, S.; Rizwan, M.; Riaz, M.; Bashir, S.; Lin, L.; Mehmood, S.; Imran, M.; Yaseen, R.; Lu, G. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management. Environ. Sci. Pollut. Res. 2018, 25, 16601–16615. [Google Scholar] [CrossRef]
- Smith, C.J.; Hunt, J.R.; Wang, E.; Ben, C.T.M.; Xing, H.; Denmead, O.T.; Zeglin, S.; Zhao, Z. Using fertilizer to maintain soil inorganic nitrogen can increase dryland wheat yield with little environmental cost. Agric. Ecosyst. Environ. 2019, 286, 106644. [Google Scholar] [CrossRef]
- Ntamatungiro, S.; Norman, R.J.; McNew, R.W.; Wells, B.R. Comparison of plant measurements for estimating nitrogen accumulation and grain yield by flooded rice. Agron. J. 1999, 91, 676–685. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 2014, 8, 083674. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Cassman, K.G.; Peng, S.; Olk, D.; Ladha, J.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop. Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Kage, H.; Alt, C.; Stützel, H. Nitrogen concentration of cauliflower organs as determined by organ size, N supply, and radiation environment. Plant Soil 2002, 246, 201–209. [Google Scholar] [CrossRef]
- Zhou, Q.-f.; Liu, Z.-y.; Huang, J.-f. Detection of nitrogen-overfertilized rice plants with leaf positional difference in hyperspectral vegetation index. J. Zhejiang Univ. Sci. B 2010, 11, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Gastal, F.; Lemaire, G. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Ata-Ul-Karim, S.T.; Zhu, Y.; Liu, X.; Cao, Q.; Tian, Y.; Cao, W. Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ata-Ul-Karim, S.T.; Cao, Q.; Zhu, Y.; Tang, L.; Rehmani, M.I.; Cao, W. Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice. Front. Plant Sci. 2016, 7, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ata-Ul-Karim, S.T.; Liu, X.; Lu, Z.; Zheng, H.; Cao, W.; Zhu, Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crop. Res. 2017, 201, 32–40. [Google Scholar] [CrossRef]
- Yao, X.; Ata-Ul-Karim, S.T.; Zhu, Y.; Tian, Y.; Liu, X.; Cao, W. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur. J. Agron. 2014, 55, 20–28. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Lundstrom, C.; Lindblom, J. Considering farmers’ situated knowledge of using agricultural decision support systems (AgriDSS) to Foster farming practices: The case of CropSAT. Agric. Syst. 2018, 159, 9–20. [Google Scholar] [CrossRef]
- Zhao, B.; Yao, X.; Tian, Y.; Liu, X.; Ata-Ul-Karim, S.T.; Ni, J.; Cao, W.; Zhu, Y. New critical nitrogen curve based on leaf area index for winter wheat. Agron. J. 2014, 106, 379–389. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop. Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. Improved estimation of nitrogen uptake in grasslands using the nitrogen dilution curve. Agron. Sustain. Dev. 2016, 36, 47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, X.; Ata-Ul-Karim, S.T.; Lu, J.; Krienke, B.; Li, S.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Development of Chlorophyll-Meter-Index-Based Dynamic Models for Evaluation of High-Yield Japonica Rice Production in Yangtze River Reaches. Agronomy 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Godwin, D.; Jones, C.A. Nitrogen Dynamics in Soi-Plant Systems. Modeling Plant Soil Syst. 1991, 31, 287–321. [Google Scholar]
- Bouman, B.; Van Laar, H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 2006, 87, 249–273. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Gastal, F.; Claessens, A.; Lemaire, G.; Tremblay, N. Leaf nitrogen concentration as an indicator of corn nitrogen status. Agron. J. 2009, 101, 947–957. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Yao, X.; Liu, X.; Cao, W.; Zhu, Y. Determination of critical nitrogen dilution curve based on stem dry matter in rice. PLoS ONE 2014, 9, e104540. [Google Scholar] [CrossRef]
- de Oliveira, E.C.A.; de Castro, G.G.J.; Trivelin, P.C.O.; Otto, R.; Franco, H.C.J. Determining a critical nitrogen dilution curve for sugarcane. J. Plant Nutr. Soil Sci. 2013, 176, 712–723. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Cui, X.-H.; Murthy, H.N.; Wu, C.-H.; Paek, K.-Y. Adventitious root suspension cultures of Hypericum perforatum: Effect of nitrogen source on production of biomass and secondary metabolites. Vitr. Cell. Dev. Biol. Plant 2010, 46, 437–444. [Google Scholar] [CrossRef]
- Yin, X.; Van Laar, H. Crop Systems Dynamics: An Ecophysiological Simulation Model of Genotype-by-Environment Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar]
- Fumoto, T.; Kobayashi, K.; Li, C.; Yagi, K.; Hasegawa, T. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Glob. Chang. Biol. 2008, 14, 382–402. [Google Scholar] [CrossRef]
- Dong, X.; Chen, W.; Wang, W.; Zhang, H.; Liu, X.; Luo, J. Comprehensive profiling and natural variation of flavonoids in rice. J. Integr. Plant Biol. 2014, 56, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Meng, Q.; Zhao, R.; Li, F.; Chen, X.; Zhang, F.; Cui, Z. Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the North China Plain. Agron. J. 2012, 104, 523–529. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Zhu, Y.; Yao, X.; Cao, W. Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crop. Res. 2014, 167, 76–85. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Yao, X.; Liu, X.; Cao, W.; Zhu, Y. Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crop. Res. 2013, 149, 149–158. [Google Scholar] [CrossRef]
- Ziadi, N.; Bélanger, G.; Claessens, A.; Lefebvre, L.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Parent, L.É. Determination of a critical nitrogen dilution curve for spring wheat. Agron. J. 2010, 102, 241–250. [Google Scholar] [CrossRef]
- Lemaire, G.; Oosterom, E.V.; Sheehy, J.; Massignam, A.; Rossato, L. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crop. Res. 2007, 100, 91–106. [Google Scholar] [CrossRef]
- Errecart, P.M.; Agnusdei, M.G.; Lattanzi, F.A.; Marino, M.A.; Berone, G.D. Critical nitrogen concentration declines with soil water availability in tall fescue. Crop. Sci. 2014, 54, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.C.; Tian, Y.C.; Xia, Y.; Cao, W.X.; Yan, Z. Comparison of five nitrogen dressing methods to optimize rice growth. Plant Prod. Sci. 2014, 17, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Tian, Y. Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Qiu, X.; Ata-Ul-Karim, S.T.; Li, Y.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tang, L. Development of a critical nitrogen dilution curve of double cropping rice in South China. Front. Plant Sci. 2017, 8, 638. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Ata-Ul-Karim, S.T.; Cao, Q.; Lu, Z.; Cao, W.; Zhu, Y.; Liu, X. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crop. Res. 2016, 185, 12–20. [Google Scholar] [CrossRef]
- Tang, L.; Chang, R.; Basso, B.; Li, T.; Zhen, F.; Liu, L.; Cao, W.; Zhu, Y. Improving the estimation and partitioning of plant nitrogen in the RiceGrow model. J. Agric. Sci. 2018, 156, 959–970. [Google Scholar] [CrossRef]
- Zhao, B.; Ata-Ul-Karim, S.T.; Liu, Z.; Ning, D.; Xiao, J. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crop. Res. 2017, 208, 60–68. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Cang, L.; Wang, Y.; Zhou, D. Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat. J. Hazard. Mater. 2020, 384, 121452. [Google Scholar] [CrossRef]
Experiment No. | Location | Soil Characteristic | Cultivar | Nitrogen Rates (kg ha−1) | Sampling Period |
---|---|---|---|---|---|
Experiment 1 (2012–2013) | Rugao (32.27° E, 120.76° N) | organic matter = 30.5 g kg−1 | NM13 | 0(N0) | Feekes 3, 7, 10, 10.5, 10.7 |
total N = 2.49 mg kg−1 | XM30 | 90(N2) | |||
available P = 52.63 mg kg−1 | 180(N5) | ||||
available K = 93.48 mg kg−1 | 225(N6) | ||||
300(N8) | |||||
Experiment 2 (2013–2014) | Rugao (32.27° E, 120.76° N) | organic matter = 24.6 g kg−1 | NM13 | 0(N0) | Feekes 3, 7, 10, 10.5, 10.7 |
total N = 1.87 mg kg−1 | XM30 | 75(N1) | |||
available P = 57.84 mg kg−1 | 150(N4) | ||||
available K = 96.32 mg kg−1 | 225(N6) | ||||
300(N8) | |||||
Experiment 3 (2014–2015) | Rugao (32.27° E, 120.76° N) | organic matter = 27.3 g kg−1 | NM13 | 0(N0) | Feekes 3, 7, 10, 10.5, 10.7 |
total N = 2.09 mg kg−1 | YFM4 | 120(N3) | |||
available P = 55.43 mg kg−1 | HM20 | 225(N6) | |||
available K = 95.28 mg kg−1 | 330(N9) | ||||
Experiment 4 (2014–2015) | Huai’an (33.59° E, 118.88° N) | organic matter = 26.4 g kg−1 | NM13 | 0(N0) | Feekes 3, 7, 10, 10.5, 10.7 |
total N = 1.99 mg kg−1 | YFM4 | 120(N3) | |||
available P = 58.54 mg kg−1 | HM20 | 225(N6) | |||
available K = 93.36 mg kg−1 | 330(N9) | ||||
Experiment 5 (2015–2016) | Sihong (33.36° E, 118.26° N) | organic matter = 35.5 g kg−1 | HM20 | 0(N0) | Feekes 3, 7, 10, 10.5, 10.7 |
total N = 1.55 mg kg−1 | XM30 | 90(N2) | |||
available P = 45.83 mg kg−1 | 180(N5) | ||||
available K = 80.72 mg kg−1 | 270(N7) | ||||
360(N10) |
Source | Growth Stage × Slope | Growth Stage × Threshold | Cultivar × Slope | Cultivar × Threshold |
---|---|---|---|---|
F value | 0.776 | 0.646 | 1.156 | 0.591 |
p value | 0.519 | 0.593 | 0.347 | 0.627 |
R2 | 0.09 | 0.075 | 0.139 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Wang, X.; Wang, X.; Tahir Ata-Ul-Karim, S.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat? Agriculture 2020, 10, 500. https://doi.org/10.3390/agriculture10110500
Zhang K, Wang X, Wang X, Tahir Ata-Ul-Karim S, Tian Y, Zhu Y, Cao W, Liu X. Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat? Agriculture. 2020; 10(11):500. https://doi.org/10.3390/agriculture10110500
Chicago/Turabian StyleZhang, Ke, Xue Wang, Xiaoling Wang, Syed Tahir Ata-Ul-Karim, Yongchao Tian, Yan Zhu, Weixing Cao, and Xiaojun Liu. 2020. "Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat?" Agriculture 10, no. 11: 500. https://doi.org/10.3390/agriculture10110500
APA StyleZhang, K., Wang, X., Wang, X., Tahir Ata-Ul-Karim, S., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2020). Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat? Agriculture, 10(11), 500. https://doi.org/10.3390/agriculture10110500