Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Plant Analysis
2.2.1. Plant Analysis in Fresh Samples
2.2.2. Plant Analysis after Sample Drying
- Determination of total Se content and its speciation forms
- Determination of salicylic acid
- Statistical analysis
3. Results
3.1. Yield of Lettuce
3.2. Content of Sugars and Ascorbic Acid
3.3. Content of Total Se and Se Speciation Forms
3.4. Expression of smt and mmt Genes in Leaves and Roots
3.5. Content of Salicylic Acid
4. Discussion
4.1. Yield and the Content of Sugars and Ascorbic Acid
4.2. Speciation Forms of Se
4.3. Expression of smt and mmt Genes
4.4. Biofortification in Se
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El Mehdawi, A.F.; Pilon-Smith, A.E.H. Ecological aspects of plant selenium hyperaccumulation. Plant Biol. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014, 39, 112–120. [Google Scholar] [CrossRef] [Green Version]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.R.; Root, T.; Korkalainen, K.; Hartikainen, H.; Hietaniemi, V.; Aspila, P.; Aro, A. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, N.; Hartikainen, H.; Hajiboland, R.; Seppänen, M.M. Uptake and remobilization of selenium in Brassica napus L. plants supplied with selenate or selenium-enriched plant residues. J. Plant Nutr. Soil Sci. 2019, 182, 196–202. [Google Scholar] [CrossRef]
- White, P.J. Selenium metabolism in plants. BBA Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Li, W.; Che, R.; Deng, K.; Li, H.; Yu, F.; Ling, H.; Li, Y.; Chu, C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014, 201, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Menzies, N.W.; Lombi, E.; McKenna, B.A.; James, S.; Tang, C.; Kopittke, P.M. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J. Exp. Bot. 2015, 66, 4795–4806. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Dinh, Q.T.; Qi, M.; Wang, M.; Yang, W.; Zhou, F.; Liang, D. Radicular and foliar uptake, and xylemand phloem-mediated transport of selenium in maize (Zea mays L.): A comparison of five Se exogenous species. Plant Soil 2020, 446, 111–123. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sors, T.G.; Martin, C.P.; Salt, D.E. Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J. 2009, 59, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortyfication on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- Tegeder, M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012, 15, 315–321. [Google Scholar] [CrossRef]
- Kikkert, J.; Berkelaar, E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch. Environ. Contam. Toxicol. 2013, 65, 458–465. [Google Scholar] [CrossRef]
- Van Hoewyk, D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann. Bot. 2013, 112, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Ellis, D.R.; Sors, T.G.; Brunk, D.G.; Albrecht, C.; Orser, C.; Lahner, B.; Wood, K.V.; Harris, H.H.; Pickering, I.J.; Salt, D.E. Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine metylotransferase. BMC Plant Biol. 2004, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Pickering, I.J.; Wright, C.; Bubner, B.; Ellis, D.R.; Persans, M.W.; Yu, E.Y.; George, G.N.; Prince, R.C.; Salt, D.E. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol. 2003, 131, 1460–1467. [Google Scholar] [CrossRef] [Green Version]
- Wilber, C.G. Toxicology of selenium: A review. Clin. Toxicol. 1980, 17, 171–230. [Google Scholar] [CrossRef]
- Winkel, L.H.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon-Smits, E.; Bañuelos, G.S. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zayed, A.; Mel Lytle, C.; Terry, N. Accumulation and volatilization of different chemical species of selenium by plants. Planta 1998, 206, 284–292. [Google Scholar] [CrossRef]
- Kahakachchi, C.; Boakye, H.T.; Peter, C.; Uden, P.C.; Julian, F.; Tyson, J.F. Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J. Chromatogr. A 2004, 1054, 303–312. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 2009, 12, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Hawrylak-Nowak, B. Comparative effects of selenite and selenate on growth and elenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 2013, 70, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Su, Y.; Li, L.; Huang, X.; Panhwar, F.H.; Zheng, T.; Tang, Z.; Ei, H.H.; Farooq, M.U.; Zeng, R.; et al. Quick selenium accumulation in the selenium-rich rice and it physiological responses in changing selenium environments. BMC Plant Biol. 2019, 19, 559. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Cartes, P.; Gianfreda, L.; Mora, L.M. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite form. Plant Soil 2005, 256, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Qi, Z.; Li, M.; Ahammed, G.J.; Chu, X.; Zhou, J. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol. Environ. Saf. 2019, 169, 911–917. [Google Scholar] [CrossRef]
- Ríos, J.J.; Blasco, B.; Cervilla, L.M.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Sanchez-Rodriguez, E.; Romero, L.; Ruiz, J.M. Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Growth Regul. 2010, 29, 164–170. [Google Scholar] [CrossRef]
- Hayat, Q.; Hakat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Wang, J.; Cappa, J.J.; Harris, J.P.; Edger, P.P.; Zhou, W.; Pires, J.C.; Adair, M.; Unruh, S.A.; Simmons, M.P.; Schiavon, M.; et al. Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnol. J. 2018, 16, 1582–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yigit, E.; Akbulut, G.B.; Bayram, D.; Kaya, A.; Gok, Y. Effect of salicylic acid and selenium on antioxidant system of Avena sativa L. under fenoxaprop-p-ethyl stress. Fresenius Environ. Bull. 2016, 25, 874–884. [Google Scholar]
- Smoleń, S.; Kowalska, I.; Czernicka, M.; Halka, M.; Kęska, K.; Sady, W. Iodine and selenium biofortification with additional application of salicylic acid affects yield, selected molecular parameters and chemical composition of lettuce plants (Lactuca sativa L. var. capitata). Front. Plant Sci. 2016, 7, 1553. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.J.; Faquin, V.; Guilherme, L.R.G.; Castro, E.M.; Ávila, F.W.; Carvalho, G.S.; Bastos, C.E.A.; Oliveira, C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010, 56, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Q.; Zheng, J.P.; Yang, M.W.; Yang, G.D.; Wu, Y.N.; Fu, F.F. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 2011, 84, 983–988. [Google Scholar] [CrossRef]
- Sgamma, T.; Pape, J.; Massiah, A.; Jackson, S. Selection of reference genes for diurnal and developmental time-course real-time PCR expression analyses in lettuce. Plant Methods 2016, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Michalke, A. Selenium speciaction in human serum of cystic fibrosis patients compared to serum from health persons. J. Chromatogr. 2004, 1058, 203–208. [Google Scholar] [CrossRef]
- Coolen, S.A.; Huf, F.A.; Reijenga, J.C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. J. Chromatogr. B 1998, 717, 119–124. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrypnik, L.; Novikova, A.; Tokupova, E. Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 2019, 8, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos, J.J.; Rosales, M.A.; Blasco, B.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008, 116, 248–255. [Google Scholar] [CrossRef]
- Esringu, A.; Ekinci, M.; Usta, S.; Turan, M.; Dursun, A.; Ercisli, S.; Yildirim, E. Selenium supplementation affects the growth, yield and selenium accumulation in lettuce (Lactuca sativa L.). Sci. Agraires Cult. Plantes 2015, 68, 801–810. [Google Scholar]
- Hawrylak-Nowak, B. Enhanced selenium content in Sweet Basil (Ocimum Basilicum L.) by foliar fertilization. Veg. Crop Res. Bull. 2008, 69, 63–79. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Seppanen, M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol. Biochem. 2010, 48, 999–1007. [Google Scholar] [CrossRef]
- Jing, D.; Du, Z.; Ma, H.; Ma, B.; Liu, F.; Song, Y.; Xu, Y.; Li, L. Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Sci. Hortic. 2017, 225, 1–5. [Google Scholar] [CrossRef]
- Castillo-Godina, R.G.; Foroughbakhch-Pournavab, R.; Benavides-Mendoza, A. Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. J. Agric. Sci. Technol. 2016, 18, 233–244. [Google Scholar]
- Kaur, S.; Kaur, N.; Siddique, K.H.M.; Nayyar, H. Benefcial elements for agricultural crops and their functional relevance in defence against stresses. Arch. Agron. Soil Sci. 2016, 62, 905–920. [Google Scholar] [CrossRef]
- Schiavon, M.; Lima, L.W.; Jiang, Y.; Hawkesford, M.J. Effects of selenium on plant metabolism and implications for crops and consumers. Selenium in plants. In Plant Ecophysiology; Pilon-Smits, E.A.H., Winkel, L.H.E., Lin, Z.-Q., Eds.; Springer: Cham, Switzerland, 2017; pp. 257–275. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, S.; Yang, F.; Cheng, L.; Hu, Y.; Pan, G.; Hu, Q. The influence of selenium on the antioxidant activity of green tea. J. Sci. Food Agric. 2003, 83, 451–455. [Google Scholar] [CrossRef]
- Madrano-Macias, J.; Mendoza-Villarreal, R.; Robledo-Torres, V.; Fuentes-Lara, L.O.; Ramirez-Godina, F.; Pérez-Rodríguez, M.Á.; Benavides-Mendoza, A. The Use of Iodine, Selenium, and Silicon in Plant Nutrition for the Increase of Antioxidants in Fruits and Vegetables; Chapter 8; IntechOpen: London, UK, 2018; pp. 155–168. [Google Scholar] [CrossRef] [Green Version]
- Wiesner-Reinhold, M.; Schreiner, M.; Baldermann, S.; Schwarz, D.; Hanschen, F.S.; Kipp, A.P.; Rowan, D.D.; Bentley-Hewitt, K.L.; McKenzie, M.J. Mechanisms of selenium enrichment and measurement in Brassicaceous vegetables, and their application to human health. Front. Plant Sci. 2017, 8, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fariduddin, Q.; Hayat, S.; Ahmad, A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 2003, 41, 281–284. [Google Scholar] [CrossRef]
- Gust, A.A.; Nürnberger, T. From plant immunology: A life or death switch. Nature 2012, 486, 198–199. [Google Scholar] [CrossRef] [PubMed]
- Jung, V.; Olsson, E.; Caspersen, S.; Asp, H.; Jensén, P.; Alsanius, B.W. Response of young hydroponically grown tomato plants to phenolic acids. Sci. Hortic. 2004, 100, 23–37. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H.; Quinn, C.F. Selenium metabolism in plants. In Cell Biology of Metals and Nutrients; Hell, R., Mendel, R.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 17, pp. 225–241. [Google Scholar]
- Zhang, Y.; Pan, G.; Chen, J.; Hu, Q. Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 2003, 253, 437–443. [Google Scholar] [CrossRef]
- Germ, M.; Stibilj, V.; Kreft, I. Metabolic importance of selenium for plants. Eur. J. Plant Sci. Biotech. 2007, 1, 91–97. [Google Scholar]
- Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic acid biosynthesis and metabolism. Arabidopsis Book 2011. [Google Scholar] [CrossRef] [Green Version]
- Tamaoki, M.; Freeman, J.L.; Pilon-Smits, E.A.H. Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol. 2008, 146, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Tamaoki, M.; Maruyama-Nakashita, A. Molecular mechanisms of selenium responses and resistance in plants. Selenium in plants. In Plant Ecophysiology; Pilon-Smit, E.A.H., Winkel, L.H.E., Lin., Z.-Q., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; pp. 35–51. [Google Scholar]
- Pyrzyńska, K. Selenium speciation in enriched vegetables. Food Chem. 2009, 114, 1183–1191. [Google Scholar] [CrossRef]
- Agudo, A. Measuring Intake of Fruit and Vegetables; WHO: Geneva, Switzerland, 2005; Available online: https://www.who.int/dietphysicalactivity/publications/f&v_intake_measurement.pdf (accessed on 11 July 2020).
- Institute of Medicine—Food and Nutrition Board. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, Carotenoids; National Academy Press (US): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
Gene Symbol | Gene Name | Reference/Gene Model in Lettuce Genome Resource * | Primer Sequences F: 5′–3′ R: 5′–3′ | Amplicon Lenght (bp) |
---|---|---|---|---|
ACT | actin | Smolen et al. (2016) | AGGTGTCATGGTTGGCATGGGA | 180 |
Lsat_1_v5_gn_8_116260.1 | TGTTCTTCAGGGGCGACACG | |||
PP2AA3 | protein phosphatase 2A regulatory subunit A3 | Sgamma et al. (2016) | CATGCAATGGTTACAAGACAAGGTAT | 80 |
Lsat_1_v5_gn_8_38881.1 | CAAACTCCTCCGCAAGTCTCTTC | |||
SMT | selenocysteine methyltransferase | Smolen et al. (2016) | ACACAGGAGTTGGGAATGAAG | 108 |
Lsat_1_v5_gn_5_186100.1 | CTCTGATGGTGGTTGGTGTT | |||
MMT | selenomethionine Se-methyltransferase | - | CGCTACACTGCCAAGAAA | 115 |
Lsat_1_v5_gn_9_83520.1 | GTGTCTGTTTCAAACGCTTC | |||
- | CAGCTGAAAGAGACACTGG | 141 | ||
Lsat_1_v5_gn_9_125160.1 | GGCTTTCCAAGAGCAAGA |
HPLC | Thermo Scientific Ultimate 3000 |
---|---|
Column Anion-exchange | pre-column: ThermoScientific—Dionex IonPac AS11 (4 × 250 mm) ThermoScientific—Dionex IonPac AG11 (4 × 50 mm) |
Mobile phases: | A: 50 mM NaOH B: demineralized water C: 0.5% TMAH |
Mobile phase flow rate | 1.5 mL min−1, gradient |
Injected volume | 10 µL |
Column temperature Autosampler temperature | 30 °C 10 °C |
Mass spectrometer | Thermo Scientific iCAP TQ ICP MS |
Ionization method Detection mode Determined Se form | ICP-MS/MS S-TQ-O2 80Se16O |
Treatment | Sucrose | Glucose | Fructose | Total Sugars | Ascorbic Acid |
---|---|---|---|---|---|
(mg 100 g−1 f.w.) | |||||
Control | 87 ± 2.18 b | 448 ± 8.69 c | 620 ± 23.48 c | 1155 ± 28.41 c | 13.62 ± 1.20 * |
Na2SeO3 | 57 ± 1.53 a | 333 ± 25.76 b | 437 ± 29.00 ab | 828 ± 55.37 b | 13.30 ± 0.62 |
Na2SeO3 + SA | 44 ± 2.63 a | 263 ± 32.32 ab | 373 ± 32.51 ab | 680 ± 66.94 ab | 13.80 ± 1.02 |
SeMet | 62 ± 7.67 a | 336 ± 14.77 b | 443 ± 13.10 b | 841 ± 29.25 b | 16.18 ± 1.23 |
SeMet + SA | 53 ± 7.10 a | 208 ± 12.39 a | 345 ± 11.87 ab | 606 ± 25.84 a | 15.77 ± 0.48 |
SA | 47 ± 3.53 a | 186 ± 5.75 a | 339 ± 16.87 a | 571 ± 25.90 a | 15.06 ± 0.80 |
Treatment | Leaves/Roots |
---|---|
Control | 1.16 |
Na2SeO3 | 0.20 |
Na2SeO3 + SA | 0.17 |
SeMet | 0.93 |
SeMet + SA | 0.42 |
SA | 0.36 |
a. | |||||
Part of Plant | Treatment | SeO3−2 | SeO4−2 | Se2Cys | |
mg Se kg−1 d.w. | |||||
Leaves | Control | 0.184 ± 0.062 a | 0.040 ± 0.014 a | 0.147 ± 0.019 ab | |
Na2SeO3 | 0.572 ± 0.0116 ab | 0.066 ± 0.017 ab | 0.068 ± 0.016 a | ||
Na2SeO3 + SA | 1.376 ± 0.409 b | 0.193 ± 0.039 b | 0.077 ± 0.021 ab | ||
SeMet | 0.633 ± 0.263 ab | 0.160 ± 0.025 ab | 0.127 ± 0.029 ab | ||
SeMet + SA | 0.737 ± 0.119 ab | 0.092 ± 0.060 ab | 0.204 ± 0.027 b | ||
SA | 0.190 ± 0.083 a | 0.029 ± 0.012 a | 0.074 ± 0.051 ab | ||
Roots | Control | 0.496 ± 0.027 a | 0.117 ± 0.023 a | 0.058 ± 0.000 a | |
Na2SeO3 | 6.015 ± 0.216 d | 0.630 ± 0.040 b | 0.146 ± 0.000 b | ||
Na2SeO3 + SA | 7.331 ± 0.163 e | 0.483 ± 0.100 b | 0.490 ± 0.029 c | ||
SeMet | 3.689 ± 0.286 b | 0.059 ± 0.026 a | 0.446 ± 0.022 c | ||
SeMet + SA | 4.771 ± 0.266 c | 0.030 ± 0.011 a | 0.968 ± 0.040 d | ||
SA | 0.289 ± 0.082 a | 0.039 ± 0.015 a | 0.170 ± 0.016 b | ||
b. | |||||
Part of Plant | Treatment | SeMet | MeSeCys | SeOMet | Se-Total |
mg Se kg−1 d.w. | |||||
Leaves | Control | 0.000 ± 0.000 a | 0.112 ± 0.008 a | 0.000 ± 0.000 a | 1.375 ± 0.395 a |
Na2SeO3 | 0.167 ± 0.033 b | 0.810 ± 0.125 b | 0.000 ± 0.000 a | 5.513 ± 0.710 b | |
Na2SeO3 + SA | 0.209 ± 0.022 b | 0.839 ± 0.162 b | 0.000 ± 0.000 a | 7.180 ± 0.873 b | |
SeMet | 1.608 ± 0.0251 c | 5.344 ± 1.283 d | 0.140 ± 0.069 b | 52.900 ± 5.883 c | |
SeMet + SA | 2.914 ± 0.155 d | 1.614 ± 0.519 c | 0.673 ± 0.287 c | 49.615 ± 9.274 c | |
SA | 0.000 ± 0.000 a | 0.111 ± 0.007 a | 0.000 ± 0.000 a | 0.940 ± 0.135 a | |
Roots | Control | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 1.188 ± 0.166 a |
Na2SeO3 | 3.723 ± 0.662 b | 0.295 ± 0.041 b | 0.014 ± 0.008 a | 27.315 ± 1.001 c | |
Na2SeO3 + SA | 3.759 ± 0.638 b | 1.002 ± 0.219 b | 0.077 ± 0.017 b | 41.990 ± 1.018 d | |
SeMet | 2.857 ± 0.054 b | 1.783 ± 0.128 c | 1.514 ± 0.186 b | 56.725 ± 2.073 e | |
SeMet + SA | 7.521 ± 1.783 c | 2.929 ± 0.214 d | 0.708 ± 0.708 a | 118.770 ± 8.211 f | |
SA | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.032 ± 0.012 a | 2.585 ± 0.409 b |
Part of Plant | Se Form in the Medium | SeO3−2 | SeO4−2 | Se2Cys | SeMet | MeSeCys | SeOMet | Sum of Identif. Forms, % | % of Unidentif. Forms |
---|---|---|---|---|---|---|---|---|---|
Leaves | Control | 13.4 | 2.9 | 10.7 | 0.0 | 8.2 | 0.0 | 35.1 | 64.9 |
Na2SeO3 | 10.4 | 1.2 | 1.2 | 3.0 | 14.7 | 0.0 | 30.5 | 69.5 | |
Na2SeO3 + SA | 19.2 | 2.7 | 1.8 | 2.9 | 11.7 | 0.0 | 37.5 | 62.5 | |
SeMet | 1.2 | 0.3 | 0.2 | 3.0 | 10.1 | 0.3 | 15.1 | 84.9 | |
SeMet + SA | 1.5 | 0.2 | 0.4 | 5.9 | 3.3 | 1.4 | 12.6 | 87.4 | |
SA | 20.2 | 3.1 | 7.9 | 0.0 | 11.8 | 0 | 43.0 | 57.0 | |
Roots | Control | 41.8 | 9.9 | 4.9 | 0.0 | 0.0 | 0.0 | 56.5 | 43.5 |
Na2SeO3 | 22.0 | 2.3 | 0.5 | 13.6 | 1.1 | 0.1 | 39.6 | 60.4 | |
Na2SeO3 + SA | 17.5 | 1.2 | 1.2 | 8.9 | 2.4 | 0.2 | 31.3 | 68.7 | |
SeMet | 6.5 | 0.1 | 0.8 | 5.0 | 3.1 | 2.7 | 18.2 | 81.8 | |
SeMet + SA | 4.0 | 0.0 | 0.8 | 6.3 | 2.5 | 0.6 | 14.2 | 85.8 | |
SA | 11.2 | 1.5 | 6.6 | 0.0 | 0.0 | 1.2 | 20.5 | 79.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, I.; Smoleń, S.; Czernicka, M.; Halka, M.; Kęska, K.; Pitala, J. Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce. Agriculture 2020, 10, 584. https://doi.org/10.3390/agriculture10120584
Kowalska I, Smoleń S, Czernicka M, Halka M, Kęska K, Pitala J. Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce. Agriculture. 2020; 10(12):584. https://doi.org/10.3390/agriculture10120584
Chicago/Turabian StyleKowalska, Iwona, Sylwester Smoleń, Małgorzata Czernicka, Maryia Halka, Kinga Kęska, and Joanna Pitala. 2020. "Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce" Agriculture 10, no. 12: 584. https://doi.org/10.3390/agriculture10120584
APA StyleKowalska, I., Smoleń, S., Czernicka, M., Halka, M., Kęska, K., & Pitala, J. (2020). Effect of Selenium Form and Salicylic Acid on the Accumulation of Selenium Speciation Forms in Hydroponically Grown Lettuce. Agriculture, 10(12), 584. https://doi.org/10.3390/agriculture10120584