Natural Organic Compounds for Application in Organic Farming
Abstract
:1. Introduction
2. Organic Matter Fertilizers
2.1. Crop Residues
2.2. Animal Manure
2.2.1. Bird Manure
2.2.2. Bovine Manure
2.2.3. Sheep Manure
2.2.4. Pig Manure
2.2.5. Urine
2.3. Compost, Vermicompost, and Biochar
3. Bio-Pesticides
3.1. Plant Essential Oils
Toxicity to Animals
3.2. Homemade Pesticides
3.2.1. Ginger
3.2.2. Nettle Tea
3.2.3. Garlic
3.2.4. Onion
3.2.5. Nicotine
3.2.6. Clove
3.2.7. Rue
3.3. Effective Use of Fungi in Agriculture
4. Commercialization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Occurrence, impacts and removal of emerging substances of concern from wastewater. Environ. Technol. Innov. 2016, 5, 161–175. [Google Scholar] [CrossRef]
- World Health Organization & International Programme on Chemical Safety. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. Available online: https://apps.who.int/iris/handle/10665/44271 (accessed on 23 January 2020).
- Jariyal, M.; Gupta, V.K.; Jindal, V.; Mandal, K. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil. Ecotox. Environ. Saf. 2015, 122, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Blankson, G.K.; Osei-Fosu, P.; Adeendze, E.A.; Ashie, D. Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra, Ghana. Food Control 2016, 68, 174–180. [Google Scholar] [CrossRef]
- Domínguez, I.; Romero González, R.; Arrebola Liébanas, F.J.; Martínez Vidal, J.L.; Garrido Frenich, A. Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends Environ. Anal. Chem. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, M. Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Pardío, V.; Martínez, D.; Flores, A.; Romero, D.; Suárez, V.; López, K.; Uscanga, R. Human health risk of dietary intake of organochlorine pesticide residues in bovine meat and tissues from Veracruz, México. Food Chem. 2012, 135, 1873–1893. [Google Scholar] [CrossRef]
- Tongo, I.; Ezemonye, L. Human health risks associated with residual pesticide levels in edible tissues of slaughtered cattle in Benin City, Southern Nigeria. Toxicol. Rep. 2015, 2, 1117–1135. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.F.A.; Ikenaka, Y.; Yohannes, Y.B.; Darwish, W.S.; Eldaly, E.A.; Morshdy, A.E.M.A.; Nakayama, S.M.M.; Mizukawa, H.; Ishizuka, M. Distribution and health risk assessment of organochlorine pesticides (OCPs) residue in edible cattle tissues from northeastern part of Egypt: High accumulation level of OCPs in tongue. Chemosphere 2016, 144, 1365–1371. [Google Scholar] [CrossRef]
- Cequier, E.; Sakhi, A.K.; Haug, L.S.; Thomsen, C. Exposure to organophosphorous pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption. Sci. Total Environ. 2017, 590–591, 655–662. [Google Scholar] [CrossRef]
- Dervilly-Pinel, G.; Guérin, T.; Minvielle, B.; Travel, A.; Normand, J.; Bourin, M.; Royer, E.; Dubreil, E.; Mompelat, S.; Hommet, S.; et al. Micropollutants and chemical residues in organic and conventional meat. Food Chem. 2017, 232, 218–228. [Google Scholar] [CrossRef]
- Musarurwa, H.; Chimuka, L.; Pakade, V.E.; Tavengwa, N.T. Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J. Food Compos. Anal. 2019, 84, 103314. [Google Scholar] [CrossRef]
- Urruty, N.; Deveaud, T.; Guyomard, H.; Boiffin, J. Impacts of agricultural land use changes on pesticide use in French agriculture. Eur. J. Agron. 2016, 80, 113–123. [Google Scholar] [CrossRef]
- Lee, R.; den Uyl, R.; Runhaar, H. Assessment of policy instruments for pesticide use reduction in Europe; Learning from a systematic literature review. Crop Prot. 2019, 126, 104929. [Google Scholar] [CrossRef]
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Shuqin, J.; Fang, Z. Zero Growth of Chemical Fertilizer and Pesticide Use: China’s Objectives, Progress and Challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Chuan, L.; Zheng, H.; Sun, S.; Wang, A.; Liu, J.; Zhao, T.; Zhao, J. A Sustainable Way of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Chinese Cabbage. Sustainability 2019, 11, 4368. [Google Scholar] [CrossRef] [Green Version]
- Epule, T.E.; Bryant, C.R.; Akkari, C.; Daouda, O. Can organic fertilizers set the pace for a greener arable agricultural revolution in Africa? Analysis, synthesis and way forward. Land Use Policy 2015, 47, 179–187. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusà, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biot. 2015, 99, 4983–4996. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Franco-Andreu, L.; Benítez, C.; Parrado, J. Use of biofertilizers obtained from sewage sludges on maize yield. Eur. J. Agron. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Laamrani, A.; Joosse, P.; Feithauer, N. Determining the number of measurements required to estimate crop residue cover by different methods. J. Soil Water Conserv. 2017, 72, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Li, X.; Wang, J. Chapter 24—Land Cover and Land use Changes. In Advanced Remote Sensing, 1st ed.; Liang, S., Li, X., Wang, J., Eds.; Academic Press: Amsterdam, The Netherlands, 2012; p. 728. [Google Scholar]
- Hou, L.; Chen, X.; Kuhn, L.; Huang, J. The effectiveness of regulations and technologies on sustainable use of crop residue in Northeast China. Energy Econ. 2019, 81, 519–527. [Google Scholar] [CrossRef]
- Reinoso Moreno, J.V.; Pinna-Hernández, G.; Fernández Fernández, M.D.; Sánchez Molina, J.A.; Rodríguez Díaz, F.; López Hernández, J.C.; Acién Fernández, F.G. Optimal processing of greenhouse crop residues to use as energy and CO2 sources. Ind. Crop. Prod. 2019, 137, 662–671. [Google Scholar] [CrossRef]
- Kashif, M.; Awan, M.B.; Nawaz, S.; Amjad, M.; Talib, B.; Farooq, M.; Nizami, A.S.; Rehan, M. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions. J. Environ. Manag. 2020, 256, 109924. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Zhang, J.; Huang, J.; Jiang, Y.; Siddik, M.A.; Deng, A.; Gao, J.; Zhang, W. Greenhouse gas emissions from a rice-rice-green manure cropping system in South China. Geoderma 2019, 353, 331–339. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, S.; Lu, Y.; Liao, Y.; Nie, J.; Cao, W. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Till. Res. 2020, 197, 104499. [Google Scholar] [CrossRef]
- Rothé, M.; Darnaudery, M.; Thuriès, L. Organic fertilizers, green manures and mixtures of the two revealed their potential as substitutes for inorganic fertilizers used in pineapple cropping. Sci. Hortic. 2019, 257, 108691. [Google Scholar] [CrossRef]
- Singh, M.; Singh, A.; Singh, S.; Tripathi, R.S.; Singh, A.K.; Patra, D.D. Cowpea (Vigna unguiculata L. Walp.) as a green manure to improve the productivity of a menthol mint (Mentha arvensis L.) intercropping system. Ind. Crop. Prod. 2010, 31, 289–293. [Google Scholar] [CrossRef]
- Subaedah, S.; Aladin, A.; Nirwana. Fertilization of Nitrogen, Phosphor and Application of Green Manure of Crotalaria juncea In Increasing Yield of Maize in Marginal Dry Land. Agric. Agric. Sci. Proc. 2016, 9, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.L.; Nunes, A.B.A.; Giongo, V.; Barros, V.S.; Figueirêdo, M.C.B. Cleaner fruit production with green manure: The case of Brazilian melons. J. Clean. Prod. 2018, 181, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.J.; Gao, J.S.; Cao, W.D.; Zou, C.Q.; Huang, J.; Bai, J.S.; Dou, F.G. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. J. Integr. Agric. 2018, 17, 1852–1860. [Google Scholar] [CrossRef] [Green Version]
- He, H.B.; Li, W.X.; Zhang, Y.W.; Cheng, J.K.; Jia, X.Y.; Li, S.; Yang, H.R.; Chen, B.M.; Xin, G.R. Effects of Italian ryegrass residues as green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation. Soil Till. Res. 2020, 196, 104487. [Google Scholar] [CrossRef]
- Khan, M.I.; Gwon, H.S.; Alam, M.A.; Song, H.J.; Das, S.; Kim, J. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Appl. Soil Ecol. 2020, 147, 103400. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Gao, J.; Wang, X.; Fan, F.; Ma, X.; Yin, H.; Zhang, C.; Feng, K.; Deng, Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol. Biochem. 2017, 104, 208–217. [Google Scholar] [CrossRef]
- Djian-Caporalino, C.; Mateille, T.; Bailly-Bechet, M.; Marteu, N.; Fazari, A.; Bautheac, P.; Raptopoulo, A.; Van Duong, L.; Tavoillot, J.; Martiny, B.; et al. Evaluating sorghums as green manure against root-knot nematodes. Crop. Prot. 2019, 122, 142–150. [Google Scholar] [CrossRef]
- Naz, I.; Saifullah; Palomares-Rius, J.E.; Khan, S.M.; Ali, S.; Ahmad, M.; Ali, A.; Khan, A. Control of Southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop. Prot. 2015, 67, 121–129. [Google Scholar] [CrossRef]
- Puig, C.G.; Revilla, P.; Barreal, M.E.; Reigosa, M.J.; Pedrol, N. On the suitability of Eucalyptus globulus green manure for field weed control. Crop. Prot. 2019, 121, 57–65. [Google Scholar] [CrossRef]
- Rahman, L.; Whitelaw-Weckert, M.A.; Orchard, B. Consecutive applications of brassica green manures and seed meal enhances suppression of Meloidogyne javanica and increases yield of Vitis vinifera cv Semillon. Appl. Soil Ecol. 2011, 47, 195–203. [Google Scholar] [CrossRef]
- Hadas, A.; Rosenberg, R. Guano as a nitrogen source for fertigation in organic farming. Fert. Res. 1992, 31, 209–214. [Google Scholar] [CrossRef]
- Bouwman, A.; Boumans, L.; Batjes, N. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cy. 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Garg, V.; Chand, S.; Chhillar, A.; Yadav, A. Growth and reproduction of Eisenia foetida in various animal wastes during vermicomposting. Appl. Ecol. Environ. Res. 2005, 3, 51–59. [Google Scholar] [CrossRef]
- Sridhar, K.; Ashwini, K.; Seena, S.; Sreepada, K. Manure qualities of guano of insectivorous cave bat Hipposideros speoris. Trop. Subtrop. Agroecosyst. 2006, 6, 103–110. [Google Scholar]
- Guo, Z.; Zhang, J.; Fan, J.; Yang, X.; Yi, Y.; Han, X.; Wang, D.; Zhu, P.; Peng, X. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci. Total Environ. 2019, 660, 1029–1037. [Google Scholar] [CrossRef]
- Marta, J.; Rorat, A.; Grobelak, A. Enzymatic assays confirm the toxicity reduction after manure treatment of heavy metals contaminated soil. S. Afr. J. Bot. 2019, 124, 47–53. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 2014, 27, 191–194. [Google Scholar] [CrossRef]
- Szpak, P.; Millaire, J.-F.; White, C.D.; Longstaffe, F.J. Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). J. Archaeol. Sci. 2012, 39, 3721–3740. [Google Scholar] [CrossRef]
- Johannessen, G.; Frøseth, R.; Solemdal, L.; Jarp, J.; Wasteson, Y.; Rørvik, L.M. Influence of bovine manure as fertilizer on the bacteriological quality of organic iceberg lettuce. J. Appl. Microbiol. 2004, 96, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.; Leahy, J.; Henihan, A.; O’dwyer, T.; Sutton, D.; Leahy, M. Advances in poultry litter disposal technology—A review. Bioresour. Technol. 2002, 83, 27–36. [Google Scholar] [CrossRef]
- Franco, A.; Schuhmacher, M.; Roca, E.; Domingo, J.L. Application of cattle manure as fertilizer in pastureland: Estimating the incremental risk due to metal accumulation employing a multicompartment model. Environ. Int. 2006, 32, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Zavattaro, L.; Bechino, L.; Grignani, C.; van Evert, F.K.; Mallast, J.; Spiegel, H.; Sandén, T.; Pecio, A.; Giraldéz Cervera, J.V.; Guzmán, G.; et al. Agronomic effects of bovine manure: A review of long-term European field experiments. Eur. J. Agron. 2017, 90, 127–138. [Google Scholar] [CrossRef]
- Velasco-Velasco, J.; Parkinson, R.; Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 2011, 102, 10959–10964. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, G.C.; Ehaliotis, C.D.; Kavvadias, V.A. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 2007, 111, 319–325. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Abhilash, P.C. Sustainable soil amendments for improving the soil quality, yield and nutrient content of Brassica juncea (L.) grown in different agroecological zones of eastern Uttar Pradesh, India. Soil Till. Res. 2019, 195, 104418. [Google Scholar] [CrossRef]
- Elouear, Z.; Bouhamed, F.; Boujelben, N.; Bouzid, J. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain. Environ. Res. 2016, 26, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, J.Z.; Roux, M.a.V.; Jiménez, P. Evaluation of poultry litter as a feasible fuel. Thermochim. Acta 2002, 394, 261–266. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z. Selection of pig manure management strategies: Case study of Polish farms. J. Clean. Prod. 2019, 172, 187–195. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shan, J.; Yang, P.; Shang, X.; Xia, Y.; Yan, X. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environ. Pollut. 2018, 240, 368–377. [Google Scholar] [CrossRef]
- Szögi, A.A.; Vanotti, M.B.; Hunt, P.G. Phosphorus recovery from pig manure solids prior to land application. J. Environ. Manag. 2015, 157, 1–7. [Google Scholar] [CrossRef]
- Randall, D.G.; Naidoo, V. Urine: The liquid gold of wastewater. J. Environ. Chem. Eng. 2018, 6, 2627–2635. [Google Scholar] [CrossRef]
- Andersson, E. Turning waste into value: Using human urine to enrich soils for sustainable food production in Uganda. J. Clean. Prod. 2015, 96, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Karak, T.; Bhattacharyya, P. Human urine as a source of alternative natural fertilizer in agriculture: A flight of fancy or an achievable reality. Resour. Conserv. Recy. 2011, 55, 400–408. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Nerg, A.-M.; Sjöblom, A.; Holopainen, J.K.; Heinonen-Tanski, H. Use of human urine fertilizer in cultivation of cabbage (Brassica oleracea)––impacts on chemical, microbial, and flavor quality. J. Agric. Food Chem. 2007, 55, 8657–8663. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Holopainen, J.K.; Heinonen-Tanski, H. Stored human urine supplemented with wood ash as fertilizer in tomato (Solanum lycopersicum) cultivation and its impacts on fruit yield and quality. J. Agric. Food Chem. 2009, 57, 7612–7617. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.K.; Holopainen, J.K.; Weisell, J.; Heinonen-Tanski, H. Human urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: Impacts on yield quality. J. Agric. Food Chem. 2010, 58, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E. The Science of Composting, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997; pp. 1–18. [Google Scholar]
- Anwar, Z.; Irshad, M.; Fareed, I.; Saleem, A. Characterization and recycling of organic waste after co-composting-A review. J. Agric. Sci. 2015, 7, 68–79. [Google Scholar] [CrossRef]
- Pai, S.; Ai, N.; Zheng, J. Decentralized community composting feasibility analysis for residential food waste: A Chicago case study. Sustain. Cities Soc. 2019, 50, 101683. [Google Scholar] [CrossRef]
- Tognetti, C.; Mazzarino, M.; Laos, F. Improving the quality of municipal organic waste compost. Bioresour. Technol. 2007, 98, 1067–1076. [Google Scholar] [CrossRef]
- Bian, B.; Hu, X.; Zhang, S.; Lv, C.; Yang, Z.; Yang, W.; Zhang, L. Pilot-scale composting of typical multiple agricultural wastes: Parameter optimization and mechanisms. Bioresour. Technol. 2019, 287, 121482. [Google Scholar] [CrossRef]
- Parkinson, R.; Gibbs, P.; Burchett, S.; Misselbrook, T. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresour. Technol. 2004, 91, 171–178. [Google Scholar] [CrossRef]
- Gil, M.; Carballo, M.; Calvo, L. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef]
- Campos Rodrigues, L.; Puig-Ventosa, I.; López, M.; Martínez, F.X.; García Ruiz, A.; Guerrero Bertrám, T. The impact of improper materials in biowaste on the quality of compost. J. Clean. Prod. 2020, 251, 119601. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; Sommer, S.G.; Qin, W.; Ma, L. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Jeong, S.T.; Kim, G.W.; Hwang, H.Y.; Kim, P.J.; Kim, S.Y. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 2018, 613–614, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Selles, G.; Ferreyra, R.; Ahumada, R.; Santelices, M.; García-Huidobro, J.; Ruiz, R. Lombrices de Tierra Como Agentes Mejoradores de las Propiedades Físicas del Suelo en Huertos Frutales [Earthworms as Improving Agents of the Physical Properties of Soil in Fruit Orchards], 1st ed.; Boletín INIA No. 140; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006; pp. 6–11. [Google Scholar]
- Elvira, C.; Sampedro, L.; Benitez, E.; Nogales, R. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study. Bioresour. Technol. 1998, 63, 205–211. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y. Characterization of matured vermicompost derived from valorization of palm oil mill byproduct. J. Agric. Food Chem. 2016, 64, 1761–1769. [Google Scholar] [CrossRef]
- Sahariah, B.; Goswami, L.; Kim, K.-H.; Bhattacharyya, P.; Battacharyra, S.S. Metal remediation and biodegradation potential of earthworm species on municipal solid waste: A parallel analysis between Metaphire posthuma and Eisenia fetida. Bioresour. Technol. 2015, 180, 230–236. [Google Scholar] [CrossRef]
- Soobhany, N.; Mohee, R.; Garg, V.K. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae. Waste Manag. 2015, 39, 130–145. [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.; Shen, M.; Zeng, G.; Zhou, M.; Li, M. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresour. Technol. 2016, 218, 867–873. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour. Technol. 2016, 209, 397–401. [Google Scholar] [CrossRef]
- Rorat, A.; Wloka, D.; Grobelak, A.; Grosser, A.; Sosnecka, A.; Milczareck, M.; Jelonek, P.; Vandenbulcke, F.; Kacprzak, M. Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J. Environ. Manag. 2017, 187, 347–353. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Zhang, Y.; Li, J.; Cui, G.; Li, F.; Bai, W.; Jiang, Y.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 2020, 297, 122451. [Google Scholar] [CrossRef]
- Cui, G.; Bhat, S.A.; Li, W.; Wei, Y.; Kui, H.; Fu, X.; Gui, H.; Wei, C.; Li, F. Gut digestion of earthworms significantly attenuates cell-free and -associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles. Sci. Total Environ. 2019, 691, 644–653. [Google Scholar] [CrossRef]
- Xia, H.; Chen, J.; Chen, X.; Huang, K.; Wu, Y. Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge. Environ. Pollut. 2019, 252, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Liu, H.T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Lv, X.; Franks, A.E.; Brookes, P.C.; Xu, J.; He, Y. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil. J. Hazard Mater. 2020, 386, 122002. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, A.O.; Abgede, T.M.; Aboyeyi, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Song, C.; Zhao, S.; Wang, S.G. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils. Sci. Total Environ. 2020, 706, 136086. [Google Scholar] [CrossRef]
- Zhou, X.; Qiao, M.; Su, J.-Q.; Wang, Y.; Cao, Z.-H.; Cheng, W.-D.; Zhu, Y.-G. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. Sci. Total Environ. 2019, 649, 902–908. [Google Scholar] [CrossRef]
- Duan, M.; Li, H.; Gu, J.; Tuo, X.; Sun, W.; Qian, X.; Wang, X. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 2017, 224, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozüraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crop. Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Use of Spices and Medicinals as Bioactive Protectants for Grains; Agricultural Services Bulletin No. 137; FAO: Rome, Italy, 1999. [Google Scholar]
- Musk, S.R.; Clapham, P.; Johnson, I.T. Cytotoxicity and genotoxicity of diallyl sulfide and diallyl disulfide towards Chinese hamster ovary cells. Food Chem. Toxicol. 1997, 35, 379–385. [Google Scholar] [CrossRef]
- Opdyke, D.L.J. Monographs on Fragance Raw Materials. A Collection of Monographs Originally Appearing in Food and Cosmetics Toxicology, 1st ed.; Pergamon Press Ltd.: Oxford, UK, 1979; p. 750. [Google Scholar]
- Isman, M.B.; Machial, C.M. Chapter 2: Pesticides based on plant essential oils: From traditional practice to commercialization. In Advances in Phytomedicine. Naturally Occurring Bioactive Compounds, 1st ed.; Rai, M., Carpinella, M.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 29–44. [Google Scholar]
- Lis-Balchin, M. Aromatherapy Science: A Guide for Healthcare Professionals, 1st ed.; Pharmaceutical Press: London, UK, 2006; p. 462. [Google Scholar]
- Koul, O. The Handbook of Naturally Occurring Insecticidal Toxins, 1st ed.; CABI: Wallingford, UK, 2016; p. 864. [Google Scholar]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Park, Y.-L.; Tak, J.-H. Chapter 6—Essential oils for arthropod pest management in agricultural production systems. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: San Diego, CA, USA, 2016; pp. 61–70. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Sparagano, O.; Pritchard, J.; George, D. 12: The future of essential oils as a pest biocontrol method. In Bio-Based Plant Oil Polymers and Composites, 1st ed.; Madbouly, S.A., Zhang, C., Kessler, M.R., Eds.; Elsevier: Oxford, UK, 2016; pp. 207–211. [Google Scholar]
- Brahmi, F.; Abdenour, A.; Bruno, M.; Silvia, P.; Alessandra, P.; Danilo, F.; Drifa, Y.-G.; Fahmi, E.M.; Khodir, M.; Mohamed, C. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Ind. Crop. Prod. 2016, 88, 96–105. [Google Scholar] [CrossRef]
- Mansour, S.A.; El-Sharkawy, A.Z.; Abdel-Hamid, N.A. Toxicity of essential plant oils, in comparison with conventional insecticides, against the desert locust, Schistocerca gregaria (Forskål). Ind. Crop. Prod. 2015, 63, 92–99. [Google Scholar] [CrossRef]
- Pavela, R.; Stepanycheva, E.; Shchenikova, A.; Chermenskaya, T.; Petrova, M. Essential oils as prospective fumigants agains Tetranychus urticae Koch. Ind. Crop. Prod. 2016, 94, 755–761. [Google Scholar] [CrossRef]
- Qasem, J.R.; Abu-Blan, H.A. Fungicidal activity of some common weed extracts against different plant pathogenic fungi. J. Phytopathol. 1996, 144, 157–161. [Google Scholar] [CrossRef]
- Thomidis, T.; Filotheou, A. Evaluation of five essential oils as bio-fungicides on the control of Pilidiella granati rot in pomegranate. Crop Prot. 2016, 89, 66–71. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; Ferreira, T.P.; Bastos, I.M.A.S.; Rezende, S.M.; Jumbo, L.O.V.; Didonet, J.; Andrade, B.S.; Melo, T.S.; Smagghe, G.; Oliveira, E.E.; et al. Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles. Environ. Pollut. 2019, 255, 113153. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Man, Y.; Leilei, F.; Zhi-qing, M.; Xing, Z. The botanical pesticide derived from Sophora flavescens for controlling insect pests can also improve growth and development of tomato plants. Ind. Crop. Prod. 2016, 92, 13–18. [Google Scholar]
- Zapata, N.; Vargas, M.; Latorre, E.; Roudergue, X.; Ceballos, R. The essential oil of Laurelia sempervirens is toxic to Trialeurodes vaporariorum and Encarsia Formosa. Ind. Crop. Prod. 2016, 84, 418–422. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista–Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agrifood comodities—Potential and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Bermudez Perez, F.; Bermudez Perez, R. Uso del Compuesto Químico Alfa Zingibereno Como Agente Repelente e Insecticida en Cultivos de Tomate. ES 201,000,089 A, 24 January 2011. [Google Scholar]
- Ojaghian, M.R.; Wang, L.; Cui, Z.Q.; Yang, C.; Zhongyun, T.; Xie, G.-L. Antifungal and SAR potential of crude extracts derived from neem and ginger against storage carrot rot caused by Sclerotinia sclerotiorum. Ind. Crop. Prod. 2014, 55, 130–139. [Google Scholar] [CrossRef]
- Ukeh, D.A.; Birkett, M.A.; Pickett, J.A.; Bowman, A.S.; Mordue Luntz, A.J. Repellent activity of alligator pepper, Aframomum melegueta, and ginger, Zingiber officinale, against the maize weevil, Sitophilus zeamais. Phytochemistry 2009, 70, 751–758. [Google Scholar] [CrossRef]
- Di Virgilio, N.; Papazoglou, E.G.; Jankauskiene, Z.; Di Lonardo, S.; Praczyk, M.; Wielgusz, K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crop. Prod. 2015, 68, 42–49. [Google Scholar] [CrossRef]
- Gülçin, I.; Küfrevioglu, O.I.; Oktay, M.; Büyükokuroglu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef]
- Upton, R.; DAyu, R.H. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J. Herb. Med. 2013, 3, 9–38. [Google Scholar] [CrossRef]
- Ministerio de Agricultura. Servicio Agrícola y Ganadero. Agricultura Orgánica Nacional: Bases Técnicas y Situación Actual [National Organic Agriculture: Technical Bases and Current situation], 1st ed.; Servicio Agrícola y Ganadero: Santiago, Chile, 2013; pp. 136–137. [Google Scholar]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, B.; Bloszies, S.; Li, X.; Wei, M.; Yang, F.; Shi, Q.; Wang, X. Efficacy of garlic straw application against root-knot nematodes on tomato. Sci. Hortic. 2013, 161, 49–57. [Google Scholar] [CrossRef]
- Jess, S.; Kirbas, J.M.; Gordon, A.W.; Murchie, A.K. Potential for use of garlic oil to control Lycoriella ingenua (Diptera: Sciaridae) and Megaselia halterata (Diptera: Phoridae) in commercial mushroom production. Crop Prot. 2017, 102, 1–9. [Google Scholar] [CrossRef]
- Mfarrej, M.F.B.; Rara, F.M. Competitive, Sustainable Natural Pesticides. Acta Ecol. Sin. 2019, 39, 145–151. [Google Scholar] [CrossRef]
- Infante, A. Manual de Biopreparados Para la Agricultura Ecológica. Programa Territorial Orgánico (PTO), Surfrut, Fundación para la Innovación Agraria (FIA). [Manual of Bio-Preparations for Organic Farming. Organic Territorial Program (OTP), SURFRUT, Foundation for Agrarian Innovation (FAI)], 1st ed.; Trama Impresores S.A.: Santiago, Chile, 2011; p. 33. [Google Scholar]
- Matsuura, T.; Miura, H.; Nishino, A. Inhibition of gustatory plasticity due to acute nicotine exposure in the nematode Caenorhabditis elegans. Neurosci. Res. 2013, 77, 155–161. [Google Scholar] [CrossRef]
- Roder Green, A.L.; Putschew, A.; Nehls, T. Littered cigarette butts as a source of nicotine in urban waters. J. Hydrol. 2014, 519, 3466–3474. [Google Scholar] [CrossRef]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M. 3.09—Natural product-based biopesticides for insect control. In Comprehensive Natural Products II: Chemistry and Biology, 1st ed.; Mander, L., Liu, H.-W., Eds.; Elsevier Science: Kidlington, UK, 2010; Volume 3, pp. 237–268. [Google Scholar]
- Reuben, S.O.W.M.; Masunga, M.; Makundi, R.; Misangu, R.N.; Kilonzo, B.; Mwatawala, M.; Lyimo, H.F.; Ishengoma, C.G.; Msuya, D.G.; Mulungu, L.S. Control of Cowpea Weevil (Callosobruchus maculatus L.) in stored Cowpea (Vigna unguiculatus L.) grains using botanicals. Asian J. Plant. Sci. 2006, 5, 91–97. [Google Scholar]
- Duke, S.O.; Cantrell, C.L.; Meepagala, K.M.; Wedge, D.E.; Tabanca, N.; Schrader, K.K. Natural Toxins for Use in Pest Management. Toxins 2010, 2, 1943–1962. [Google Scholar] [CrossRef] [Green Version]
- Dieng, H.; Rajasaygar, S.; Ahmad, A.H.; Ahmad, H.; Rawi, C.S.; Zuharah, W.F.; Satho, T.; Miake, F.; Fukumitsu, Y.; Saad, A.R.; et al. Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector. Acta Trop. 2013, 128, 584–590. [Google Scholar] [CrossRef]
- Ofuya, T.I. Oviposition deterrence and ovicidal properties of some plant powders against Callosobruchus maculatus in stored cowpea (Vigna unguiculata) seeds. J. Agric. Sci. 1990, 115, 343–345. [Google Scholar] [CrossRef]
- Dieng, H.; Saifur, R.G.M.; Ahmad, A.H.; Rawi, C.S.; Boots, M.; Satho, T.; Zuharah, W.F.; Fadzly, N.; Althbyani, A.; Miake, F.; et al. Discarded cigarette butts attracts females and kill the progeny of Aedes Albopictus. J. Am. Mosquito Contr. 2011, 27, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Rojas, D.F.; Fernandes de Souza, C.R.; Pereira Oliveira, W. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Plata-Rueda, A.; Mendonça Campos, J.; da Silva Rolim, G.; Martínez, L.C.; Dos Santos, M.H.; Lemes Fernandes, F.; Serrão, J.E.; Zanuncio, J.C. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granaries. Ecotox. Environ. Saf. 2018, 156, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Manby, J. Medicinal plants of the Mapuche. J. Ethnopharmacol. 1985, 13, 89–103. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Maldonado-Miranda, J.J.; Zarate-Martinez, A.; Jacobo-Salcedo, M.D.R.; Fernández-Galicia, C.; Figueroa-Zuñiga, L.A.; Rios-Reyes, N.A.; del León-Rubio, M.A.; Medellín-Castillo, N.A.; Reyes-Munguia, A.; et al. Medicinal plants used in the Huasteca Potosina, México. J. Ethnopharmacol. 2012, 143, 292–298. [Google Scholar] [CrossRef]
- Akkari, H.; Ezzine, O.; Dhahri, S.; B’Chir, F.; Rekik, M.; Hajaji, S.; Darghouth, M.A.; Ben Jamäa, M.L.; Gharbi, M. Chemical composition, insecticidal and in vitro anthelmintic activities of Ruta chalepensis (Rutaceae) essential oil. Ind. Crop. Prod. 2015, 74, 745–751. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Raman, A.; Suryanarayanan, T.S. Fungus-plant interaction influences plant-feeding insects. Fungal Ecol. 2017, 29, 123–132. [Google Scholar] [CrossRef]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents. Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Asi, M.R.; Bashir, M.H.; Afzal, M.; Zia, K.; Akram, M. Potential of entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J. Anim. Plant Sci. 2013, 23, 913–918. [Google Scholar]
- Ortiz-Urquiza, A.; Keyhani, O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.T.; Saeed, S.; Khan, F.Z.A. Entomopathogenic fungi as effective insect pest management tactic: A review. Appl. Sci. Bus. Econ. 2014, 1, 10–18. [Google Scholar]
- Sinha, K.K.; Choudhary, A.K.; Kumari, P. Chapter 15—Entomopathogenic Fungi. In Ecofriendly Pest Management for Food Security, 1st ed.; Omkar, Ed.; Academic Press: London, UK, 2016; pp. 475–505. [Google Scholar]
- Hamlen, R.A. Biological control of insects and mites on European greenhouse crops: Research and commercial implementation. Proc. Fl. State Hortic. 1979, 92, 367–368. [Google Scholar]
- Fargues, J.; Delmas, J.C.; Lebrun, R.A. Leaf consumption by larvae of the Colorado potato beetle (Coleoptera: Chrysomelidae) infected with the entomopathogen, Beauveria bassiana. J. Econ. Entomol. 1994, 87, 67–71. [Google Scholar] [CrossRef]
- Alavo, T.B.C.; Sermann, H.; Bochow, H. Virulence of strains of the entomopathogenic fungus Verticiliium lecanii to aphids: Strain improvement. Arch. Phytopathol. Pfl. 2002, 34, 379–398. [Google Scholar] [CrossRef]
- Nunez, E.; Iannacone, J.; Gomez, H. Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chil. J. Agric. Res. 2008, 68, 21–30. [Google Scholar]
- Aguilera, A.; Cisternas, E.; Gerding, M.; Norambuena, H. Plagas de las praderas. In Praderas Para Chile, 1st ed.; Ruiz, I., Ed.; Instituto Nacional de Investigaciones Agropecuarias: Santiago, Chile, 1996; pp. 309–340. [Google Scholar]
- Rodríguez, M.; France, A.; Gerding, M. Evaluación de dos cepas del hongo Metarhizium anisopliae var. anisopliae (Metsh.) para el control de larvas de gusano blanco Hylamorpha elegans Burm. (COLEOPTERA: SCARABAEIDAE). Agric. Téc. 2004, 64, 17–24. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pests and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Battacharya, S. Chapter 3—Cultivation of essential oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 19–30. [Google Scholar]
WHO Class | LD50 for Rats (mg kg−1 Body Weight) | |
---|---|---|
Oral | Dermal | |
Ia Extremely hazardous | <5 | <50 |
Ib Highly hazardous | 5–50 | 50–200 |
II Moderately hazardous | 50–2000 | 200–2000 |
III Slightly hazardous | Over 2000 | Over 2000 |
U Unlikely to present acute hazards | 5000 or higher |
Name of Organic Pesticide | LD50 for Rats (mg kg−1 Body Weight) | WHO Class [2] | Plant Genera | Reference |
---|---|---|---|---|
Allicin | 60 | II | Allium | [95] |
Allyl sulfide | 2980 | III | Allium | [96] |
Carvacrol | 810 | II | Anabasis, Carum, Cinnamomum, Mentha, Ocimum, Origanum, Thymus, Zea | [95] |
Cinnamaldehyde | 1160 (guinea pig) | II | Cassia, Cinnamomum, Lavendula, Pogostemon | [95] |
Citronellal | 5000 | U | Citrus, Corymbia, Cymbopogon | [97] |
Citral (Geranial + Neral) | 4960 | III | Citrus, Cymbopogon, Eucalyptus, Lavendula, Lippia, Ocinum, Piper, Thymus, Zingiber | [98] |
Eucalyptol (1,8-Cineole) | 2480 | III | Alpina, Artemisia, Blumea, Cinnamomum, Curcuma, Eucalyptus, Eugenia, Laurus, Lavendula, Lippia, Mentha, Ocinum, Piper, Psidium, Rosmarinus, Salvia, Syzygium, Zingiber | [95,98] |
Eugenol | 2680 | III | Acorus, Ageratum, Alpina, Cinnamomum, Citrus, Cymbopogon, Eugenia, Lantana, Laurus, Lavendula, Myristica, Nicotiana, Ocimum, Pimpinella, Piper, Pogostemon, Syzygium | [98] |
Limonene | 4600 (lowest published lethal dose) | III | Anethum, Apium, Carum, Chenopodium, Cinnamomum, Citrus, Coriandrum, Croton, Cuminum, Cymbopogon, Eucalyptus, Hyptis, Lavendula, Lippia, Mentha, Myristica, Nicotiana, Ocimum, Origanum, Pimpinella, Piper, Rosmarinus, Salvia, Syzygium, Valeriana | [95] |
Linalool | 2790 | III | Artemisia, Cinnamomum, Citrus, Coriandrum, Cymbopogon, Eucalyptus, Laurus, Lavendula, Mentha, Myristica, Ocimum, Origanum, Rosmarinus, Salvia, Syzygium, Thymus, Zingiber | [95] |
Menthol | 3180 | III | Mentha, Thymus | [95] |
Nicotine | 1 (lowest published lethal dose, human) | Ia | Erythroxylum, Nicotiana | [95] |
Pulegone | 150 (mouse, intraperitoneal) | II | Bystropogon, Mentha, Origanum | [95] |
Thymol | 980 (mouse = 1800) | II | Anabasis, Carum, Lavendu/a, Ocimum, Origanum, Thymus | [95,98] |
Zingiberene | 5000 (as ginger oil, with 29% α-Zingiberene) | U | Zingiber | [99,100] |
Commercial Name | Active Ingredients | Pest or Disease Control |
---|---|---|
Ant Out ® | Clove oil (20%), Cottonseed oil (40%) | Ants, spiders, silverfish, crickets |
BioRepel ™ | Garlic oil (10%) | Aphids, leaf hoppers, thrips, white flies |
Bonide ® All Seasons Horticultural & Dormant Spray Oil | Mineral oil containing petroleum distillates | Aphids, bean thrips beet leafhopper, black scale, brown almond mite, California laurel aphid, caterpillar eggs, citrus red scale, citrus yellow scale, coconut mealybug, codling moth, European apple sawfly, fungus gnats, grape leafroller, greenhouse whitefly, leafminer, leafroller, mealybug, mites, oleander scale, psyllids, red-banded leafroller, scale, silverleaf whitefly, spider mite, spinach leafminer, sweet potato whitefly |
Bonide® Neem Oil Concentrate | Neem oil | Black spot, powdery mildew, rust, spider mites, aphids, whiteflies |
Garlic Barrier ® AG+ | Garlic juice (99.3%) | Ants, aphids, armadillos, armyworm, beetles, birds, caterpillar eggs, deer, grasshopper, leafhopper, leafminer, loopers, mealybug, mites, rabbits, sawflies, whitefly, wirewom |
Monterey Fruit Tree Spray Plus | Pyrethrin (0.25%), Neem oil (70%) | Powdery mildew, downy mildew, rusts, leaf spots |
Organic JMS Stylet-Oil | Paraffinic oil (97.1%) | Aphids, armyworm, beet leafhopper, black scale, brown almond mite, caterpillar eggs, citrus red scale, citrus yellow scale, fall armyworm, grape leafhopper, leafhopper, leafminer, leafroller, mealybug, mites, oleander scale, omnivorous leafroller, potato leafhopper, bean jassid, powdery mildew, psyllids, red-banded leafroller, scale, silverleaf whitefly, spider mite, spinach leafminer, sweet potato whitefly. |
Pest Out ® | Cottonseed oil (40%), Clove oil (20%), Garlic oil (10%) | Aphids, mites, thrips. |
QL Agri ® 35 | Quillaja Saponaria extract (35%) | Ectoparasite and endoparasite nematodes, control of mites and insects in different crops such as vines, citruses, tomatoes, apples, cherry trees, and walnuts. |
Commercial Name | Active Ingredients | Pests or Disease Control |
---|---|---|
Baciforte ® SCa | Bacillus subtilis strain 55, 0.1% w/v (1 × 109 CFUb/mL) | Pseudomonas syringae and Clavibacter michiganensis pv. michiganensis in tomatoes |
Bacifruit ® SC | B. subtilis strain C110, 0.1% w/v (1 × 109 CFU/mL) | Botrytis cinerea in tomatoes, lettuce, blueberry, raspberries, peppers, and table wine |
Trichoforte ® WPc | Trichoderma atroviridae strain TC (0.1% w/w), T. atroviridae strain T10 (0.1% w/w), T. harzianum strain TF (0.1% w/w), T. harzianum strain TA (0.1% w/w) (0.1% w/w = 1 × 109 CFU/g) | In tomatoes, useful to control B. cinerea: foliar disease, F. oxysporium: root disease and Phytium spp.: damping-off disease. In walnuts, control Phytophthora cinnamomi, P. citrophthora, P. cactorum: roots disease. |
Trichofruit ® WP | T. atroviride strain TC (0.1% w/w) and T. atroviride strain T10 (0.1% w/w) (0.1% w/w = 1 × 109 CFU/g) | Useful to control B. cinerea in fruits of table and grape wine, and blueberry |
Conbiol 4 ® WP | P. lilacinus strain Patagonia (4% w/w), B. bassiana strain Portezuelo (4% w/w), M. anisopliae strain Tierra del Fuego (4% w/w) and Arthrobotrys oligospora strain Josefina (4% w/w) (4% w/w=1 × 109 CFU/g) | Useful to control eggs and youth nematodes in citruses (Tylenchulus semipenetrans), grape wine nematodes (Meloydogine incognita, Xiphinema index, X. americans, Pratylenchus thornei, Paratylenchus vanderbrandei), and coleopthera (Naupactus xanthographus). |
Inbiol ® | M. anisopliae (1 × 1012 CFU/mL) and B. bassiana (1 × 1012 CFU/mL) | Useful to control Pseudococcus viburni in table and grape wine, citruses, avocados, coffee, bananas, apples and pears. |
Radiobacter ® G 84 | Agrobacterium radiobacter strain K84 | Useful to control A. tumefasciens in blueberry, raspberry, almond, peach, apricot, cherry and plum trees. Prevent infection in the roots of seedlings and nursery plants. |
Rhizobius ® | Rhyzobius lophanthae | Effective to control Aspidiotus nerii, Hemiberlesia lataniae, H. rapax, Aonidiella aurantii, Lepidosaphes ulmi. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Lara, E.F.; Valderrama, A.; Marican, A. Natural Organic Compounds for Application in Organic Farming. Agriculture 2020, 10, 41. https://doi.org/10.3390/agriculture10020041
Durán-Lara EF, Valderrama A, Marican A. Natural Organic Compounds for Application in Organic Farming. Agriculture. 2020; 10(2):41. https://doi.org/10.3390/agriculture10020041
Chicago/Turabian StyleDurán-Lara, Esteban F., Aly Valderrama, and Adolfo Marican. 2020. "Natural Organic Compounds for Application in Organic Farming" Agriculture 10, no. 2: 41. https://doi.org/10.3390/agriculture10020041
APA StyleDurán-Lara, E. F., Valderrama, A., & Marican, A. (2020). Natural Organic Compounds for Application in Organic Farming. Agriculture, 10(2), 41. https://doi.org/10.3390/agriculture10020041