Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microorganisms and Culture Medium
2.3. Preparation of Hot Water and Ethanol Extracts of Leaves, Seeds, and Roots from C. cajan
2.4. Determination of Basic Nutritional and Amino Acid Compositions
2.5. Determination of Total Phenolic Content (TPC)
2.6. Determination of Total Flavonoid Content (TFC)
2.7. Antioxidant Activities of C. cajan
2.7.1. 1,1-Diphenyl-2-picrylhydrazyl Radical (DPPH) Scavenging Effects Assay
2.7.2. Nitric Oxide (NO) Scavenging Effects Assay
2.7.3. ABTS+ Scavenging Effects Assay
2.7.4. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8. Anti-Hyperglycemic Activities of C. cajan Roots (CCR)
2.8.1. Inhibition of α-Amylase Activity Assay
2.8.2. Inhibition of α-Glucosidase Activity Assay
2.8.3. Anti-Glycation Assay (Advanced Glycation End Products (AGEs) Formation)
2.9. Antimicrobial Activity
2.10. Statistical Analysis
3. Results
3.1. Basic Nutritional Composition of C. cajan
3.2. Amino Acid Composition of C. cajan
3.3. Yields, TPC and TFC of Hot Water and 50% Ethanol Extracts from Various Part of C. cajan
3.4. Antioxidant Activities of C. cajan Extracts
3.5. The Ccorrelation of Antioxidant Activity and Phenolic Compounds of 50% Ethanol Extracts of Leaves, Seeds, and Roots from C. cajan
3.6. Antioxidant Effects of Hot Water and Ethanol Extracts of C. cajan Roots
3.7. Hypoglycemic Effects of Hot Water and Ethanol Extracts of C. cajan Roots
3.8. Anti-Microbial Effects of Hot Water and Ethanol Extracts of C. cajan Roots
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, N.; Kong, Y.; Fu, Y.J.; Zu, Y.G.; Yang, Z.W.; Yang, M.; Peng, X.; Efferth, T. In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea (Cajanus cajan (L.) Millsp.) leaves. J. Agr. Food Chem. 2011, 59, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Aiyeloja, A.A.; Bello, O.A. Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu state. Educ. Res. Rev. 2006, 1, 16–22. [Google Scholar]
- Pal, D.; Mishra, P.; Sachanm, N.; Ghosh, A.K. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J. Adv. Pharm. Technol. Res. 2011, 2, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Pandey, I.; Tiwari, S.; Pandey, R.; Kumar, R. Effect of bed configuration, fertilizer levels and placement method on the productivity of long duration Pigeon pea (Cajanus cajan (L) Millsp) under rainfed condition. J. Food Legumes 2014, 27, 206–209. [Google Scholar]
- Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharm. 2002, 81, 81–100. [Google Scholar] [CrossRef]
- Ahmed, R.; Muhammad, A.; Ahmed, N. Seed germination and seedling growth of pigeon pea (Cajanus cajan (L.) Millsp.) at different salinity regimes. Int. J. Biol. Biotech. 2015, 12, 155–160. [Google Scholar]
- Kong, Y.; Fu, Y.J.; Zu, Y.G.; Chang, F.R.; Chen, Y.H.; Liu, X.L.; Stelten, J.; Schiebel, H.M. Cajanuslactone a new coumarin with anti bacterial activity from pigeon pea leaves. Food Chem. 2010, 121, 1150–1155. [Google Scholar] [CrossRef]
- Vo, T.L.T.; Yang, N.C.; Yang, S.E.; Chen, C.L.; Wu, C.H.; Song, T.Y. Effects of Cajanus cajan (L.) Millsp. roots extracts on the antioxidant and anti-inflammatory activities. Chin. J. Physiol. 2020, 63, 137–148. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Horwitz, W., Ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- AOAC. Official Method 994.12, Amino Acids in Feeds. In Official Methods of Analysis of AOAC Int, 18th ed.; AOAC International: Rockville, MD, USA, 2011; Chapter 4; pp. 9–19. [Google Scholar]
- Do, Q.D.; Angkawijaya, A.E.; Tran, N.P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadij, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and anti-oxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Marcocci, L.; Maguire, J.J.; Droy-Lefaix, M.T.; Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGB 761. Biochem. Biophys. Res. Commun. 1994, 201, 748–755. [Google Scholar] [CrossRef]
- Jeannine, B.; Paulo, J.A. Investigation of the physicochemical, antimicrobial and anti-oxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. J. Food Biosci. 2016, 16, 17–25. [Google Scholar]
- Chu, Y.H.; Chang, C.L.; Hsu, H.F. Flavonoid content of several vegetables and their anti-oxidant activity. J. Sci. Food Agric. 2000, 80, 561–567. [Google Scholar] [CrossRef]
- Shu, X.S.; Lv, J.H.; Tao, J.; Li, G.M.; Li, H.D.; Ma, N. Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J. Ethnopharm. 2009, 124, 539–543. [Google Scholar] [CrossRef] [PubMed]
- McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr. 2004, 13, 101–106. [Google Scholar] [PubMed]
- Vinson, J.A.; Howard, T.B. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. J Nutr. Biochem. 1996, 7, 659–663. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, S.K.; Chang, K.W.; Han, S.K.; Yi, H.K.; Jeon, J.G. In vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Arch. Oral Biol. 2006, 51, 1131–1140. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhang, S.; Zu, Y.G.; Fu, Y.J.; Kong, Y.; Gao, Y. Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea (Cajanus cajan (L.) Millsp.). Sep. Purif. Technol. 2010, 74, 261–270. [Google Scholar] [CrossRef]
- Virginia Messina. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014, 100, 437S–442S. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-López, A.N.; Gómez-Oliván, L.M.; Basilio Heredia, J.; BaezaJiménez, R.; Garcia-Galindo, H.S.; Lopez-Martine, L.X. Nutritional and bioactive characteristics of Ayocote bean (Phaseolus coccienus L.): An underutilized legume harvested in Mexico. CyTA J. Food 2019, 17, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.; Kulkarni, K.P.; Song, J.T.; Shannon, J.G.; Lee, J.D. Soybean Sprouts: A Review of Nutrient Composition, Health Benefits and Genetic Variation. Plant Breed Biotechnol. 2016, 4, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.Y.; Dong, Y.M.; Ren, H.K.; Li, L.; He, C.F. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.F.; Chen, J.X.; Wang, Z.L.; Tan, T.T.; Li, S.L.; Li, J.F.; Wang, B.B.; Zhang, J.W.; Cheng, Y.J.; Wu, X.L.; et al. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biol. 2019, 19, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, D.Z.; Yousaf, L.R.; Xue, Y.; Hu, J.R.; Wu, J.H.; Hu, X.S.; Feng, N.H.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef] [Green Version]
- Mallillin, A.C.; Trinidad, T.P.; Raterta, R.; Dagbay, K.; Loyola, A.S. Dietary fiber and fermentability characteristics of root crops and legumes. Br. J. Nutr. 2008, 100, 485–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.; Rosner, B.; Willett, W.W.; Sacks, F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R. Magnesium Metabolism and its Disorders. Clin. Biochem. Rev. 2003, 24, 47–66. [Google Scholar]
- Zhao, H.X.; Zhang, H.S.; Yang, S.F. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci. Hum. Wellness 2014, 3, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, A.E.; Alkoaik, F.N. Extraction of Protein from Common Plant Leaves for Use as Human Food. Am. J. Appl. Sci. 2010, 7, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Dancey, C.; Reidy, J. Statistics without Maths for Psychology, 8th ed.; University of East London: London, UK, 2020. [Google Scholar]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Kooti, W.; Moradi, M.; Akbari, S.; Sharafi-Ahvazi, N.; AsadiSamani, M.; Ashtary-Larky, D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill. A review. J. HerbMed Pharm. 2015, 4, 1–9. [Google Scholar]
- Afrisham, R.; Aberomand, M.; Ghaffari, M.; Siahpoosh, A.; Jamalan, M. Inhibitory effect of Heracleum persicum and Ziziphus jujuba on activity of alpha-amylase. J. Bot. 2015, 2015, 824683. [Google Scholar]
- Chipiti, T.; Ibrahim, M.A.; Singh, M.; Islam, M.S. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts. Pharmacogn. Mag. 2015, 11, S231–S236. [Google Scholar] [PubMed] [Green Version]
- Chilelli, N.C.; Burlina, S.; Lapolla, A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: A “glycoxidation-centric” point of view. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; Nasrin, F.; Zahan, R.; Haque, A.; Haque, E.; Mosaddik, A. Comparative study of antidiabetic activity of Cajanus cajan and Tamarindus indica in alloxan-induced diabetic mice with a reference to in vitro antioxidant activity. Pharmacogn. Res. 2014, 6, 180–187. [Google Scholar]
- Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, X.J.; Fu, Y.J.; Zu, Y.G.; Wu, N.; Liang, L.; Efferth, T. Cajanol inhibits the growth of Escherichia coli and Staphylococcus aureus by acting on membrane and DNA damage. Plant Med. 2011, 77, 158–163. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J. Clin. Med. 2020, 9, 109. [Google Scholar] [CrossRef] [Green Version]
Nutrients | C. cajan (per 100 g) | ||
---|---|---|---|
Leaves | Seeds | Roots | |
Water (g) | 11.5 ± 0.2 b 2 | 14.3 ± 0.1 c | 3.3 ± 0.1 a |
Crude ash (g) | 3.6 ± 0.1 a | 12.0 ± 0.0 b | 3.6 ± 0.2 a |
Crude protein (g) | 19.4 ± 0.5 b | 22.0 ± 0.4 c | 2.4 ± 0.1 a |
Crude fat (g) | ND 1 | 5.5 ± 0.3 b | 0.4 ± 0.0 a |
Carbohydrate (g) | 65.6 ± 0.2 b | 56.2 ± 0.3 a | 90.3 ± 0.1 c |
Sugar (g) | ND | ND | ND |
Sodium (mg) | 19.7 ± 39.0 a | 32.5 ± 5.5 b | 108.0 ± 7.6 c |
Zinc (mg) | 2.1 ± 0.9 b | 0.7 ± 0.2 a | 0.7 ± 0.9 a |
Magnesium (mg) | 111 ± 9.5 a | 138.8 ± 7.2 b | 130 ± 8.7 b |
Manganese (mg) | ND | 6.8 ± 5.2 b | 0.7 ± 0.2 a |
Iron (mg) | 4.8 ± 2.1 a | 51.5 ± 8.7 b | ND |
Copper (mg) | N.D | 1.4 ± 0.6 a | 1.0 ± 0.6 a |
Calcium (mg) | 33 ± 4.9 a | 581 ± 1.3 b | 597 ± 2.5 c |
Amino Acids | Amino Acids Contents (mg/100 g) | ||
---|---|---|---|
Leaves | Seeds | Roots | |
Alanine | 576.5 ± 5.6 a | 1547.8 ± 3.9 c | 687.5 ± 12.3 b |
Glutamine | 808.8 ± 10.3 b | 648.3 ± 6.3 a | 871.8 ± 11.2 c |
Arginine * | 333.4 ± 1.3 c | 279.9 ± 2.6 b | 226.1 ± 5.9 a |
Leucine * | 597.8 ± 3.8 b | 679.7 ± 13.5 c | 492.2 ± 4.2 a |
Isoleucine * | 314.1 ± 8.3 b | 392.0 ± 3.1 c | 272.7 ± 4.2 a |
Valine * | 422.2 ± 3.6 b | 671.4 ± 4.8 c | 381.1 ± 5.6 a |
Lysine * | 425.4 ± 10.1 b | 740.8 ± 6.3 c | 297.9 ± 2.0 a |
Phenylalanine * | 612.4 ± 3.6 c | 354.7 ± 7.6 b | 262.1 ± 2.5 a |
Histidine * | 266.8 ± 1.3 b | 361.7 ± 3.6 c | 118.4 ± 4.3 a |
Proline | 137.9 ± 1.2 c | 72.1 ± 8.2 a | 89.1 ± 8.1 a b |
Glycine | 235.7 ± 2.8 c | 160.7 ± 3.4 b | 139.7 ± 6.9 a |
Tyrosine | 143.9 ± 3.9 a | 186.1 ± 2.0 b | 149.8 ± 5.2 a |
Serine | 494.6 ± 4.8 c | 220.0 ± 8.1 b | 169.2 ± 4.5 a |
Methionine * | 86.0 ± 2.3 c | 70.6 ± 1.6 b | 61.1 ± 1.2 a |
Threonine * | 406.8 ± 1.3 c | 136.2 ± 5.4 b | 119.9 ± 4.6 a |
Aspartic acid | 323.3 ± 5.2 c | 126.4 ± 1.7 b | 112.5 ± 5.2 a |
Tryptophan * | 2.4 ± 0.4 a b | 9.5 ± 0.1 c | 1.3 ± 0.4 a |
Cysteine | ND 1 | ND | ND |
Total | 6188 ± 39 | 6657.9 ± 36 | 4452.4 ± 22 |
BCAA ** | 1334 ± 16 | 1743 ± 21 | 1146 ± 18 |
Extracts | Yields (%) | TPC (mg GAE/g dw) | TFC (mg QUE/g dw) | |
---|---|---|---|---|
Leaves | HWCL 1 | 10.2 ± 0.5 b 4 | 7.23 ± 0.05 a | 0.22 ± 0.06 a |
EECL50 | 7.2 ± 0.6 b | 13.5 ± 0.06 b | 10.4 ± 0.24 b | |
Seeds | HWCS 2 | 8.9 ± 0.2 b | 10.93 ± 0.9 b | 0.97 ± 0.20 a |
EECS50 | 5.1 ± 0.3 a | 23.15 ± 0.15 c | 15.13 ± 0.12 b | |
Roots | HWCR 3 | 9.2 ± 0.8 b | 16.24 ± 0.13 b | 7.32 ± 0.40 a |
EECR50 | 4.3 ± 0.3 a | 27.15 ± 0.89 c | 16.87 ± 0.15 b |
Extracts | DPPH Scavenging Effects (IC50 Value, µg/mL) | NO Scavenging Effects (IC50 Value, µg/mL) |
---|---|---|
Hot Water Extracts | ||
HWCR 1 | 736 ± 15 b 2 | 145 ± 6 b |
HWCS | 2536 ± 51 d | 1250 ± 23 f |
HWCL | 752 ± 12 b | 650 ± 20 e |
50% ethanol extracts | ||
EECR50 | 640 ± 16 a | 51 ± 4 a |
EECS50 | 1263 ± 31 c | 512 ± 16 d |
EECL50 | 675 ± 13 a | 217 ± 12 c |
Correlation (r) | TPC (mg/g dw) | TFC (mg/g dw) | DPPH Scavenging Effects (IC50) | NO Scavenging Effects (IC50) |
---|---|---|---|---|
TPC (mg/g dw) | 1 | - | - | - |
TFC (mg/g dw) | 0.9345 ** | 1 | - | - |
DPPH scavenging effects (IC50) | 0.7411 ** | 0.6340 * | 1 | - |
NO scavenging effects (IC50) | 0.6069 * | 0.5032 * | 0.9023 ** | 1 |
Extracts | IC50 Values (µg/mL) | EC50 Values (µg/mL) | |
---|---|---|---|
DPPH | ABTS +3 | FRAP | |
HWCR 1 | 928 ± 62 c 2 | 4771 ± 89 c | 2158 ± 45 b |
EECR50 | 677 ± 25 b | 184 ± 21 b | 1131 ± 84 a |
EECR95 | 460 ± 56 a | 100 ± 13 a | 929 ± 78 a |
Extracts/Standards | IC50 Values (µg/mL) | ||
---|---|---|---|
α-Glucosidase Activity | α-Amylase Activity | Anti-Glycation (AGEs Formation) | |
Acarbose 1 | 303 ± 12 d 4 | 970 ± 52 c | - |
AMG 2 | - | - | 220 ± 12 a |
HWCR 3 | 256 ± 11 c 4 | 957 ± 24 c | 1865 ± 103 c |
EECR50 | 127 ± 9 b | 320 ± 22 b | 532 ± 36 b |
EECR95 | 39 ± 2 a | 120 ± 12 a | 229 ± 12 a |
Extracts | Anti-Bacterial Growth Effects (MIC, µg/mL) | |||
---|---|---|---|---|
E. coli | S. aureus | P. gingivalis | S. mutans | |
HWCR 1 | ND 2 | ND | ND | ND |
EECR50 | 169 ± 9 b 3 | 260 ± 12 b | 252 ± 8 b | 180 ± 11 b |
EECR95 | 113 ± 9 a | 180 ± 6 a | 16 ± 2 a | 100 ± 3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-E.; Vo, T.-L.T.; Chen, C.-L.; Yang, N.-C.; Chen, C.-I.; Song, T.-Y. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp. Agriculture 2020, 10, 558. https://doi.org/10.3390/agriculture10110558
Yang S-E, Vo T-LT, Chen C-L, Yang N-C, Chen C-I, Song T-Y. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp. Agriculture. 2020; 10(11):558. https://doi.org/10.3390/agriculture10110558
Chicago/Turabian StyleYang, Shu-Er, Thuy-Lan Thi Vo, Chien-Lin Chen, Nae-Cherng Yang, Chen-I Chen, and Tuzz-Ying Song. 2020. "Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan (L.) Millsp" Agriculture 10, no. 11: 558. https://doi.org/10.3390/agriculture10110558