Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement
Abstract
:1. Introduction
2. Beneficial Effects of EF Introduction on Crops
3. Introduced Endophytes of Tomato
3.1. Biocontrol
3.2. Plant Growth Promotion and Plant Physiology Improvement
Fungal Species | Effects | |
---|---|---|
PGP and PPI | BC | |
Sarocladium strictum * | Increased mortality of larvae of Trialeurodes vaporariorum [105] | |
Sarocladium kiliense * | Increased number of xylem vessels within the shoots [84] | Reduced symptoms caused by Fusarium oxysporum f. sp. lycopersici and Clavibacter michiganensis subsp. michiganensis [84] |
Beauveria bassiana | Enhanced terpene production [78] Improved iron (Fe) nutrition [103] | ISR vs. Rhizoctonia solani [93] ISR vs. Botrytis cinerea [42] ISR vs. F. oxysporum f. sp. lycopersici [85] Increased mortality of Tuta absoluta [79,80] Reduced incidence of Fusarium oxysporum f. sp. lycopersici and Helicoverpa armigera [106] Increased mortality of Helicoperva armigera [75,106] Increased mortality of Bemisia tabaci [73] Feeding deterrent for Bemisia tabaci [74] Increased mortality of Spodoptera littoralis [23] Reduced growth rate of Spodoptera exigua [78] Reduced reproduction of Aphis gossypii and reduced growth rate of Chortoicetes terminifera [72] |
Metarhizium anisopliae | Increased plant height, root length, shoot and root dry weight [100] | Increased mortality of Spodoptera littoralis [23] |
Fusarium oxysporum | ISR vs. F. oxysporum f. sp. lycopersici [86] ISR vs. Meloidogyne incognita [81,82] Fermentation broth with anti-oomycete activity vs. Pythium ultimum, Phytophthora infestans and Phytophthora capsici [24] Reduced infestation of Trialeurodes vaporariorum [42] | |
Neocosmospora solani * | ISR vs. Nesidiocoris tenuis [77] ISR vs. F. oxysporum f.sp. radicis-lycopersici [87] SAR vs. Septoria lycopersici [87] Increased tomato defenses against Tertranychus urticae [107] | |
Fusarium spp. | Increased roots length, shoots height and plant fresh weight [88] | ISR vs. Fusarium oxysporum f. sp. radicis-lycopersici [88] |
Neocosmospora haematococca * (DSE) | Drought stress tolerance, improved plant growth, and proline accumulation [69] | |
Unidentified (DSE) | Increased aboveground plant dry biomass and increased uptake of organic N and inorganic K [70] | |
Penicillium simplicissimum * | Salinity stress tolerance [104] Metal stress tolerance [101] Increased shoot length and biomass under normal and Al stress conditions [101] | |
Periconia macrospinosa (DSE) | Improved organic N uptake and plant biomass when organic nutrients are present [71] | |
Serendipita indica * | Increased fresh weight [89] Accelerated vegetative and generative development [108] | ISR vs. Tomato yellow leaf curl virus [109] Disease-suppressive effect vs. Verticillium dahliae and F. oxysporum [89,90,91] Reduced infestation of Meloidogyne incognita [25] |
Pochonia chlamydosporia | Increased root and shoot growth [83] Anticipated flowering and fruiting times, increased fruit weight and root growth [102] | Colonizes egg masses of Meloidogyne incognita [83] |
Pythium oligandrum | ISR vs. Ralstonia solanacearum [110] ISR vs. Fusarium oxysporum f. sp. lycopersici [92] ISR vs. B. cinerea [111] | |
Trichoderma atroviride | Increased root and shoot growth depending on the tomato cv [94] | Reduced infestation of Trialeurodes vaporariorum [43] ISR vs. Botrytis cinerea [94] |
Trichoderma hamatum | ISR vs. Xanthomonas euvesicatoria (tomato bacterial spot) [98] | |
Trichoderma harzianum | Increased root and shoot growth depending on the tomato cv [94] | ISR and SAR vs. Meloidogyne incognita [99] ISR vs. Botrytis cinerea [94] Reduced desease symptoms caused by Alternaria solani and Phytophtora infestans [112] |
3.3. Methods of Introduction and Detection
Fungal Species | Tomato Cultivar | Method of EF Inoculation | Detection Method | Location of EF in Plant Tissues | Ref. |
---|---|---|---|---|---|
Sarocladium kiliense * | Haubner’s Vollendung | Fungal biomass mixed with transplanting soil | Roots | [84] | |
S. strictum * | Haubner’s Vollendung | Soil watering | Re-isolation from the plant tissue on PDA | Roots | [105] |
S. strictum * | Suso RZÒ F1 hybrid | Soil watering | Re-isolation from the plant tissue on MEA | Roots | [122] |
Beauveria bassiana | Platense | Seed soaking Leaf spraying Root dipping | Re-isolation from the plant tissue on PDA | Leaves | [79] |
B. bassiana | Mobil | Seed coating | Re-isolation from the plant tissue on PDA | [93] | |
B. bassiana | Limachino—INIA | Fungal biomass mixed with transplanting substrate | Re-isolation from the plant tissue on Noble agar | Roots Stem Leaves | [42] |
B. bassiana | Rio Fuego | Soil watering Leaf spraying Stem injection | [85] | ||
B. bassiana | Ace, Early Pack, Money Maker, Peto 86, Prichard, Pusa Ruby, Strain B and LA1478 | Leaf spraying Stem injection | PCR | Stem | [73] |
B. bassiana | Grosse lisse | Leaf spraying | Re-isolation from the plant tissue on PDA | Leaves | [34] |
B. bassiana | Harzfeuer F1 | Leaf spraying | Re-isolation from the plant tissue on selective media | Leaves | [80] |
B. bassiana | Regina | Conidial suspension on wounded rachis | Re-isolation from the plant tissue on selective media | Roots | [120] |
B. bassiana | Cal-J, Kilele F1, Anna F1 | Seed soaking | Re-isolation from the plant tissue on SDA | Roots Stem Leaves | [123] |
B. bassiana | Cal-J, Kilele, Anna | Seed soaking | Re-isolation from the plant tissue on SDA | Roots Stem Leaves | [124] |
B. bassiana | Mountain Spring | Seed coating | [113] | ||
B. bassiana | PKM1 | Seed soaking Root dipping Soil watering | [76] | ||
B. bassiana | PKM1 | Seed soaking Root dipping | [106] | ||
B. bassiana | surahi | Root dipping Stem injection Soil inoculum Leaf spray | Re-isolation from the plant tissue on PDA | Leaves | [75] |
B. bassiana | Tres Cantos | Leaf spray | Re-isolation from the plant tissue on selective media | Stem Leaves | [23] |
B. bassiana | Marmande- Cuarenteno | Seed soaking | Re-isolation from the plant tissue on SDCA | Stem Leaves Roots | [35] |
B. bassiana | Castlemart | Seed coating | PCR | Shoot | [78] |
B. bassiana | Hezuo 903 | Leaf spray Root irrigation Reed dressing | PCR | Shoot | [74] |
Fusarium spp. | Rio Grande | Soil watering | PCR | Root Stem | [88] |
F. oxysporum | Montfavet 63-5 | Root application | Real-Time qPCR | Roots Cotyledons | [86] |
F. oxysporum | Furore | Soil application | Roots | [81] | |
F. oxysporum | Moneymaker | Soil watering | Roots | [82] | |
F. oxysporum | Hellfrucht/JW Frühstamm | Soil watering | Roots | [43] | |
Neocosmospora solani * | Pearson | Soil watering | Real-Time qPCR | Roots | [77] |
N. solani * | Ace 55 | Soil watering | Real-Time qPCR | Roots | [107] |
N. solani * | Ace 55 | Soil watering | Microscopy Real-Time qPCR | Roots | [87] |
Metarhizium anisopliae | Hybrid var. 8625 | Soil watering | Re-isolation from the plant tissue on selective media | Roots Shoots Leaves | [100] |
M. anisopliae | Tres Cantos | Leaf spray | Re-isolation from the plant tissue on selective media | Stem Leaves | [23] |
M. brunneum | Ruthje | Encapsulated mycelial biomass | Light microscopy Real-Time qPCR | Stem | [121] |
Neocosmospora haematococca * (DSE) | CO-2 | Soil application of mycelial biomass formulation | Light microscopy | Roots | [69] |
Unidentified (DSE) | Santa Clara I-5300 | Soil application of mycelial biomass | Light microscopy | Roots | [70] |
Penicillium semplicissimum * | LA2710 | Soil application of mycelia and culture filtrate | Roots | [101] | |
Periconia macrospinosa (DSE) | Hildares F1 | Root dipping in propagule suspension | Light microscopy | Roots | [71] |
Serendipita indica * | Hildares | Root dipping | Re-isolation from the plant tissue on PDA | Roots | [89] |
S. indica * | T07-4, T07-1 | Transplanting substrate application of mycelia | Light microscopy | Roots | [109] |
S. indica * | Nutech | Seed coating (bioformulation) | Roots | [90] | |
S. indica * | Vellayani Vijay | Transplanting substrate application of mycelia | Light microscopy | Roots | [25] |
Pochonia chlamydosporia | Durinta | Plating of seedlings on fungal plate cultures | laser-scanning confocal microscopy PCR | Roots | [83] |
P. chlamydosporia | Marglobe | Seed germination on fungal plate cultures | Re-isolation from the plant tissue on CMA PCR | Roots | [102] |
Pythium oligandrum | Micro-Tom | Root dipping | laser scanning microscopy | Roots | [110] |
P. oligandrum | Prisca | Mycelial plugs in proximity of the top root | SEM TEM | Roots | [92] |
P. oligandrum | Prisca | Soil watering | TEM | Roots | [111] |
Tricoderma atroviride | Hellfrucht/JW Frühstamm | Soil application | Roots | [43] | |
T. atroviride | Corbarino, M82, SM36, TA209 | Seed coating | Roots | [94] | |
T. hamatum | Ohio 8245 | Soil application | Roots | [98] | |
T. harzianum | Corbarino, M82, SM36, TA209 | Seed coating | Roots | [94] | |
T. harzianum | Moneymaker | Soil application | Roots | [99] | |
T. harzianum | Arka vikas | Soil watering | Roots | [112] |
4. Constitutive Endophytes of Tomato
Fungal Species | Tomato Cultivar | Main Results | Location of EF in Plant Tissues | Country | Ref. |
---|---|---|---|---|---|
Alternaria solani Aspergillus sclerotiorum Cochliobolus geniculatus Curvularia lunata * Fusarium nygamai Fusarium sp. Fusarium verticillioides Stemphylium lycopersici Trichoderma asperellum Trichoderma lixii * | Moneymaker | Biological control to the rootknot nematode Meloidogyne incognita | Root | Kenya | [32] |
Fusarium spp. | Heinz 9907 Gem 611 Heinz 3402 FL 47 Mountain Fresh | No effects | Roots Crown Stem | USA | [134] |
Fusarium oxysporum Fusarium fujikuroi Neocosmospora solani * | Momotaro | No effects | Stem | Japan | [135] |
Ochroconis humicola * | Gohobi | Improved plant growth with organic nitrogen sources | Root | Japan | [125] |
Albifimbria verrucaria * Fusarium spp. Setophoma terrestris Trichoderma spp. | Heinz 1706 Moneymaker | No effects | Root | Northern Italy | [133] |
Sarocladium implicatum * | Lichun | Biological control suppressed M. incognita egg hatching and population, when inoculated to soil | Root | China | [131] |
Alternaria spp. Aspergillus fumigatus Aspergillus nidulans Chaetomium globosum Coniothyrium aleuritis Fusarium chlamydosporum Fusarium oxysporum Fusarium proliferatum Fusarium sp. Hypoxylon sp. Leptosphaerulina chartarum Meyerozyma guilliermondii * Neocosmospora solani * Nigrospora sp. Penicillium helicum * Penicillium ochrochloron Penicillium simplicissimum * Periconia macrospinosa Pleosporales sp. Rhinocladiella sp. Trichoderma atroviride Trichoderma spirale | Big Beef | Plant growth promotion and enhanced fruit weight | Root Shoot Seed | USA | [132] |
5. Perspectives on EF Applications to Tomato
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Guo, L.; Maimaiti, Y.; Mijit, M.; Qiu, D. Entomopathogenic Fungi as Microbial Biocontrol Agent. Mol. Plant. Breed. 2012, 3, 63–79. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Afolabi, O.G.; Hussain, M.; Qasim, M.; Wang, L. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol. Res. 2018, 217, 34–50. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2016, 62, 1–17. [Google Scholar] [CrossRef]
- Ownley, B.H.; Gwinn, K.D.; Vega, F.E. Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl 2010, 55, 113–128. [Google Scholar] [CrossRef]
- Saikkonen, K.; Saari, S.; Helander, M. Defensive mutualism between plants and endophytic fungi? Fungal Divers. 2010, 41, 101–113. [Google Scholar] [CrossRef]
- Young, C.A.; Hume, D.E.; McCulley, R.L. Forages and Pastures Symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Anim. Sci. 2013, 91, 2379–2394. [Google Scholar] [CrossRef] [Green Version]
- Hyde, K.D.; Soytong, K. The fungal endophyte dilemma. Fungal Divers. 2008, 33, 163–173. [Google Scholar]
- Parthasarathy, R.; Chandrika, M.; Rao, H.C.; Kamalraj, S.; Jayabaskaran, C.; Pugazhendhi, A. Molecular profiling of marine endophytic fungi from green algae: Assessment of antibacterial and anticancer activities. Process. Biochem. 2020, 96, 11–20. [Google Scholar] [CrossRef]
- Jia, Q.; Qu, J.; Mu, H.; Sun, H.; Wu, C. Foliar endophytic fungi: Diversity in species and functions in forest ecosystems. Symbiosis 2020, 80, 102–132. [Google Scholar] [CrossRef]
- Stone, J.K.; Bacon, C.W.; White, J.F., Jr. An overview of endophytic microbes: Endophytism defined. In Microbial Endophytes; White, J.F., Jr., Bacon, C.W., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2000; pp. 3–29. [Google Scholar]
- Sherwood, M.; Carroll, G. Fungal succession on needles and young twigs of old-growth Douglas Fir. Mycologia 1974, 66, 499–506. [Google Scholar] [CrossRef]
- Carroll, G. Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology 1988, 69, 2–9. [Google Scholar] [CrossRef]
- Stone, J.K.; Polishook, J.D.; White, J.F., Jr. Endophytic fungi. In Biodiversity of Fungi, Inventoring and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Elsevier: San Diego, CA, USA, 2004; pp. 241–270. [Google Scholar]
- Krings, M.; Taylor, T.N.; Hass, H.; Kerp, H.; Dotzler, N.; Hermsen, E.J. Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytol. 2007, 174, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Kodner, R.; Graham, L.E. Glomalean fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrini, O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 179–197. [Google Scholar]
- Jia, M.; Chen, L.; Xin, H.; Zheng, C.; Rahman, K.; Han, T. A friendly relationship between endophytic fungi and medicinal Plants: A systematic review. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant. Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Saikkonen, K.; Faeth, S.H.; Helander, M.; Sullivan, T.J. Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 1998, 29, 319–343. [Google Scholar] [CrossRef]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef]
- Resquín-Romero, G.; Garrido-Jurado, I.; Delso, C.; Ríos-Moreno, A.; Quesada- Moraga, E. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 2016, 136, 3–31. [Google Scholar] [CrossRef]
- Kim, H.Y.; Choi, G.J.; Lee, H.B.; Lee, S.W.; Lim, H.K.; Jang, K.S.; Son, S.W.; Lee, S.O.; Cho, K.Y.; Sung, N.D.; et al. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett. Appl. Microbiol. 2007, 44, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Varkey, S.; Anith, K.N.; Narayana, R.; Aswini, S. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere 2018, 5, 38–42. [Google Scholar] [CrossRef]
- Segaran, G.; Sathiavelu, M. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatal. Agric. Biotechnol. 2019, 21, 101284. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushik, N. Metabolites of endophytic fungi as novel source of biofungicide: A review. Phytochem. Rev. 2012, 11, 507–522. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Dash, C.K.; Akutse, K.S.; Keppanan, R.; Wang, L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef]
- Knapp, S.; Peralta, I.E. The Tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. In The Tomato Genome, Compendium of Plant Genomes; Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 7–21. [Google Scholar]
- Bogner, C.W.; Kariuki, G.M.; Elashry, A.; Sichtermann, G.; Buch, A.K.; Mishra, B.; Thines, M.; Grundler, F.M.W.; Schouten, A. Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol. Prog. 2016, 15, 30. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; Muñoz-Ledesma, F.; Santiago-Alvarez, C. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol 2009, 38, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Gurulingappa, P.; McGee, P.A.; Sword, G. Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop. Prot. 2011, 30, 349–353. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Raya-Díaz, S.; Zamarreño, Á.M.; García-Mina, J.M.; Del Campillo, M.C.; Quesada-Moraga, E. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol. Control 2018, 116, 90–102. [Google Scholar] [CrossRef]
- Akello, J.; Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 2012, 61, 215–221. [Google Scholar] [CrossRef]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.M.; Van den Berg, J.; Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- McGee, P. Reduced growth and deterrence from feeding of the insect pest Helicoverpa armigera associated with fungal endophytes from cotton. Aust. J. Exp. Agric. 2002, 42, 995–999. [Google Scholar] [CrossRef]
- Vega, F.E. Insect pathology and fungal endophytes. J. Invertebr. Pathol. 2008, 98, 277–279. [Google Scholar] [CrossRef]
- Lacey, L.A.; Neven, L.G. The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J. Invertebr. Pathol. 2006, 91, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Martinuz, A.; Schouten, A.; Sikora, R. Systemically induced resistance and microbial competitive exclusion: Implications on biological control. Phytopathology 2012, 102, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Barra-Bucarei, L.; Gerding, M. Antifungal Activity of Beauveria bassiana Endophyte against Botrytis cinerea in Two Solanaceae Crops. Microorganisms 2020, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menjivar, R.D.; Cabrera, J.A.; Kranz, J.; Sikora, R.A. Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant. Soil 2012, 352, 233–241. [Google Scholar] [CrossRef]
- Gao, F.; Dai, C.; Liu, X. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 2010, 4, 1346–1351. [Google Scholar]
- Moy, M.; Belanger, F.; Duncan, R.; Freehoff, A.; Leary, C.; Meyer, W.; Sullivan, R.; White, J.F. JR. Identification of epiphyllous mycelial nets on leaves of grasses infected by Clavicipitaceous endophytes. Symbiosis 2000, 28, 291–302. [Google Scholar]
- Conrath, U.; Beckers, G.J.M.; Flors, V.; Garcia-Agustin, P.; Jakab, G.; Mauch, F.; Newman, M.A.; Pieterse, C.M.J.; Poinssot, B.; Pozo, M.J.; et al. Priming: Getting ready for battle. Mol. Plant Microbe Interact. 2006, 19, 1062–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicke, M.; Van Loon, J.J.A.; Soler, R. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 2009, 5, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Poelman, E.H.; Van Wees, S.C.M.; Dicke, M. Induced plant responses to microbes and insects. Front. Plant. Sci. 2013, 4, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poelman, E.H.; Bruinsma, M.; Zhu, F.; Weldegergis, B.T.; Boursault, A.E.; Jongema, Y.; van Loon, J.J.; Vet, L.E.; Harvey, J.A.; Dicke, M. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biol. 2012, 10, e1001435. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Kaur, S.; Kaur, A.; Singh, V. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 2013, 42, 240–246. [Google Scholar] [CrossRef]
- Manganiello, G.; Sacco, A.; Ercolano, M.R.; Vinale, F.; Lanzuise, S.; Pascale, A.; Napolitano, M.; Lombardi, N.; Lorito, M.; Woo, S.L. Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Front. Microbiol. 2018, 9, 1966. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Castillo Lopez, D.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control. 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Jaber, L.R.; Enkerli, J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol. Control 2016, 103, 187–195. [Google Scholar] [CrossRef]
- Behie, S.W.; Zelisko, P.M.; Bidochka, M.J. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 2012, 336, 1576–1577. [Google Scholar] [CrossRef] [Green Version]
- Behie, S.W.; Bidochka, M.J. Nutrient transfer in plant–fungal symbioses. Trends Plant. Sci. 2014, 19, 734–740. [Google Scholar] [CrossRef]
- Nicoletti, R.; Becchimanzi, A. Endophytism of Lecanicillium and Akanthomyces. Agriculture 2020, 10, 205. [Google Scholar] [CrossRef]
- Bills, G.F.; Polishook, J.D. Microfungi from Carpinus caroliniana. Can. J. Bot. 1991, 69, 1477–1482. [Google Scholar] [CrossRef]
- Cherry, A.J.; Lomer, C.J.; Djegui, D.; Schulthess, F. Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl 1999, 44, 301–327. [Google Scholar] [CrossRef]
- Pimentel, I.C.; Glienke-Blanco, C.; Gabardo, J.; Stuart, R.M.; Azevedo, J.L. Identification and colonization of endophytic fungi from soybean (Glycine max (L.) Merril) under different environmental conditions. Braz. Arch. Biol. Technol 2006, 49, 705–711. [Google Scholar] [CrossRef]
- Orole, O.O.; Adejumo, T.O. Activity of fungal endophytes against four maize wilt pathogens. Afr. J. Microbiol. Res. 2009, 3, 969–973. [Google Scholar]
- Fuller-Schaefer, C.; Jung, K.; Jaronski, S. Colonization of sugarbeet roots by entomopathogenic fungi. In Proceedings of the 38th Annual Meeting of the Society for Invertebrate Pathology, Anchorage, AK, USA, 7–11 August 2005; Volume 49. [Google Scholar]
- Greenfield, M.; Gómez-Jiménez, M.I.; Ortiz, V.; Vega, F.E.; Kramer, M.; Parsa, S. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol. Control 2016, 95, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Bing, L.A.; Lewis, L.C. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ. Entomol. 1991, 20, 1207–1211. [Google Scholar] [CrossRef]
- Bing, L.A.; Lewis, L.C. Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: The influence of the plant growth stage and Ostrinia nubilalis (Hübner). Biocontrol Sci. Technol. 1992, 2, 39–47. [Google Scholar] [CrossRef]
- Wagner, B.L.; Lewis, L.C. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microbiol. 2000, 66, 3468–3473. [Google Scholar] [CrossRef] [Green Version]
- Parsa, S.; Ortiz, V.; Vega, F.E. Establishing fungal entomopathogens as endophytes: Towards endophytic biological control. J. Vis. Exp. 2013, 74, 50360. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.L.; Pelizza, S.A.; Cabello, M.N.; Stenglein, S.A.; Scorsetti, A.C. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci. Technol. 2015, 25, 475–480. [Google Scholar] [CrossRef]
- Prema Sundara Valli, P.; Muthukumar, T. Dark Septate Root Endophytic Fungus Nectria haematococca Improves Tomato Growth Under Water Limiting Conditions. Indian J. Microbiol. 2018, 58, 489–495. [Google Scholar] [CrossRef]
- Vergara, C.; Araujo, K.E.C.; Urquiaga, S.; Schultz, N.; de Balieiro, F.C.; Medeiros, P.S.; Santos, L.A.; Xavier, G.R.; Zilli, J.E. Dark Septate endophytic fungi help tomato to acquire nutrients from ground plant material. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yakti, W.; Kovács, G.M.; Vági, P.; Franken, P. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant. Ecol. Divers. 2018, 11, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Gurulingappa, P.; Sword, G.A.; Murdoch, G.; McGee, P.A. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol. Control 2010, 55, 34–41. [Google Scholar] [CrossRef]
- El-Deeb, H.M.; Lashin, S.M.; Arab, Y.A.S. Reaction of some tomato cultivars to tomato leaf curl virus and evaluation of the endophytic colonisation with Beauveria bassiana on the disease incidence and its vector, Bemisia tabaci. Arch. Phytopathol. Plant. Prot. 2012, 45, 1538–1545. [Google Scholar] [CrossRef]
- Wei, Q.Y.; Li, Y.Y.; Xu, C.; Wu, Y.X.; Zhang, Y.R.; Liu, H. Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod. Plant. Interact. 2020, 14, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Qayyum, M.A.; Wakil, W.; Arif, M.J.; Sahi, S.T.; Dunlap, C.A. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 2015, 90, 200–207. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, S.R.; Keerthana, U.; Archana, S.; Raguchander, T. Induced resistance in tomato plants to Helicoverpa armigera by mixed formulation of bacillus subtilis and Beauveria bassiana. Res. J. Biotechnol. 2017, 12, 53–59. [Google Scholar]
- Garantonakis, N.; Pappas, M.L.; Varikou, K.; Skiada, V.; Broufas, G.D.; Kavroulakis, N.; Papadopoulou, K.K. Tomato inoculation with the endophytic strain Fusarium solani K results in reduced feeding damage by the zoophytophagous predator Nesidiocoris tenuis. Front. Ecol. Evol. 2018, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, G.; Ownley, B.H.; Augé, R.M.; Toler, H.; Dee, M.; Vu, A.; Köllner, T.G.; Chen, F. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 2015, 65, 65–74. [Google Scholar] [CrossRef]
- Allegrucci, N.; Velazquez, M.S.; Russo, M.L.; Perez, E.; Scorsetti, A.C. Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: The use of different inoculation techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). J. Plant. Prot. Res. 2017, 57, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Klieber, J.; Reineke, A. The entomopathogenic Beauveria bassiana has epiphytic and endophytic activity against the tomato leafminer Tuta absoluta. J. Appl. Entomol. 2016, 140, 580–589. [Google Scholar] [CrossRef]
- Dababat, A.E.F.A.; Sikora, R.A. Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Sci. Technol. 2007, 17, 969–975. [Google Scholar] [CrossRef]
- Martinuz, A.; Schouten, A.; Sikora, R.A. Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 2013, 58, 95–104. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Llorca, L.V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 2012, 57, 33–42. [Google Scholar] [CrossRef]
- Bargmann, C.; Schönbeck, F. Acremonium kiliense as inducer of resistance to wilt diseases on tomatoes. J. Plant. Dis. Prot. 1992, 99, 266–272. [Google Scholar]
- Culebro-Ricaldi, J.M.; Ruíz-Valdiviezo, V.M.; Rodríguez-Mendiola, M.A.; Ávila-Miranda, M.E.; Gutiérrez- Miceli, F.A.; Cruz-Rodríguez, R.I.; Dendooven, L.; Montes-Molina, J.A. Antifungal properties of Beauveria bassiana strains against Fusarium oxysporum f. sp. lycopersici race 3 in tomato crop. J. Environ. Biol. 2017, 38, 821–827. [Google Scholar] [CrossRef]
- Aimé, S.; Alabouvette, C.; Steinberg, C.; Olivain, C. The endophytic strain Fusarium oxysporum Fo47: A good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact. 2013, 26, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavroulakis, N.; Ntougias, S.; Zervakis, G.I.; Ehaliotis, C.; Haralampidis, K.; Papadopoulou, K.K. Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J. Exp. Bot. 2007, 58, 3853–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nefzi, A.; Abdallah, R.A.B.; Jabnoun-Khiareddine, H.; Ammar, N.; Daami-Remadi, M. Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium Crown and Root Rot and to promote growth in tomato. Braz. J. Microbiol. 2019, 50, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Fakhro, A.; Andrade-Linares, D.R.; von Bargen, S.; Bandte, M.; Büttner, C.; Grosch, R.; Schwarz, D.; Franken, P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 2010, 20, 191–200. [Google Scholar] [CrossRef]
- Sarma, M.V.R.K.; Kumar, V.; Saharan, K.; Srivastava, R.; Sharma, A.K.; Prakash, A.; Sahai, V.; Bisaria, V.S. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J. Appl. Microbiol. 2011, 111, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.; Weiss, M.; Kogel, K.H.; Schäfer, P. Piriformospora indica a mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant. Pathol. 2012, 13, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, N.; Rey, P.; Chérif, M.; Hockenhull, J.; Tirilly, Y. Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 1997, 87, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Azadi, N.; Shirzad, A.; Mohammadi, H. A study of some biocontrol mechanisms of Beauveria bassiana against Rhizoctonia disease on tomato. Acta Biol. Szeged. 2016, 60, 119–127. [Google Scholar]
- Tucci, M.; Ruocco, M.; De Masi, L.; De Palma, M.; Lorito, M. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant. Pathol. 2011, 12, 341–354. [Google Scholar] [CrossRef]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Ann. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Conrath, U.; Beckers, G.J.; Langenbach, C.J.; Jaskiewicz, M.R. Priming for enhanced defense. Ann. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef]
- Vos, C.M.; Yang, Y.; De Coninck, B.; Cammue, B.P.A. Fungal (-like) biocontrol organisms in tomato disease control. Biol. Control 2014, 74, 65–81. [Google Scholar] [CrossRef]
- Alfano, G.; Lewis Ivey, M.L.; Cakir, C.; Bos, J.I.B.; Miller, S.A.; Madden, L.V.; Kamoun, S.; Hoitink, H.A.J. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 2007, 97, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Medina, A.; Fernandez, I.; Lok, G.B.; Pozo, M.J.; Pieterse, C.M.J.; Van Wees, S.C.M. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol. 2017, 213, 1363–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, J.E.; Beatriz, P.J.; Alejandro, P.; Roberto, L.E. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv. Biol. Res. 2011, 5, 22–27. [Google Scholar]
- Khan, A.L.; Waqas, M.; Hussain, J.; Al-Harrasi, A.; Hamayun, M.; Lee, I.J. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J. Hazard. Mater. 2015, 295, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Gonzalez, E.A.; Escudero, N.; Lopez-Moya, F.; Aranda-Martinez, A.; Exposito, A.; Ricaño-Rodríguez, J.; Naranjo-Ortiz, M.A.; Ramírez-Lepe, M.; Lopez-Llorca, L.V. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann. Appl. Biol. 2015, 166, 472–483. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Del Campillo, M.C.; Quesada-Moraga, E. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci. Hortic. 2015, 197, 193–202. [Google Scholar] [CrossRef]
- Khan, A.L.; Waqas, M.; Khan, A.R.; Hussain, J.; Kang, S.M.; Gilani, S.A.; Hamayun, M.; Shin, J.H.; Kamran, M.; Al-Harrasi, A.; et al. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J. Microbiol. Biotechnol. 2013, 29, 2133–2144. [Google Scholar] [CrossRef]
- Vidal, S. Changes in suitability of tomato for whiteflies mediated by a non-pathogenic endophytic fungus. Entomol. Exp. Appl. 1996, 80, 272–274. [Google Scholar] [CrossRef]
- Prabhukarthikeyan, R.; Saravanakumar, D.; Raguchander, T. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest. Manag. Sci. 2014, 70, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Pappas, M.L.; Liapoura, M.; Papantoniou, D.; Avramidou, M.; Kavroulakis, N.; Weinhold, A.; Broufas, G.D.; Papadopoulou, K.K. The beneficial endophytic fungus Fusarium solani strain K alters tomato responses against spider mites to the benefit of the plant. Front. Plant. Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kost, G.; Rexer, K. Morphology and Ultrastructure of Piriformospora indica. Soils Biol. 2013, 33, 25–36. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Ren, X.; Yu, T.; Varma, A.; Lou, B.; Zheng, X. Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant. Growth Regul. 2015, 76, 303–313. [Google Scholar] [CrossRef]
- Masunaka, A.; Nakaho, K.; Sakai, M.; Takahashi, H.; Takenaka, S. Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. J. Gen. Plant Pathol. 2009, 75, 281–287. [Google Scholar] [CrossRef]
- Le Floch, G.; Vallance, J.; Benhamou, N.; Rey, P. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biol. Control 2009, 50, 288–298. [Google Scholar] [CrossRef]
- Chowdappa, P.; Mohan Kumar, S.P.; Jyothi Lakshmi, M.; Upreti, K.K. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control 2013, 65, 109–117. [Google Scholar] [CrossRef]
- Powell, W.A. Potential of Beauveria Bassiana 11–98 as a Biological Control Agent against Tomato Pests; and Detection of the Mycotoxic Metabolite Beauvericin in Tomato Plants Using HPLC. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2005. [Google Scholar]
- Posada, F.; Aime, M.C.; Peterson, S.W.; Rehner, S.A.; Vega, F.E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 2007, 111, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Biswas, C.; Dey, P.; Satpathy, S.; Satya, P.; Mahapatra, B. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica 2013, 41, 17–21. [Google Scholar] [CrossRef]
- Landa, B.B.; López-Díaz, C.; Jiménez-Fernández, D.; Montes-Borrego, M.; Muñoz-Ledesma, F.J.; Ortiz-Urquiza, A.; Quesada-Moraga, E. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J. Invertebr. Pathol. 2013, 114, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Renuka, S.; Ramanujam, B.; Poornesha, B. Endophytic ability of different isolates of entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin in stem and leaf tissues of maize (Zea mays L.). Indian J. Microbiol 2016, 56, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido-Jurado, I.; Resquín-Romero, G.; Amarilla, S.P.; Ríos- Moreno, A.; Carrasco, L.; Quesada-Moraga, E. Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J. Pest. Sci. 2017, 90, 319–330. [Google Scholar] [CrossRef]
- Rondot, Y.; Reineke, A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol. Control 2018, 116, 82–89. [Google Scholar] [CrossRef]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 2020, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Krell, V.; Jakobs-Schoenwandt, D.; Vidal, S.; Patel, A.V. Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biol. Control 2018, 116, 62–73. [Google Scholar] [CrossRef]
- Jallow, M.F.A.; Dugassa-Gobena, D.; Vidal, S. Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod. Plant. Interact. 2008, 2, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Omukoko, C.A. Biocontrol Mechanisms of Endophytic Beauveria bassiana in Three Tomato (Lycopersum esculentum) Varieties C. World Dev. 2018, 1, 43–52. [Google Scholar] [CrossRef]
- Omukoko, C.A.; Turoop, L. Colonization of Tomato Varieties by Beauveria bassiana Isolates in the Screen House. Int. J. Sci. Res. 2017, 6, 1024–1028. [Google Scholar] [CrossRef]
- Mahmoud, R.S.; Narisawa, K. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen. PLoS ONE 2013, 8, 1–8. [Google Scholar] [CrossRef]
- Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [Google Scholar] [CrossRef]
- Fritz, M.; Jakobsen, I.; Lyngkjær, M.F.; Thordal-Christensen, H.; Pons-Kühnemann, J. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 2006, 16, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, A.; Kadir, J.; Nasr-Esfahani, M.; Abed-Ashtiani, F.; Golkhandan, E.; Ashkani, S. Identification of the New Pathogen (Stemphylium lycopersici) Causing Leaf Spot on Pepino (Solanum muricatum). J. Phytopathol. 2016, 164, 421–426. [Google Scholar] [CrossRef]
- Gilardi, G.; Matic, S.; Luongo, I.; Gullino, M.L.; Garibaldi, A. First Report of Stem Necrosis and Leaf Spot of Tomato Caused by Albifimbria verrucaria in Italy. Plant. Dis. 2020, 4, 2026. [Google Scholar] [CrossRef]
- Rameshkumar, G.; Sikha, M.; Ponlakshmi, M.; Selva Pandiyan, A.; Lalitha, P. A rare case of Myrothecium species causing mycotic keratitis: Diagnosis and management. Med. Mycol. Case Rep. 2019, 25, 53–55. [Google Scholar] [CrossRef]
- Tian, X.; Yao, Y.; Chen, G.; Mao, Z.; Wang, X.; Xie, B. Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int. J. Pest. Manag. 2014, 60, 239–245. [Google Scholar] [CrossRef]
- Xia, Y.; Sahib, M.R.; Amna, A.; Opiyo, S.O.; Zhao, Z.; Gao, Y.G. Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Poli, A.; Lazzari, A.; Prigione, V.; Voyron, S.; Spadaro, D.; Varese, G.C. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils. Fungal Biol. 2016, 120, 862–872. [Google Scholar] [CrossRef] [Green Version]
- Demers, J.E.; Gugino, B.K.; del Mar Jiménez-Gasco, M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 2015, 81, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Imazaki, I.; Kadota, I. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol. Ecol. 2015, 91, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dreyfuss, M.M.; Chapela, I.H. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. Biotechnology 1994, 26, 49–80. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol Spectr. 2017, 5, 79–95. [Google Scholar] [CrossRef]
- Kuldau, G.A.; Yates, I.E. Evidence for Fusarium endophytes in cultivated and wild plants. In Microbial Endophytes; Bacon, C.W., White, J.F., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 85–117. [Google Scholar]
- Carroll, G.C. Beyond pest deterrence—Alternative strategies and hidden costs of endophytic mutualisms in vascular plants. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 358–375. [Google Scholar]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160, S99–S127. [Google Scholar] [CrossRef] [PubMed]
- Davitt, A.J.; Stansberry, M.; Rudgers, J.A. Do the costs and benefits of fungal endophyte symbiosis vary with light availability? New Phytol. 2010, 188, 824–834. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S. Endophyte research: Going beyond isolation and metabolite documentation. Fungal Ecol. 2013, 6, 561–568. [Google Scholar] [CrossRef]
- Vega, F.E. The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia 2018, 110, 4–30. [Google Scholar] [CrossRef]
- De Silva, N.I.; Brooks, S.; Lumyong, S.; Hyde, K.D. Use of endophytes as biocontrol agents. Fungal Biol. Rev. 2019, 33, 133–148. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinno, M.; Ranesi, M.; Gioia, L.; d’Errico, G.; Woo, S.L. Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement. Agriculture 2020, 10, 587. https://doi.org/10.3390/agriculture10120587
Sinno M, Ranesi M, Gioia L, d’Errico G, Woo SL. Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement. Agriculture. 2020; 10(12):587. https://doi.org/10.3390/agriculture10120587
Chicago/Turabian StyleSinno, Martina, Marta Ranesi, Laura Gioia, Giada d’Errico, and Sheridan Lois Woo. 2020. "Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement" Agriculture 10, no. 12: 587. https://doi.org/10.3390/agriculture10120587
APA StyleSinno, M., Ranesi, M., Gioia, L., d’Errico, G., & Woo, S. L. (2020). Endophytic Fungi of Tomato and Their Potential Applications for Crop Improvement. Agriculture, 10(12), 587. https://doi.org/10.3390/agriculture10120587