Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.1.1. Study Site
2.1.2. Field Experiment and Experimental Setup
- Sugar beet residues remained on the plots and were ploughed (depth 0.03 m) on 27 September (+CR:D);
- Sugar beet residues were removed before and surface applied after ploughing (+CR:S);
- Sugar beet residues were removed before ploughing (−CR).
2.1.3. Trace Gas Measurements, Soil Sampling and Laboratory Analysis
2.1.4. Calculations and Statistical Analysis for the Field Study
2.2. Meta-Analysis
2.2.1. Data Source and Approach for Meta-Analysis
- Peer-reviewed publication
- Field study
- N2O flux measurements conducted for at least 60 days
- At least one treatment in which crop residues were retained on or returned to the experimental plot (control, C)
2.2.2. Performing Meta-Analysis
3. Results
3.1. N2O Flux Rates and Cumulative N2O Emission as Affected by Sugar Beet Residue Management in the Field Experiment
3.2. Meta-Analysis
3.2.1. Overall Results
3.2.2. Effect on C/N Ratio and the Quantity of Crop Residues on the Effect Size
3.2.3. Effect of Tillage System on Effect Size
4. Discussion
4.1. N2O Flux Rates and Emissions in the Field Experiment
4.2. Effect of Removing Crop Residues on N2O Emissions from Soils: Results of the Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, A.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC. Summary for policymakers. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1–27. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. IPCC. Climate change 2001: The scientific basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Crutzen, P. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In Denitrification, Nitrification and Atmospheric N2O; Delwiche, C.C., Ed.; John Wiley and Sons: New York, NY, USA, 1981; pp. 17–44. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, A.; Chhabra, R.; DeFries, R.; Galloway, J.; Heimann, C.; et al. Carbon and Other Biogeochemical Cycles BT—Climate Change The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental Panel on Climate Change. In Climate Change The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2009; pp. 465–570. [Google Scholar]
- Siciliano, S.D. Identification of regulatory genes to reduce N2O production. Can. J. Plant Sci. 2014, 94, 1033–1036. [Google Scholar] [CrossRef]
- Bremner, J.M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Everaarts, A.P. Nitrogen balance during growth of cauliflower. Sci. Hortic. 2000, 83, 173–186. [Google Scholar] [CrossRef]
- Akkal-Corfini, N.; Morvan, T.; Menasseri-Aubry, S.; Bissuel-Bélaygue, C.; Poulain, D.; Orsini, F.; Leterme, P. Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of (15N)-labeled cauliflower crop residues (Brassica oleracea) into the soil: A 3-year lysimeter study. Plant Soil 2010, 328, 17–26. [Google Scholar] [CrossRef]
- Truong, T.H.H.; Marschner, P. Presence of wheat straw in soil influences nutrient availability and leaching in soil mulched with high or low C/N organic materials. Arch. Agron. Soil Sci. 2020, in press. [Google Scholar] [CrossRef]
- Millar, N.; Baggs, E.M. Relationships between N2O emissions and water-soluble C and N contents of agroforestry residues after their addition to soil. Soil Biol. Biochem. 2005, 37, 605–608. [Google Scholar] [CrossRef]
- Seiz, P.; Guzman-Bustamante, I.; Schulz, R.; Müller, T.; Ruser, R. Effect of crop residue removal and straw addition on nitrous oxide emissions from a horticulturally used soil in south Germany. Soil Sci. Soc. Am. J. 2019, 83, 1399–1409. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, J.; Zheng, X.; Wang, Y.; Xu, X. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Pelster, D.E.; Chantigny, M.H.; Rochette, P.; Angers, D.A.; Laganière, J.; Zebarth, B.; Goyer, C. Crop residue incorporation alters soil nitrous oxide emissions during freeze-thaw cycles. Can. J. Soil Sci. 2013, 93, 415–425. [Google Scholar] [CrossRef]
- Guzman, J.; Al-Kaisi, M.; Parkin, T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system. Soil Sci. Soc. Am. J. 2015, 79, 612–625. [Google Scholar] [CrossRef]
- Hu, N.; Chen, Q.; Zhu, L. The responses of soil N2O emissions to residue returning systems: A meta-analysis. Sustainability 2019, 11, 748. [Google Scholar] [CrossRef] [Green Version]
- Schmatz, R.; Recous, S.; Adams Weiler, D.; Elias Pilecco, G.; Luiza Schu, A.; Lago Giovelli, R.; José Giacomini, S. How the mass and quality of wheat and vetch mulches affect drivers of soil N2O emissions. Geoderma 2020, 372, 114395. [Google Scholar] [CrossRef]
- Ambus, P.; Jensen, E.S. Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil 1997, 197, 261–270. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Clayton, G.W.; O’Donovan, J.T.; Harker, K.N.; Turkington, T.K.; Rice, W.A. Decomposition of crop residues under conventional and zero tillage. Can. J. Soil Sci. 2004, 84, 403–410. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Change Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Staley, T.E.; Caskey, W.H.; Boyer, D.G. Soil denitrification and nitrification potentials during the growing season relative to tillage. Soil Sci. Soc. Am. J. 1990, 54, 1602–1608. [Google Scholar] [CrossRef]
- Mutegi, J.K.; Munkholm, L.J.; Petersen, B.M.; Hansen, E.M.; Petersen, S.O. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. Soil Biol. Biochem. 2010, 42, 1701–1711. [Google Scholar] [CrossRef]
- Guzman-Bustamante, I.; Winkler, T.; Schulz, R.; Müller, T.; Mannheim, T.; Laso Bayas, J.C.; Ruser, R. N2O emissions from a loamy soil cropped with winter wheat as affected by N-fertilizer amount and nitrification inhibitor. Nutr. Cycl. Agroecosyst. 2019, 114, 173–191. [Google Scholar] [CrossRef]
- Hutchinson, G.L.; Livingston, G.P. Use of chamber systems to measure trace gas fluxes. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; Harper, L.A., Mosier, A.R., Duxbury, J.M., Eds.; American Society of Agronomy: Madison, WI, USA, 1993; pp. 63–78. [Google Scholar]
- Flessa, H.; Dorsch, P.; Beese, F. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J. Geophys. Res. 1995, 100, 23115–23124. [Google Scholar] [CrossRef]
- VDLUFA. Das VDLUFA Methodenbuch Band I: Die Untersuchung von Böden, 4th ed.; VDLUFA: Speyer, Germany, 1991. [Google Scholar]
- Fuss, R.; Asger, R. (Eds.) Gasfluxes: Greenhouse Gas Flux Calculation from Chamber Measurements, R package version 0.1; R Foundation: Vienna, Austria, 2014. [Google Scholar]
- R Core Team. A Language and Enviroment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Pedersen, A.R.; Petersen, S.O.; Schelde, K. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur. J. Soil Sci. 2010, 61, 888–902. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Statistics; Wiley: Cambridge, MA, USA, 1981. [Google Scholar]
- Ruser, R.; Fuß, R.; Andres, M.; Hegewald, H.; Kesenheimer, K.; Köbke, S.; Räbiger, T.; Quinones, T.S.; Augustin, J.; Christen, O.; et al. Nitrous oxide emissions from winter oilseed rape cultivation. Agric. Ecosyst. Environ. 2017, 249, 57–69. [Google Scholar] [CrossRef]
- Guzman-Bustamante, I.; University of Hohenheim, Stuttgart, Germany. Personal communication, 2020.
- Harmsen, G.W.; Kolenbrander, G.J. Soil inorganic nitrogen. In Soil Nitrogen; Bartholomew, W.V., Clark, F.E., Eds.; Agronomy Monographs: Madison, WI, USA, 1965; pp. 43–92. [Google Scholar]
- Seneviratne, G. Litter quality and nitrogen release in tropical agriculture: A synthesis. Biol. Fertil. Soils 2000, 31, 60–64. [Google Scholar] [CrossRef]
- Velthof, G.L.; Kuikman, P.J.; Oenema, O. Nitrous oxide emission from soils amended with crop residues. Nutr. Cycl. Agroecosyst. 2002, 62, 249–261. [Google Scholar] [CrossRef]
- Congreves, K.A.; Voroney, R.P.; O’Halloran, I.P.; Van Eerd, L.L. Broccoli residue-derived nitrogen immobilization following amendments of organic carbon: An incubation study. Can. J. Soil Sci. 2013, 93, 23–31. [Google Scholar] [CrossRef] [Green Version]
- De Ruijter, F.J.; Berge, H.F.M.T.; Smit, A.L. The fate of nitrogen from crop residues of broccoli, leek and sugar beet. Acta Hort. 2010, 852, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Pfab, H. Nitrous Oxide Emissions and Mitigation Strategies: Measurements on an Intensively Fertilized Vegetable Cropped Loamy Soil. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2011. [Google Scholar]
- Baggs, E.M.; Rees, R.M.; Castle, K.; Scott, A.; Smith, K.A.; Vinten, A.J.A. Nitrous oxide release from soils receiving N-rich crop residues and paper mill sludge in eastern Scotland. Agric. Ecosyst. Environ. 2002, 90, 109–123. [Google Scholar] [CrossRef]
- Chaves, B.; De Neve, S.; Boeckx, P.; Van Cleemput, O.; Hofman, G. Manipulating nitrogen release from nitrogen-rich crop residues using organic wastes under field conditions. Soil Sci. Soc. Am. J. 2007, 71, 1240–1250. [Google Scholar] [CrossRef]
- Rezaei Rashti, M.; Wang, W.J.; Chen, C.R.; Reeves, S.H.; Scheer, C. Assessment of N2O emissions from a fertilised vegetable cropping soil under different plant residue management strategies using 15N tracing techniques. Sci. Total Environ. 2017, 598, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achilles, W.; Anter, J.; Belau, T.; Blankenburg, J.; Böckelmann, M.; Bruhn, K.; Brunotte, J.; Büscher, W.; Cremer, W.; Dierend, W.; et al. Faustzahlen für die Landwirtschaft, 15th ed.; KTBL (German Association for Technology and Structures in Agriculture): Darmstadt, Germany, 2018; pp. 1289–1290. [Google Scholar]
- Ruser, R.; Flessa, H.; Schilling, R.; Beese, F.; Munch, J.C. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutr. Cycl. Agroecosyst. 2001, 59, 177–191. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Change Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Piepho, H.P.; Williams, E.R.; Madden, L.V. The use of two-way linear mixed models in multitreatment meta-analysis. Biometrics 2012, 68, 1269–1277. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Wallace, B.C.; Lajeunesse, M.J.; Dietz, G.; Dahabreh, I.J.; Trikalinos, T.A.; Schmid, C.H.; Gurevitch, J. OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods Ecol. Evol. 2016, 8, 941–947. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. The combination of estimates from different experiments. Biometrics 1954, 10, 101. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Rosenthal, R. The “file drawer problem” and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Rosenberg, M.S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef]
- Jennions, M.D.; Lortie, C.J.; Rosenberg, M.S.; Rothstein, H.R. Publication and related biases. In Handbook of Meta-Analysis in Ecology and Evolution; Koricheva, J., Gurevitch, J., Mengersen, K., Eds.; Princeton University Press: Princeton, NJ, USA, 2013; pp. 207–236. [Google Scholar]
- Heincke, M.; Kaupenjohann, M. Effects of soil solution on the dynamics of N2O emissions: A review. Nutr. Cycl. Agroecosyst. 1999, 55, 133–157. [Google Scholar] [CrossRef]
- Flessa, H.; Beese, F. Effects of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Sci. Soc. Am. J. 1995, 59, 1044–1051. [Google Scholar] [CrossRef]
- Delin, S.; Strömberg, N. Imaging-optode measurements of ammonium distribution in soil after different manure amendments. Eur. J. Soil Sci. 2011, 62, 295–304. [Google Scholar] [CrossRef]
- Brettar, I.; Sanchez-Perez, J.M.; Trémolières, M. Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain—Correlation with redox potential and organic matter. Hydrobiologia 2002, 469, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Thauer, R.K.; Jungermann, K.; Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar] [CrossRef] [PubMed]
- Granli, T.; Bøckman, O.C. Nitrous oxide from agriculture. Nor. J. Agric. 1994, 12, 7–127. [Google Scholar]
- Jungkunst, H.F.; Freibauer, A.; Neufeldt, H.; Bareth, G. Nitrous oxide emissions from agricultural land use in Germany—A synthesis of available annual field data. J. Plant Nutr. Soil Sci. 2006, 169, 341–351. [Google Scholar] [CrossRef]
- Koga, N. Nitrous oxide emissions under a four-year crop rotation system in northern Japan: Impacts of reduced tillage, composted cattle manure application and increased plant residue input. Soil Sci. Plant Nutr. 2013, 59, 56–68. [Google Scholar] [CrossRef]
- Kaiser, E.A.; Ruser, R. Nitrous oxide emissions from arable soils in Germany—An evaluation of six long-term field experiments. J. Plant Nutr. Soil Sci. 2000, 163, 249–259. [Google Scholar] [CrossRef]
- Smith, K.A. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Glob. Change Biol. 1997, 3, 327–338. [Google Scholar] [CrossRef]
- Lin, S.; Iqbal, J.; Hu, R.; Shaaban, M.; Cai, J.; Chen, X. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: A case study in central China. Arch. Environ. Contam. Toxicol. 2013, 65, 183–192. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, E.A.; Kohrs, K.; Kücke, M.; Schnug, E.; Munch, J.C.; Heinemeyer, O. Nitrous oxide release from arable soil: Importance of perennial forage crops. Biol. Fertil. Soils 1998, 28, 36–43. [Google Scholar] [CrossRef]
- Toma, Y.; Hatano, R. Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 198–205. [Google Scholar] [CrossRef]
- Cheshire, M.V.; Bedrock, C.N.; Williams, B.L.; Chapman, S.J.; Solntseva, I.; Thomsen, I. The immobilization of nitrogen by straw decomposing in soil. Eur. J. Soil Sci. 1999, 50, 329–341. [Google Scholar] [CrossRef]
- Pitombo, L.M.; Cantarella, H.; Packer, A.P.C.; Ramos, N.P.; do Carmo, J.B. Straw preservation reduced total N2O emissions from a sugarcane field. Soil Use Manag. 2017, 33, 583–594. [Google Scholar] [CrossRef]
- Beck, T. Die N-Mineralisierung von Böden im Laborbrutversuch. Z. Pflanzenern. Bodenkd. 1983, 146, 243–252. [Google Scholar] [CrossRef]
- Hotopp, I.S. Nitrikation und Denitrikation im Boden in Abhängigkeit von Sauerstoff und Mikrobieller Aktivität Entwicklung, Analyse, Parametrisierung und Anwendung Eines Gekoppelten Simulationsmodells. Ph.D. Thesis, University of Osnabrück, Osnabrück, Germany, 2014. [Google Scholar]
- Surey, R.; Schimpf, C.M.; Sauheitl, L.; Mueller, C.W.; Rummel, P.S.; Dittert, K.; Kaiser, K.; Böttcher, J.; Mikutta, R. Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition. Soil Biol. Biochem. 2020, 147, 107841. [Google Scholar] [CrossRef]
- Müller, T.; Magid, J.; Jensen, L.S.; Nielsen, N.E. Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data. Ecol. Modell. 2003, 166, 3–18. [Google Scholar] [CrossRef]
- Koga, N.; Tsuruta, H.; Sawamoto, T.; Nishimura, S.; Yagi, K. N2O emission and CH4 uptake in arable fields managed under conventional and reduced tillage cropping systems in northern Japan. Glob. Biogeochem. Cycles 2004, 18, 18. [Google Scholar] [CrossRef]
- Venterea, R.T.; Burger, M.; Spokas, K.A. Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J. Environ. Qual. 2005, 34, 1467–1477. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Rochette, P.; VandenBygaart, A.J.; Angers, D.A. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till. Res. 2005, 83, 53–72. [Google Scholar] [CrossRef]
- Smith, K.A.; Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 2004, 20, 255–263. [Google Scholar] [CrossRef]
- Petersen, S.O.; Mutegi, J.K.; Hansen, E.M.; Munkholm, L.J. Tillage effects on N2O emissions as influenced by a winter cover crop. Soil Biol. Biochem. 2011, 43, 1509–1517. [Google Scholar] [CrossRef]
Soil Depth [m] | Clay [%] | Silt [%] | Sand [%] | Corg [%] | Nt [%] | pH 1 |
---|---|---|---|---|---|---|
0−0.3 | 25.5 | 71.4 | 3.1 | 1.53 | 0.15 | 7.5 |
0.3−0.6 | 31.8 | 66.6 | 1.6 | − | − | 7.1 |
0.6−0.9 | 34.9 | 60.5 | 4.6 | − | − | 6.9 |
FM [Mg ha−1] | DM [Mg ha−1] | Ct [Mg ha−1] | Nt [Mg ha−1] | C/N |
---|---|---|---|---|
26.401 | 4.947 | 1.824 | 0.112 | 16.3 |
Grouping Variables | Subgroups | Studies | Observations | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
C/N ratio | < 25 | 25– < 50 | 50– < 75 | 75– < 100 | ≥ 100 | 36 | 173 |
Residue quantity [Mg DM ha−1] | < 4 | 4–< 6 | ≥ 6 | 22 | 92 | ||
Tillage system | NT | CT | RT | 36 | 174 |
Crop | C/N Ratio | C/N Ratio Subgroup | Source |
---|---|---|---|
Broccoli (Brassica oleracea var. italica L.) | 13.7 | <25 | Velthof et al. [40] |
10 | Congreves et al. [41] | ||
9–23 | De Ruijter et al. [42] | ||
Lettuce (Lactuca sativa var. capitata L.) | 10.3–18.7 | <25 | Pfab et al. [43] |
7.5 | Baggs et al. [44] | ||
Cauliflower (Brassica oleracea var. botrytis L.) | 8.2–17.1 | <25 | Pfab et al. [43] |
11.6–18.6 | Chaves et al. [45] | ||
11 | Rezaei Rashti et al. [46] | ||
Pea (Pisum sativum L.) | 26.4 | 25− < 50 | Achilles et al. [47] |
Soy (Glycine max L.) | 41.1 | 25− < 50 | Achilles et al. [47] |
Oilseed rape (Brassica napus L.) | 73.9 | 50− < 75 | Achilles et al. [47] |
61.9 | Ruser et al. 2017 1 | ||
Barley (Hordeum vulgare L.) | 87.9 | 75− <100 | Achilles et al. [47] |
Winter wheat (Triticum aestivum L.) | 87.9 | 75− <100 | Achilles et al. [47] |
82.8 | Guzman-Bustamante et al. [28] | ||
Maize (Zea mays L.) | 49–65 | 50− <75 | Ruser et al. [48] 1 |
49.6 | Achilles et al. [47] | ||
65.1 | Mean data meta-analysis 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essich, L.; Nkebiwe, P.M.; Schneider, M.; Ruser, R. Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture 2020, 10, 546. https://doi.org/10.3390/agriculture10110546
Essich L, Nkebiwe PM, Schneider M, Ruser R. Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture. 2020; 10(11):546. https://doi.org/10.3390/agriculture10110546
Chicago/Turabian StyleEssich, Lisa, Peteh Mehdi Nkebiwe, Moritz Schneider, and Reiner Ruser. 2020. "Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis" Agriculture 10, no. 11: 546. https://doi.org/10.3390/agriculture10110546
APA StyleEssich, L., Nkebiwe, P. M., Schneider, M., & Ruser, R. (2020). Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture, 10(11), 546. https://doi.org/10.3390/agriculture10110546