Predicting Phosphorus and Potato Yield Using Active and Passive Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling and Analysis
2.3. Plant Sampling and Analysis
2.4. Potato Harvest
2.5. Sensor Description and Sensing Procedure
2.5.1. Active Sensors
2.5.2. Passive Sensors
Unmanned Aerial Vehicle Image Acquisition and Processing
Visible Bands and NIR Vegetation Indices
2.6. Statistical Analysis
2.7. Multiple Linear Regression Model Diagnostics
2.7.1. Criteria for Evaluation of a Subset of Predictor Variables
Adjusted R2 = R2adj
Akaike’s Information Criterion AIC
Corrected Akaike’s Information Criterion AICc
Bayesian Information Criterion BIC
Prediction Sum of Squares (PRESS)
2.7.2. Generalized Linear Model (GLM)
Active Sensor Transformation Models Based on the Generalized Linear Model (GLM)
CHLRE + β4 log LAI + εi
CHLRE + β4 log LAI + εi
Passive Sensor Transformation Models Based on the Generalized Linear Model (GLM)
CHLGR + β5 LAI + εi
CHLGR + β5 LAI + εi
3. Results
3.1. Active Sensors
3.1.1. Crop Circle™
Total Potato Yield and Phosphorus Uptake Models
Relationships between the Actual and Predicted Variables
3.1.2. GreenSeeker™
Total Potato Yield and Phosphorus Uptake Models
Relationships between the Actual and Predicted Variables
3.2. Passive Sensors
3.2.1. Total Potato Yield and Phosphorus Uptake Models
3.2.2. Relationships between Actual and Predicted Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Greenway, G.A.; Guenthner, J.F.; Makus, L.D.; Pavek, M.J. An Analysis of Organic Potato Demand in the U.S. Am. J. Potato Res. 2010, 88, 184–189. [Google Scholar] [CrossRef]
- USDA. United States Department of Agriculture National Resources Conservation Service; The PLANTS Database, National Plant Data Center: Baton Rouge, LA, USA, 2018.
- Abbasian, A.; Ahmadi, A.; Abbasi, A.; Darvishi, B. Effect of various phosphorus and calcium concentrations on potato seed tuber production. J. Plant Nutr. 2018, 41, 1765–1777. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P.; Pilon, C. Soil Phosphorus Increases Dry Matter and Nutrient Accumulation and Allocation in Potato Cultivars. Am. J. Potato Res. 2014, 92, 117–127. [Google Scholar] [CrossRef]
- Osborne, S.L. Separating Spectral Signatures for Detecting Nitrogen, Phosphorus and Water Stress in Corn. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 1999. [Google Scholar]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India, Inc.: Upper Saddle River, NJ, USA, 2016. [Google Scholar]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Duff, S.M.; Sarath, G.; Plaxton, W.C. The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 1994, 90, 791–800. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhou, X.; Dong, L.; Guo, J.; Chen, Y.; Zhang, Y.; Wu, L.; Xu, M. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency. J. Proteom. 2018, 184, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, G.; Sahoo, R.; Pandey, R.; Gupta, V.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Detection of Phosphorus and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements. Agron. J. 2002, 94, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Bu, H.; Franzen, D.; Denton, A. Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors. Comput. Electron. Agric. 2016, 124, 254–262. [Google Scholar] [CrossRef] [Green Version]
- A Sims, D.; A Gamon, J. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote. Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. Remote. Sens. Agric. Environ. 2004, 78–94. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1265&context=natrespapers (accessed on 10 February 2020).
- Osborne, S.L.; Schepers, J.S.; Schlemmer, M.R. Detecting Nitrogen and Phosphorus Stress in Corn Using Multi-spectral Imagery. Commun. Soil Sci. Plant Anal. 2004, 35, 505–516. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Mirsky, S.B.; Hively, W.D. Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 4566–4571. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Carroll, M.W.; Glaser, J.A.; Hellmich, R.L.; Hunt, T.E.; Sappington, T.W.; Calvin, D.; Copenhaver, K.; Fridgen, J. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots. J. Econ. Entomol. 2008, 101, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Soundararajan, M. Relationship between leaf chlorophyll content and carbon isotope discrimination in soybean. IPCBEE 2012, 31, 22–27. [Google Scholar]
- Gitelson, A.A.; Gamon, J.A.; Solovchenko, A. Multiple drivers of seasonal change in PRI: Implications for photosynthesis 1. Leaf level. Remote. Sens. Environ. 2017, 191, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Keydan, G.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, 11. [Google Scholar] [CrossRef] [Green Version]
- Holland, K.H.; Lamb, D.; Schepers, J.S. Radiometry of Proximal Active Optical Sensors (AOS) for Agricultural Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1793–1802. [Google Scholar] [CrossRef]
- Barker, D.W.; Sawyer, J.E. Factors Affecting Active Canopy Sensor Performance and Reflectance Measurements. Soil Sci. Soc. Am. J. 2013, 77, 1673–1683. [Google Scholar] [CrossRef]
- Kipp, S.; Mistele, B.; Schmidhalter, U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput. Electron. Agric. 2014, 100, 24–33. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries. Sensors 2010, 10, 2843–2850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crop. Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of Two Ground-Based Active Crop Canopy Sensors in Maize: Growth Stage, Row Spacing, and Sensor Movement Speed. Soil Sci. Soc. Am. J. 2010, 74, 2101–2108. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Shen, J.; Yu, W.; Yuan, F.; Cheng, S.; Huang, S.; Wang, H.; Yang, W.; Liu, F. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precis. Agric. 2015, 17, 136–154. [Google Scholar] [CrossRef]
- Scientifc, H. 2020. Available online: https://hollandscientific.com/portfolio/crop-circle-acs-430/ (accessed on 11 September 2020).
- Wang, T.; Thomasson, J.A.; Yang, C.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sens. 2020, 12, 1310. [Google Scholar]
- Li, S.; Ding, X.; Kuang, Q.; Ata-Ui-Karim, S.T.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Front. Plant Sci. 2018, 9, 1834. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, MD, USA, 1 January 1974; p. 371. [Google Scholar]
- Milton, N.; Eiswerth, B.; Ager, C. Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 1991, 36, 121–127. [Google Scholar] [CrossRef]
- Shi, J.; Zou, X.; Zhao, J.; Mao, H.; Wang, K.; Chen, Z.; Huang, X.; Holmes, M. Pre-Visual Diagnostics of Phosphorus Deficiency in Mini-Cucumber Plants Using Near-Infrared Reflectance Spectroscopy. Appl. Spectrosc. 2012, 66, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, S.; Ren, T.; Wei, Q.; Ming, J.; Li, J.; Li, X.; Cong, R.; Lu, J. Ability of models with effective wavelengths to monitor nitrogen and phosphorus status of winter oilseed rape leaves using in situ canopy spectroscopy. Field Crop. Res. 2018, 215, 173–186. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Pandey, R.N.; Sahoo, R.N.; Gupta, V.K.; Datta, S.C.; Kumar, D. Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis. Agric. 2017, 18, 736–761. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, Y.; Sun, Z. Mapping Crop Leaf Area Index from Multi-Spectral Imagery Onboard an Unmanned Aerial Vehicle. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar]
- Extension, C. Maine Board of Pesticides Control—Cooperative Extension: Potatoes—University of Maine Cooperative Extension. 2018. Available online: https://extension.umaine.edu/potatoes/recertification-credits/maine-board-of-pesticides-control/ (accessed on 16 October 2018).
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Storer, D.A. A simple high sample volume ashing procedure for determination of soil organic matter. Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Dahnke, W.C.; Whitney, D.A. Measurement of soil salinity. Recomm. Chem. Soil Test Proced. N. Cent. Reg. 1988, 221, 32–34. [Google Scholar]
- Westermann, D.T.; Kleinkopf, G.E. Phosphorus Relationships in Potato Plants 1. Agron. J. 1985, 77, 490–494. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Kalra, Y.P.; Maynard, D.G. Methods Manual for Forest Soil and Plant Analysis, Information Report NOR-X-319E; Northern Forestry Center, Northwest Region: Edmonton, AB, Canada, 1991; Volume 319. [Google Scholar]
- Xing, L.; Pittman, J.J.; Inostroza, L.; Butler, T.J.; Munoz, P. Improving Predictability of Multisensor Data with Nonlinear Statistical Methodologies. Crop. Sci. 2018, 58, 972–981. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability Monitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen. Photogramm. Fernerkund. Geoinf. 2013, 2013, 551–562. [Google Scholar]
- Pix4D Mapper. 2019. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 15 January 2019).
- Agisoft Metashape Professional. 2020. Available online: https://www.agisoft.com/downloads/installer/ (accessed on 10 January 2020).
- ArcGIS 10.3. 2019. Available online: www.arcgis.com (accessed on 20 February 2019).
- A Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Wang, F.-M.; Huang, J.H.; Tang, Y.-L.; Wang, X.-Z. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Junior, C.K.; Guimarães, A.M.; Caires, E.F. Use of active canopy sensors to discriminate wheat response to nitrogen fertilization under no-tillage. Eng. Agríc. 2016, 36, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Lawlor, D.W. Stomatal and Mesophyll Limitations of Photosynthesis in Phosphate Deficient Sunflower, Maize and Wheat Plants. J. Exp. Bot. 1991, 42, 1003–1011. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K.; Dwyer, J.D.; Plant, A.B.; Bhowmik, A. A Case Study of Improving Yield Prediction and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with Weather Data in Maine. Sensors 2017, 17, 1095. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, B.G.; Hansen, N.C. Phosphorus Management in High-Yield Systems. J. Environ. Qual. 2019, 48, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Sembiring, H.; Raun, W.; Johnson, G.V.; Stone, M.L.; Solie, J.B.; Phillips, S.B. Detection of nitrogen and phosphorus nutrient status in bermudagrass using spectral radiance. J. Plant Nutr. 1998, 21, 1189–1206. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.; Zaeen, A.; Baldwin, P.; Franzen, D. Use of Rainfall Data to Improve Ground-Based Active Optical Sensors Yield Estimates. Agron. J. 2018, 110, 1561–1571. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
Site | Year | Latitude | Longitude | † Soil Type | Planting Date | Harvest Date | Varieties | Previous Crop |
---|---|---|---|---|---|---|---|---|
Frenchville (FV) | 2018 | 47.2170080 | −68.4112920 | Coarse-loamy, isotic, frigid Oxyaquic Haplorthods | 22 May | 12 September | RB | Grain-potato |
New Sweden-1 (NS1) | 2018 | 46.9511590 | −68.1479550 | Fine-loamy, mixed, frigid Typic Haplorthods | 29 May | 15 October | RB | Clover cover crop |
New Sweden-2 (NS2) | 2018 | 46.9529336 | −68.1454612 | Fine-loamy, mixed, frigid Aquic Haplorthods | 30 May | 15 October | RB | Clover cover crop |
WoodLand (WL) | 2018 | 46.8850498 | −68.1256605 | Fine-loamy, mixed, frigid Typic Haplorthods | 15 May | 1 October | RB | Grain-potato |
Caribou (CA1) | 2018 | 46.8842966 | −68.0292126 | Fine-loamy, mixed, frigid Typic Haplorthods | 17 May | 13 September | RB | Grain-potato |
Aroostook Farm-1 (AF1) | 2018 | 46.6601582 | −68.0216085 | Fine-loamy, mixed, frigid Typic Haplorthods | 24 May | 14 September | SH | Grasses |
Aroostook Farm-2 (AF2) | 2018 | 46.6619155 | −68.0209886 | Fine-loamy, mixed, frigid Typic Haplorthods | 24 May | 14 September | RB | Grasses |
Aroostook Farm-3 (AF3) | 2019 | 46.66011944 | −68.02125 | Fine-loamy, mixed, frigid Typic Haplorthods | 31 May | 20 September | SP | Grasses |
Aroostook Farm-4 (AF4) | 2019 | 46.46.6601694 | −68.01650278 | Fine-loamy, mixed, frigid Typic Haplorthods | 31 May | 20 September | RB | Grasses |
Caribou-1 (CA2) | 2019 | 46.89628611 | −68.07754722 | Fine-loamy, mixed, frigid Typic Haplorthods | 14 May | 30 September | RB | Potato, mustard, radish, and potato |
Caribou-2 (CA3) | 2019 | 46.89180556 | −68.04066667 | Fine-loamy, mixed, frigid Typic Haplorthods | 28 May | 30 September | RB | Potato, white clover, ray, and potato |
Limestone (LM) | 2019 | 46.96186944 | −67.83323056 | Fine-loamy, mixed, frigid Typic Haplorthods | 29 May | 1 October | RB | Cover crops, clover, oats, and grass |
Site | FV | NS1 | NS2 | WL | CA1 | AF1 | AF2 | AF3 | AF4 | CA2 | CA3 | LM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing Years | 2018 | 2019 | |||||||||||
pH | 5.9 | 4.9 | 5.6 | 5.8 | 6.5 | 6.1 | 6.4 | 6.0 | 6.1 | 5.4 | 6.3 | 5.9 | |
OM g | % | 4.9 | 3.1 | 5.3 | 4.1 | 3.7 | 2.6 | 4 | 2.3 | 3.1 | 2.6 | 3.3 | 1.6 |
P-MME a | mg nutrient kg soil−1 | 19.8 | 12.2 | 10.1 | 16.5 | 21.2 | 13.1 | 21.2 | 11.4 | 17.0 | 17.8 | 23.8 | 17.9 |
P-M3 b | 379 | 469 | 257 | 356 | 421 | 440 | 421 | 341 | 423 | 586 | 537 | 558 | |
N-NO3− | 5 | 62 | 2 | 15 | 6 | 4 | 12 | 5 | 6 | 8 | 7 | 3 | |
N-NH4+ | 1 | 28 | 25 | 5 | 1 | 15 | 17 | 4 | 6 | 10 | 7 | 19 | |
K-M3 c | 237 | 221 | 151 | 256 | 376 | 300 | 225 | 234 | 160 | 348 | 292 | 230 | |
Fe-MME d | 10 | 5.3 | 9.5 | 6.8 | 5.0 | 2.7 | 3 | 4.5 | 4.8 | 8.2 | 4.1 | 4.7 | |
Fe-M3 e | 309 | 438 | 390 | 317 | 343 | 388 | 375 | 334 | 368 | 483 | 394 | 396 | |
Al-M3 f | 1735 | 1595 | 1395 | 1547 | 1595 | 1590 | 1444 | 1600 | 1594 | 1789 | 1796 | 1822 | |
CEC − MME h | meq 100 g−1 | 7.3 | 8.1 | 8.8 | 7.3 | 7.9 | 5.9 | 7.9 | 5.4 | 6.3 | 7.2 | 7.0 | 4.6 |
Vegetation Indices | Formula | Vegetation Index Resource | Citations |
---|---|---|---|
NDVI a | (NIR − R)/(NIR + R) | CC, GS, and UAVs | [36] |
NDRE b | (NIR − Red edge)/(NIR + Red edge) | CC | [55] |
CHLGR c | (NIR/G) − 1 | UAVs | [14] |
CHLRE d | (NIR/Red edge) − 1 | CC | [14] |
BNDVI e | (NIR − B)/(NIR + B) | UAVs | [56] |
GNDVI f | (NIR − G)/(NIR + G) | UAVs | [56] |
ANTHO g | R/G | UAVs | [13] |
IRVI h | R/NIR | GS | [50,57] |
Active Sensing | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
25 June | Untransformed Model | Yield = 43.47 − 13018.16 NDRE + 184.89 NDVI + 6254.57 LAI − 2353 CHLRE | 0.36 | <0.0001 | 462.60 | 463.14 | 476.34 | 5810.70 |
Transformed Model | log Yield = 0.8171 − 2.2036 log (NDRE) + 0.0546 log (NDVI) + 1.3229 log (CHLRE) | 0.29 | <0.0001 | −321.24 | −320.51 | −307.30 | 8.24 | |
12 July | Untransformed Model | Yield = 35.18 + 235.42 NDRE − 75.41 NDVI − 85.59 LAI + 69.72 CHLRE | 0.10 | <0.0001 | 1206.65 | 1206.95 | 1224.97 | 18,935.50 |
Transformed Model | log Yield = 1.4055 − 1.0264 log (NDRE) − 1.1538 log (NDVI) + 1.2319 log (CHLRE) | 0.15 | <0.0001 | −751.81 | −751.51 | −733.49 | 21.18 | |
18 July | Untransformed Model | Yield = 73.62 + 308.90NDRE − 49.16NDVI − 390.37LAI + 282.02 CHLRE | 0.05 | 0.001 | 613.81 | 614.10 | 632.12 | 10,212.22 |
Transformed Model | log Yield = 2.9995 − 6.0205 log (LAI) + 5.0766 log (CHLRE) | 0.10 | <0.0001 | −732.97 | −732.76 | 721.98 | 22.46 | |
22 July | Untransformed Model | Yield = 30.785 + 22.326 NDRE − 85.739 NDVI | 0.10 | 0.0040 | 8.16 | 848.45 | 856.61 | 3205.26 |
Transformed Model | log Yield = −3.442 − 5.034 log (NDRE) − 4.416 log (LAI) + 8.481 log (CHLRE) | 0.23 | <0.0001 | −313.20 | −312.47 | −301.33 | 8.88 | |
25 July | Untransformed Model | Yield = 15.363 + 118.08 NDRE − 24.02 NDVI | 0.10 | <0.0001 | 1205.52 | 1205.66 | 1216.51 | 18,852.67 |
Transformed Model | log Yield = 3.8273 + 0.6015 log (NDRE) − 0.8466 log (NDVI) + 0.3850 log (LAI) | 0.11 | <0.0001 | −739.30 | −739.09 | −724.65 | 22.01 | |
1 August | Untransformed Model | Yield = 50.38 − 449.03 NDRE + 41.97 NDVI + 53.31 CHLRE | 0.31 | <0.0001 | 1132.39 | 1132.60 | 1147.04 | 14,534.85 |
Transformed Model | log Yield = −5.1378 − 6.4729 log (NDRE) + 1.7950 log (NDVI) + 3.7054 log (LAI) | 0.32 | <0.0001 | −818.74 | −818.52 | −804.08 | 16.74 |
Active Sensing | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
9 July | Untransformed Model | PU = 2.36 − 283.44 NDRE + 38.84 NDVI + 122.80 LAI − 74.58 CHLRE | 0.60 | <0.0001 | 78.36 | 78.66 | 96.68 | 378.00 |
Transformed Model | log PU = 4.8175 + 2.4835 log (NDRE) + 2.3266 log (NDVI) − 4.1608 log (LAI) | 0.62 | <0.0001 | −428.96 | −428.75 | −414.31 | 66.01 | |
12 July | Untransformed Model | PU = 5.7030 +19.8137 NDRE − 13.6055 NDVI | 0.32 | <0.0001 | 232.61 | 232.75 | 243.60 | 643.97 |
Transformed Model | log PU = −0.1454 − 1.1422 log (NDVI) | 0.28 | <0.0001 | −245.71 | 245.62 | 238.38 | 122.32 | |
18 July | Untransformed Model | PU = 4.915 − 118.070 NDRE + 73.902 LAI − 43.421 CHLRE | 0.26 | <0.0001 | 264.89 | 265.10 | 279.54 | 702.90 |
Transformed Model | log PU = −19.180 − 14.841 log (NDRE) − 10.736 log (CHLRE) + 22.227 log (LAI) | 0.23 | <0.0001 | −224.50 | −224.28 | −209.84 | 131.69 | |
25 July | Untransformed Model | PU = 10.59 − 37.47 NDRE − 3.98 NDVI + 4.49 LAI | 0.10 | <0.0001 | 315.79 | 316.00 | 330.44 | 858.10 |
Transformed Model | log PU = −1. 2754 − 1.6569 log (NDRE) + 0.5670 log (NDVI) | 0.07 | <0.0001 | −161.71 | −161.57 | 150.72 | 157.06 |
Active Sensing | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
9 July | Untransformed Model | Yield = −110.84 + 164.58 NDVI + 158.86 IRVI | 0.09 | <0.0001 | 1218.50 | 1218.64 | 1225.82 | 19,116.69 |
Transformed Model | log Yield = 3.5376 + 0.2236 log (NDVI) | 0.06 | <0.0001 | −726.95 | −726.86 | −719.62 | 23.04 | |
12 July | Untransformed Model | Yield = −23.14 IRVI + 42.91 | 0.04 | 0.0006 | 1223.27 | 1223.36 | 1230.60 | 20,105.90 |
Transformed Model | log yield = 3.1826 − 0.1505 log (IRVI) | 0.04 | 0.00025 | −721.64 | 721.56 | −714.32 | 23.48 | |
18 July | Untransformed Model | Yield = 232.43 NDVI + 262.87IRVI − 185.52 | 0.09 | <0.0001 | 8.11 | 2028.17 | 2042.68 | 19,132.28 |
Transformed Model | log Yield = 4.7863 + 1.9445 log (NDVI) + 0.4395 log (IRVI) | 0.05 | 0.009 | −724.90 | −724.67 | −713.28 | 23.32 | |
25 July | Untransformed Model | Yield = 144.31 NDVI+ 164.67 IRVI − 104.97 | 0.04 | 0.0018 | 8.34 | 2044.58 | 2059.09 | 20,203.57 |
Transformed Model | log Yield = 3.717 + 0.7188 log (NDVI) + 0.0801 log (IRVI) | 0.02 | 0.016 | −714.36 | −714.22 | −703.38 | 24.04 | |
5 August | Untransformed Model | Yield = −27.274 + 75.170 NDVI | 0.54 | <0.0001 | 421.08 | 421.28 | 426.66 | 4010.02 |
Transformed Model | log Yield = 3.9112 + 1.9875 log (NDVI) | 0.57 | <0.0001 | −384.15 | −383.94 | −378.57 | 4.88 | |
16 August | Untransformed Model | Yield = −4.849 + 43.499 NDVI | 0.30 | <0.0001 | 470.08 | 470.28 | 475.65 | 6028.96 |
Transformed Model | log Yield = 1.4134 − 1.1571 log (NDVI) − 0.7660 log (IRVI) | 0.39 | <0.0001 | −340.05 | −339.71 | −331.69 | 7.03 | |
20 August | Untransformed Model | Yield = −183.88 + 229.21NDVI + 250.35 IRVI | 0.32 | <0.0001 | 468.49 | 476.51 | 476.51 | 5884.35 |
Transformed Model | log Yield = 1.2353 − 1.2632 log (NDVI) − 0.8222 log (IRVI) | 0.44 | <0.0001 | −351.34 | −351.00 | −342.97 | 6.43 |
Active Sensing | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
1 July | Untransformed Model | PU = −36.50 + 41.79 NDVI+ 47.68 IRVI | 0.44 | <0.0001 | 173.86 | 174.00 | 184.85 | 542.23 |
Transformed Model | log PU = −2.4161 − 2.0707 log (NDVI) − 1.2295 log (IRVI) | 0.38 | <0.0001 | −285.14 | −285.00 | −274.15 | 106.82 | |
12 July | Untransformed Model | PU = −9.68 NDVI − 4.39 IRVI | 0.27 | <0.0001 | 252.38 | 252.52 | 263.37 | 688.01 |
Transformed Model | log PU = −1.0494 − 1.7365 log (NDVI) − 0.4754 log (IRVI) | 0.24 | <0.0001 | −227.39 | −227.56 | −216.40 | 129.91 | |
18 July | Untransformed Model | PU = −50.48 + 55.22 NDVI + 73.44 IRVI | 0.13 | <0.0001 | 303.82 | 303.96 | 314.81 | 827.77 |
Transformed Model | log PU = 0.3755 − 0.9971 log (NDVI) | 0.01 | 0.0450 | −156.04 | −155.96 | −148.72 | 167.53 | |
1 August | Untransformed Model | PU = 0.3387 + 18.9722 IRVI | 0.28 | <0.0001 | 247.15 | 247.23 | 254.47 | 678.70 |
Transformed Model | log PU = 2.8567 + 0.9853 log (IRVI) | 0.24 | <0.0001 | −229.51 | −229.42 | −222.18 | 129.49 |
Flights | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
25 June | Untransformed Model | Yield = 45.89 − 45.18 NDVI + 15.36 CHLGR − 23.76 ANTHO | 0.50 | <0.0001 | 431.90 | 432.41 | 443.05 | 4407.10 |
Transformed Model | Log Yield = 1.6472 − 0.6025 NDVI − 0.7942 GNDVI + 1.2772 CHLGR − 0.5067 | 0.63 | <0.0001 | −635.72 | −635.21 | −624.57 | 6.05 | |
1 July | Untransformed Model | Yield = 23.7808+ 0.4786 GNDVI + 5.5628 CHLGR − 1.3306 ANTHO + 41.30 | 0.44 | <0.0001 | 453.57 | 454.09 | 464.72 | 5230.18 |
Transformed Model | log Yield = 1.3201 + 0.7931 GNDVI − 0.7896 BNDVI + 0.1904 CHLGR − 0.1534 ANTHO | 0.44 | <0.0001 | −630.53 | −629.80 | −616.60 | 6.58 | |
9 July | Untransformed Model | Yield = 25.13 + 78.91 NDVI − 166.03 GNDVI + 34.67 BNDVI + 13.10 CHLGR + 10.53 ANTHO | 0.56 | <0.0001 | 419.10 | 420.09 | 435.83 | 3977.76 |
Transformed Model | Log Yield = 1.179 + 0.973 NDVI − 2.074 GNDVI + 0.405 BNDVI + 0.155 CHLGR + 0.137 ANTHO | 0.55 | <0.0001 | −655.38 | −654.39 | −638.65 | 5.18 | |
16 July | Untransformed Model | Yield = 45.037 + 91.383 GNDVI − 76.667 BNDVI | 0.47 | <0.0001 | 437.26 | 437.60 | 445.62 | 4543.39 |
Transformed Model | Log Yield = 1.381 + 1.075 GNDVI − 0.896 BNDVI | 0.50 | <0.0001 | −645.75 | −645.41 | −637.39 | 5.66 | |
22 July | Untransformed Model | Yield = 45.792 − 38.086 NDVI − 89.254 GNDVI + 3.923 BNDVI + 46.422 CHLGR | 0.40 | <0.0001 | 454.06 | 454.79 | 468.00 | 5189.32 |
Transformed Model | Log Yield = 1.379 − 0.416 NDVI − 0.787 GNDVI + 0.012 BNDVI + 0.446 CHLGR | 0.42 | <0.0001 | −625.11 | −624.38 | −611.18 | 6.61 | |
29 July | Untransformed Model | Yield = 46.12 − 14.56 BNDVI + 5.06 CHLGR − 24.14 ANTHO − 15.60 GNDVI | 0.52 | <0.0001 | 427.69 | 428.21 | 438.84 | 4204.66 |
Transformed Model | Log Yield = 1.284 + 0.100 NDVI + 0.988 GNDVI − 0.767 BNDVI − 0.147 ANTHO | 0.54 | <0.0001 | −654.51 | −653.78 | −640.57 | 5.27 | |
14 August | Untransformed Model | Yield = 9.814 + 42.583 NDVI + 109.470 GNDVI − 78.826 BNDVI − 4.019 CHLGR | 0.37 | <0.0001 | 459.88 | 460.61 | 473.81 | 5444.55 |
Transformed Model | Log Yield = 0.896 + 0.582NDVI + 0.488 GNDVI − 0.531 BNDVI | 0.34 | <0.0001 | −610.86 | −610.34 | –599.71 | 7.47 | |
23 August | Untransformed Model | Yield = 53.300 − 12.472 NDVI + 0.013 GNDVI − 17.562 BNDVI + 0.439 CHLGR − 20.053 ANTHO | 0.47 | 0.0012 | 441.78 | 442.78 | 442.77 | 4970.32 |
Transformed Model | Log Yield = 1.487 − 1.069 NDVI + 1.610 GNDVI − 2.421 BNDVI − 1.898 ANTHO | 0.45 | <0.0001 | −631.00 | −630.81 | 615.07 | 6.50 |
Flights | Model Transformation | Model | R2adj | p Value | AIC | AICc | BIC | PRESS |
---|---|---|---|---|---|---|---|---|
9 July | Untransformed Model | PU = 5.695 − 1.0549 NDVI + 4.686 GNDVI − 4.0981 BNDVI | 0.12 | 0.0003 | 3.55 | 4.07 | 14.70 | 125.13 |
Transformed Model | Log PU = 0.594 − 0.143 NDVI + 0.894 GNDVI − 0.820 BNDVI | 0.17 | <0.0001 | −428.41 | −4.27 | −417.26 | 6.54 | |
16 July | Untransformed Model | PU = 3.123 + 1.738 NDVI | 0.10 | 0.0002 | 4.25 | 4.45 | 9.83 | 124.03 |
Transformed Model | Log PU = 1.122 + 0.444 NDVI | 0.13 | <0.0001 | −348.79 | −348.58 | −343.21 | 6.54 | |
22 July | Untransformed Model | PU = 3.094 + 2.033 NDVI − 0.619 BNDVI + 2.980 ANTHO | 0.06 | 0.003 | 7.53 | 8.51 | 24.26 | 126.57 |
Transformed Model | Log PU = 1.0377 + 0.4322 NDVI + 0.797 ANTHO | 0.07 | 0.004 | −346.07 | −345.34 | −332.13 | 6.65 | |
29 July | Untransformed Model | PU = 2.808 + 1.228 NDVI + 0.615 BNDVI + 1.975 ANTHO | 0.12 | 0.02 | 3.88 | 4.40 | 15.03 | 123.97 |
Transformed Model | Log PU = 0.988 − 0.335 NDVI − 2.071 GNDVI + 1.511 BNDVI + 0.586 ANTHO | 0.15 | <0.0001 | −348.91 | −348.18 | −334.97 | 6.48 | |
14 August | Untransformed Model | PU = 4.525 − 15.386 GNDVI + 8.289 BNDVI + 0.4802 CHLGR | 0.15 | <0.0001 | 2.36 | 3.34 | 11.37 | 123.12 |
Transformed Model | Log PU = 1.497 − 3.579 GNDVI + 1.934 BNDVI + 0.0972 CHLGR | 0.17 | <0.0001 | −352.56 | −352.04 | −341.41 | 6.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasim, A.; Zaeen, A.; Sharma, L.K.; Bali, S.K.; Wang, C.; Buzza, A.; Alyokhin, A. Predicting Phosphorus and Potato Yield Using Active and Passive Sensors. Agriculture 2020, 10, 564. https://doi.org/10.3390/agriculture10110564
Jasim A, Zaeen A, Sharma LK, Bali SK, Wang C, Buzza A, Alyokhin A. Predicting Phosphorus and Potato Yield Using Active and Passive Sensors. Agriculture. 2020; 10(11):564. https://doi.org/10.3390/agriculture10110564
Chicago/Turabian StyleJasim, Ahmed, Ahmed Zaeen, Lakesh K. Sharma, Sukhwinder K. Bali, Chunzeng Wang, Aaron Buzza, and Andrei Alyokhin. 2020. "Predicting Phosphorus and Potato Yield Using Active and Passive Sensors" Agriculture 10, no. 11: 564. https://doi.org/10.3390/agriculture10110564
APA StyleJasim, A., Zaeen, A., Sharma, L. K., Bali, S. K., Wang, C., Buzza, A., & Alyokhin, A. (2020). Predicting Phosphorus and Potato Yield Using Active and Passive Sensors. Agriculture, 10(11), 564. https://doi.org/10.3390/agriculture10110564