Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Analyses
2.2. Phosphorus Extraction Methods
2.3. Phosphorus Indices
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physio-Chemical Properties of Collected Soils
3.2. Comparison of P Tests Extraction Efficiency
3.3. Environmental Risk Indices for P
3.3.1. Degree of P Saturation (DPS)
3.3.2. Soil P Storage Capacity (SPSC)
3.3.3. P Stability Ratio (Psat)
3.4. Correlation Analysis
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Li, P.; Xu, G.; Li, Z.; Cheng, S.; Gao, H. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. Catena 2016, 136, 175–181. [Google Scholar] [CrossRef]
- Maranguit, D.; Guillaume, T.; Kuzyakov, Y. Land-use change affects phosphorus fractions in highly weathered tropical soils. Catena 2017, 149, 385–393. [Google Scholar] [CrossRef]
- Yan, X.; Wei, Z.; Hong, Q.; Lu, Z.; Wu, J. Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma 2017, 295, 80–85. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, M.; El-Naggar, A.H.; Usman, A.R.A.; AbdulJabbar, A.; Vithanages, M.; Elfaki, J.; Al-Faraj, A.; Al-Wabel, M.I. Aging Effects of Organic and Inorganic Fertilizers on Phosphorus Fractionation in a Calcareous Sandy Loam Soil. Pedosphere 2018, 28, 873–883. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Giles, C.; Darch, T.; George, T.S.; Blackwell, M.; Stutter, M.; Shand, C.; Lumsdon, D.; Cooper, P.; Wendler, R.; et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant Soil 2018, 427, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, H.; Vandana Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 171–190. [Google Scholar]
- Brevik, E.C. Soil, food security, and human health. In Soils, Plant Growth and Crop Production; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK, 2010; Available online: http://www.eolss.net (accessed on 8 December 2019).
- Buczko, U.; Kuchenbuch, R.O. Phosphorus indices as risk-assessment tools in the U.S.A. and Europe—A review. J. Plant Nutr. Soil Sci. 2007, 170, 445–460. [Google Scholar] [CrossRef]
- Bai, J.; Ye, X.; Jia, J.; Zhang, G.; Zhao, Q.; Cui, B.; Liu, X. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 2017, 188, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Yang, S.; Zhao, C.; Wang, Z.; Shi, L.; Wu, L.; Dong, G.; Cai, M.; Hao, F.; Sung, Y. Using a nitrogen-phosphorus ratio to identify phosphorus risk factors and their spatial heterogeneity in an intensive agricultural area. Catena 2017, 149, 426–436. [Google Scholar] [CrossRef]
- Chen, M.; Alim, N.; Zhang, Y.; Xu, N.; Cao, X. Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environ. Pollut. 2018, 239, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Van der Bom, F.J.T.; McLaren, T.I.; Doolette, A.L.; Magid, J.; Frossard, E.; Oberson, A.; Jensen, L.S. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma 2019, 355, 113909. [Google Scholar] [CrossRef]
- Liu, X.; Bi, Q.; Qiu, L.; Li, K.; Yang, X.; Lin, X. Increased risk of phosphorus and metal leaching from paddy soils after excessive manure application: Insights from a mesocosm study. Sci. Total Environ. 2019, 666, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil. In Proceedings of the Western Nutrient Management Conference, Salt Lake City, UT, USA, 3–4 March 2005; Volume 6, pp. 83–93. [Google Scholar]
- Crittenden, S.J.; Ketterings, Q.M.; Knight, J.; Czymmek, K.J. Soil phosphorus saturation ratio sets comparable manure application cutoffs across states differing in agronomic soil test. Soil Sci. 2017, 182, 36–44. [Google Scholar] [CrossRef]
- Hooda, P.S.; Rendell, A.R.; Edwards, A.C.; Withers, P.J.A.; Aitken, M.N.; Truesdale, V.W. Relating Soil Phosphorus Indices to Potential Phosphorus Release to Water. J. Environ. Qual. 2000, 29, 1166–1171. [Google Scholar] [CrossRef] [Green Version]
- Pautler, M.C.; Sims, J.T. Relationships between Soil Test Phosphorus, Soluble Phosphorus, and Phosphorus Saturation in Delaware Soils. Soil Sci. Soc. Am. J. 2000, 64, 765–773. [Google Scholar] [CrossRef]
- Maguire, R.O.; Sims, J.T. Measuring Agronomic and Environmental Soil Phosphorus Saturation and Predicting Phosphorus Leaching with Mehlich 3. Soil Sci. Soc. Am. J. 2002, 66, 2033–2039. [Google Scholar] [CrossRef]
- Bortolon, L.; Ernani, P.R.; Bortolon, E.S.O.; Gianello, C.; de Almeida, R.G.O.; Welter, S.; Rogeri, D.A. Degree of phosphorus saturation threshold for minimizing P losses by runoff in cropland soils of Southern Brazil. Pesquisa Agropecuária Brasileira 2016, 51, 1088–1098. [Google Scholar] [CrossRef]
- Zheng, Z.M.; Zhang, T.Q.; Kessel, C.; Tan, C.S.; O’Halloran, I.P.; Wang, Y.T.; Speranzini, D.; Van Eerd, L.L. Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing. J. Environ. Qual. 2015, 44, 1871–1882. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus. Chemosphere 2017, 171, 106–117. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Sci. Total Environ. 2016, 566, 1080–1093. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circ. 939. US Gov. Print. Office: Washington, DC, USA, 1954. [Google Scholar]
- Allen, B.L.; Mallarino, A.P. Relationships between Extractable Soil Phosphorus and Phosphorus Saturation after Long-Term Fertilizer or Manure Application. Soil Sci. Soc. Am. J. 2006, 70, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Wünscher, P. A Comparison of Different Phosphorus Extraction Methods with the Phosphorus Uptake of Wheat). Master’s Thesis, Universität für Bodenkultur Wien Department für Wald- und Bodenwissenschaften, Wien, Austria, 2013. [Google Scholar]
- Ziadi, N.; Tran, S.T. Chapter 7 Mehlich 3-Extractable Elements. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science, Lewis Publishers: Boca Raton, FL, USA, 2007; pp. 81–88. [Google Scholar]
- Kleinman, P.J.A.; Sharpley, A.N. Estimating soil phosphorus sorption saturation from Mehlich-3 data. Commun. Soil Sci. Plant Anal. 2002, 33, 1825–1839. [Google Scholar] [CrossRef]
- Adnan, M.; Shah, Z.; Fahad, S.; Arif, M.; Alam, M.; Khan, I.A.; Mian, I.A.; Basir, A.; Ullah, H.; Arshad, M.; et al. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcifcation on bioavailability of phosphorus in alkaline soils. Sci. Rep. 2017, 7, 16131. [Google Scholar] [CrossRef] [PubMed]
- Hellal, F.; El-Sayed, S.; Zewainy, R.; Amer, A. Importance of phosphate pock application for sustaining agricultural production in Egypt. Bull. Natl. Res. Centre 2019, 43, 1. [Google Scholar] [CrossRef]
- El-Ramady, H.; Alshaal, T.; Yousef, S.; Elmahdy, S.; Faizy, S.E.; Amer, M.; El-Din, H.S.; El-Ghamry, A.M.; Mousa, A.A.; Prokisch, J.; et al. Soil Fertility and Its Security. In The Soils of Egypt; World Soils Book Series; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Belal, A.; Mohamed, E.; Saleh, A.; Jalhoum, M. Soil geography. In The Soils of Egypt; World Soils Book Series; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ebeling, A.M.; Bundy, L.G.; Kittell, A.W.; Ebeling, D.D. Evaluating the Bray P1 test on alkaline, calcareous soils. Soil Sci. Soc. Am. J. 2008, 72, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus forms and P sorption in three alkaline soils after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Abowaly, M.; Abu Alkheir, A.; Gad, A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena 2014, 113, 70–78. [Google Scholar] [CrossRef]
- Elbehiry, F.; Elbasiouny, H.; Elhenawy, A. Boron: Spatial distribution in an area of North Nile Delta, Egypt. Commun. Soil Sci. Plant Anal. 2017, 48, 294–306. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Abowaly, M.; Abu Alkheir, A.; Gad, A.; Elbehiry, F. Restoration and sequestration of carbon and nitrogen in degraded northern coastal area in Nile Delta, Egypt for climate change mitigation. J. Coast. Conserv. 2017, 21, 105–114. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Baker, D.E. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, 2nd ed.; SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Gee, G.W.; Or, D. Particle size analysis. In Methods of Soil Analysis; Dane, J.H., Top, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 1992. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis: Part 3. Chemical Methods; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Dreimanis, A. Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. J. Sediment. Petrol. 1962, 32, 520–529. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science Methods & Applications; Library of Congress Cataloging in – Publication Data: New York, NY, USA, 1995. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Fang, F.; Brezonik, P.L.; Mulla, D.J.; Hatch, L.K. Estimating runoff phosphorus losses from calcareous soils in the Minnesota River basin. J. Environ. Qual. 2002, 31, 1918–1929. [Google Scholar] [CrossRef] [PubMed]
- Dari, B.; Nair, V.D.; Harris, W.G. Approaches for evaluating subsurface phosphorus loss potential from soil Profiles. Agric. Ecosyst. Environ. 2017, 245, 92–99. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis, Part 3—Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; pp. 894–895. [Google Scholar]
- Mylavarapu, R.S.; Sanchez, J.F.; Nguyen, J.H.; Bartos, J.M. Evaluation of Mehlich1 and Mehlich-3 extraction procedures for plant nutrients in acid mineral soils of Florida. Commun. Soil Sci. Plant Anal. 2002, 33, 807–820. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis—Mineralogical, Organic and Inorganic Methods; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, sodium, potassium, rubidium, and cesium. In Methods of Soil Analysis, Part 3—Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; pp. 567–568. [Google Scholar]
- Elbehiry, F.; Elbasiouny, H.; El-Ramady, H.; Brevik, E. Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta, Egypt. Environ. Monit. Assess. 2019, 191, 713. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Groenendijk, P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands. J. Environ. Qual. 2000, 29, 111–116. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.E.; Pellerin, A.; Alimi, A.R.A.; Tremblay, C.; Simard, R.R.; Fortin, J. An agri-environmental phosphorus saturation index for acid coarse-textured soils. J. Environ. Qual. 2000, 29, 1561–1567. [Google Scholar] [CrossRef]
- Wang, Y.T.; O’Halloran, I.P.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus sorption parameters of soils and their relationships with soil test phosphorus. Soil Sci. Soc. Am. J. 2015, 79, 672–680. [Google Scholar] [CrossRef]
- Nair, V.D.; Harris, W.G. Soil phosphorus storage capacity for environmental risk assessment. Adv. Agric. 2014, 9, 723064. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhang, T.Q.; O’Halloran, I.P.; Tan, C.S.; Hu, Q.C.; Reid, D.K. Soil tests as risk indicators46z for leaching of dissolved phosphorus from agricultural soils in Ontario. Soil Sci. Soc. Am. J. 2012, 76, 220–229. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Ruiz-Sinoga, J.D.; Aymerich, F.R.; Brevik, E.C.; Cerdà, A. Ecosystem responses to land abandonment in Western Mediterranean Mountains. Catena 2017, 149, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Khaledian, Y.; Quinton, J.; Brevik, E.C.; Pereira, P.; Zeraatpisheh, M. Developing global pedotransfer functions to estimate available soil phosphorus. Sci. Total Environ. 2018, 644, 1110–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Promkutkaew, A.; Grunberger, O.; Bhuthorndharaj, S.; Noble, A.D. Management of tropical sandy soils for sustainable agriculture—“A holistic approach for sustainable development of problem soils in the tropics”. In Proceedings of the FAO, Khon Kaen, Thailand, 27 November–2 December 2005. [Google Scholar]
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattah, M.A.; Tazikeh, H. Modeling soil cation exchange capacity in multiple countries. Catena 2017, 158, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Hu, G.; Yue, G.; Sheng, Y.; Wu, J.; Chen, J.; et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Sci. Total Environ. 2018, 622, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, F.; Zhang, M.; Chen, S.; Tan, X.; Liu, M.; Hu, Z. The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges reservoir, China. J. Soils Sediments 2018, 18, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Kabala, C.; Galka, B.; Labaz, B.; Anjos, L.; Cavassani, R.D. Towards more simple and coherent chemical criteria in a classification of anthropogenic soils: A comparison of phosphorus tests for diagnostic horizons and properties. Geoderma 2018, 320, 1–11. [Google Scholar] [CrossRef]
- Jalali, M. Phosphorous status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environ. Geol. 2007, 53, 365–374. [Google Scholar] [CrossRef]
- Hernández, J.; Berger, A.; Dambrosi, E.; Lavecchia, A. Soil Phosphorus Tests for Flooded Rice Grown in Contrasting Soils and Cropping History. Commun. Soil Sci. Plant Anal. 2013, 44, 1193–1210. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Rubæk, G.H.; Ehlert, P.A.I.; Genot, V.; Hofman, G.; Goulding, K.; Recjnagel, J.; Provolo, G.; Barraclough, P. An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use Manag. 2012, 28, 419–435. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Sawyer, J.E.; Barnhart, S.K. A General Guide for Crop Nutrient and Limestone Recommendations in Iowa; Iowa State University, Extension and Outreach: Ames, IA, USA, 2013; p. 16. [Google Scholar]
- Sims, J.T. Soil test phosphorus: Principles and methods. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters Second Edition; Kover, J.L., Pierzynski, G.M., Eds.; Virginia Tech University: Blacksburg, VA, USA, 2009; pp. 9–19. [Google Scholar]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2014, 189, 216–228. [Google Scholar] [CrossRef]
- Abboud, F.Y.; Favaretto, N.; Motta, A.C.V.; Barth, G.; Goularte, G.D. Phosphorus mobility and degree of saturation in Oxisol under no-tillage after long-term dairy liquid manure application. Soil Tillage Res. 2018, 177, 45–53. [Google Scholar] [CrossRef]
- Breeuwsma, A.; Reijerink, J.G.A.; Schoumans, O.F. Impact of manure on accumulation and leaching of phosphate in areas of intensive livestock farming. In Animal Waste and the Land–Water Interface; Steele, K., Ed.; Lewis Publ. CRC Press: New York, NY, USA, 1995; pp. 239–249. [Google Scholar]
- Pöthig, R.; Behrendt, H.; Opitz, D.; Furrer, G. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems. Environ. Sci. Pollut. Res. 2010, 17, 497–504. [Google Scholar] [CrossRef]
- Fischer, P.; Pöthig, R.; Gücker, B.; Venohr, M. Phosphorus saturation and superficial fertilizer application as key parameters to assess the risk of diffuse phosphorus losses from agricultural soils in Brazil. Sci. Total Environ. 2018, 630, 1515–1527. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nair, V.; Harris, W.; Rhue, R. Environmentally relevant phosphorus retention capacity of sandy Coastal Plain soils. Soil Sci. 2012, 177, 701–707. [Google Scholar] [CrossRef]
- Nair, V.D.; Harris, W.G. A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment. N. Z. J. Agric. Res. 2004, 47, 491–497. [Google Scholar] [CrossRef]
- Pellerin, A.; Parent, L.-É.; Fortin, J.; Tremblay, C.; Khiari, L.; Giroux, M. Environmental Mehlich-III soil phosphorus saturation indices for Quebec acid to near neutral mineral soils varying in texture and genesis. Can. J. Soil Sci. 2006, 86, 711–723. [Google Scholar] [CrossRef]
- Mallarino, A.P. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. J. Prod. Agric. 1997, 10, 163–167. [Google Scholar] [CrossRef]
- Boem, M.F.H.G.; Rubio, G.; Barbero, D. Soil Phosphorus Extracted by Bray 1 and Mehlich 3 Soil Tests as Affected by the Soil/Solution Ratio in Mollisols. Commun. Soil Sci. Plant Anal. 2011, 42, 220–230. [Google Scholar] [CrossRef]
- Daly, K.; Styles, D.; Lalor, S.; Wall, D.P. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur. J. Soil Sci. 2015, 66, 792–801. [Google Scholar] [CrossRef]
- Hughes, S.; Reynold, B.; Bell, S.A.; Gardner, C. Simple phosphorus saturation index to estimate risk of dissolved P in runoff from arable soils. Soil Use Manag. 2000, 16, 206–210. [Google Scholar] [CrossRef]
- Lookman, R.; Jansen, K.; Merckx, R.; Vlassak, K. Relationship between soil properties and phosphate saturation parameters. A transect study in northern Belgium. Geoderma 1996, 69, 265–274. [Google Scholar] [CrossRef]
Soil Parameters | Soil Texture | ||||
---|---|---|---|---|---|
Sand n = 16 | Loam n = 5 | Silt Clay Loam n = 11 | Silt Clay n = 13 | Silt Loam N = 5 | |
pH | 8.74 a ± 0.24 | 8.61 a ± 0.42 | 8.73 a ± 0.45 | 8.52 a ± 0.39 | 8.97 a ± 0.63 |
EC dS m−1 | 9.56 a ± 3.7 | 4.0 b ± 3.7 | 2.9 b ± 1.8 | 3.2 b ± 1.4 | 3.8 b ± 1.6 |
SOM % | 0.25 b ± 0.1 | 0.95 a ± 0.39 | 1.08 a ± 0.39 | 1.40 a ± 0.66 | 1.20 a ± 0.81 |
Mg mg kg−1 | 1026 c ± 416 | 2162.1 b ± 138.6 | 3425.5 a ± 769.3 | 3375.3 a ± 722.3 | 2606.3 b ± 201.1 |
K mg kg−1 | 183.7 b ± 97.1 | 306.6 b ± 280.1 | 745.1 a ± 251.4 | 669.5 a ± 236.7 | 599.1 a ± 309.7 |
Ca mg kg−1 | 2338.7 b ± 1309.8 | 5951.1 a ± 1325 | 6392.2 a ± 1510.1 | 6378.8 a ± 1741.8 | 6477.4 a ± 1978.8 |
Na mg kg−1 | 4008.1 a ± 2658.5 | 2064.2 b ± 1325.3 | 2085.3 b ± 1165.5 | 2539.2 b ± 1143.1 | 2460.3 b ± 749.8 |
CEC meq 100 g−1 | 10.1 d ± 3.5 | 35.1 c ± 1.6 | 42.3 ab ± 4.7 | 44.11 a ± 6.6 | 37.9 bc ± 7.3 |
CCE % | 1.5 b ± 0.8 | 2.0 ab ± 0.9 | 4.2 a ± 3.8 | 3.0 ab ± 1.2 | 2.6 ab ± 0.9 |
Fe mg kg−1 | 84.6 b ± 20.6 | 116.5 ab ± 52.5 | 140.5 a ± 41.1 | 134.7 a ± 29.9 | 143.5 a ± 68.5 |
Al mg kg−1 | 116.5 c ± 44.2 | 480.1 b ± 50.5 | 524.1 b ± 37.9 | 593.1 a ± 51.2 | 494.8 b ± 69.3 |
Sand % | 94 a ± 12.5 | 37 b ± 5.1 | 9 cd ± 5.8 | 4 d ± 3.2 | 15 c ± 7.3 |
Silt % | 3 c ± 2.9 | 45 b ± 3.6 | 56 a ± 6.3 | 50 b ± 4.4 | 61 a ± 6.9 |
Clay % | 3 e ± 3.1 | 18 d ± 7.7 | 35 b ± 4.5 | 46 a ± 3.6 | 24 c ± 1.4 |
Soil Parameters | Soil Texture | |||||
---|---|---|---|---|---|---|
Sand n = 16 | Loam n = 5 | Silt Clay Loam n = 11 | Silt Clay n = 13 | Silt Loam n = 5 | ||
POlsen mg/kg | Mean | 1.2 b | 3.5 ab | 5.0 ab | 6.3 a | 4.3 ab |
Max | 3.13 | 7.4 | 11.2 | 18.0 | 7.0 | |
Min | 0.12 | 0.4 | 0.9 | 0.7 | 1.8 | |
SD | 0.81 | 3.0 | 2.6 | 4.1 | 2.2 | |
PBray mg/kg | Mean | 12.0 a | 17.3 a | 21.8 a | 20.8 a | 20.1 a |
Max | 24.8 | 26.8 | 34.9 | 48.7 | 38.8 | |
Min | 4.1 | 9.5 | 9.4 | 7.5 | 8.4 | |
SD | 5.2 | 8.1 | 9.1 | 10.5 | 12.6 | |
PM3 mg/kg | Mean | 17.2 b | 26.0 ab | 42.9 a | 35.3 ab | 32.6 ab |
Max | 40.2 | 37.4 | 80.9 | 81.7 | 80.2 | |
Min | 2.7 | 15.5 | 14.6 | 4.6 | 5.6 | |
SD | 9.6 | 11.1 | 20.5 | 20.3 | 19.5 |
Soil Parameters | Soil Texture | |||||
---|---|---|---|---|---|---|
Sand n = 16 | Loam n = 5 | Silt Clay Loam n = 11 | Silt Clay n = 13 | Silt Loam n = 5 | ||
DPS % | Mean | 10.9 a | 4.3 b | 6.5 b | 4.7 b | 3.3 b |
Max | 25.9 | 6.6 | 13.5 | 9.9 | 5.1 | |
Min | 3.07 | 2.6 | 2.1 | 0.6 | 1.0 | |
SD | 5.3 | 1.6 | 2.6 | 2.8 | 1.8 | |
SPSC | Mean | 5.8 b | 37.4 a | 30.6 a | 43.1 a | 39..1 a |
Max | 16.6 | 48.7 | 57.4 | 71.6 | 54.2 | |
Min | -2.7 | 21.3 | 3.5 | 7.9 | 1.6 | |
SD | 3.2 | 12.4 | 19.0 | 18.6 | 12.1 | |
PM3/CaM3 | Mean | 2.4 a | 0.63 b | 0.94 b | 0.85 b | 0.83 b |
Max | 5.4 | 1.03 | 2.1 | 2.7 | 2.2 | |
Min | 0.1 | 0.3 | 0.2 | 0.1 | 0.08 | |
SD | 1.0 | 0.14 | 0.40 | 0.51 | 0.50 | |
PM3/AlM3 | Mean | 14.6 a | 4.9 b | 7.3 b | 5.1 b | 5.9 b |
Max | 36.8 | 7.9 | 14.4 | 10.8 | 16.4 | |
Min | 3.3 | 2.9 | 2.3 | 1.7 | 1.10 | |
SD | 8.8 | 2.4 | 3.8 | 3.0 | 2.4 |
POlsen | PBray | PM3 | pH | EC | OM | Mg | K | Ca | Na | CEC | CCE | Fe | Al | Sand | Silt | Clay | DPS | SPSC | P/Ca | P/Al | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POlsen | 1 | ||||||||||||||||||||
PBray | 0.82 ** | 1 | |||||||||||||||||||
PM3 | 0.69 ** | 0.94 ** | 1 | ||||||||||||||||||
pH | −0.13 | 0.11 | 0.11 | 1 | |||||||||||||||||
EC | −0.38 ** | −0.32 * | −0.30 * | −0.10 | 1 | ||||||||||||||||
OM | 0.21 | −0.02 | −0.01 | −0.38 * | −0.49 ** | 1 | |||||||||||||||
Mg | 0.47 ** | 0.23 | 0.31 * | −0.10 | −0.46 ** | 0.64 ** | 1 | ||||||||||||||
K | 0.54** | 0.60 ** | 0.65 ** | 0.19 | −0.34 * | 0.28 * | 0.69 ** | 1 | |||||||||||||
Ca | 0.24 | 0.03 | 0.09 | −0.16 | −0.72 ** | 0.69 ** | 0.70 ** | 0.31 * | 1 | ||||||||||||
Na | 0.00 | 0.02 | −0.01 | −0.05 | 0.82 ** | −0.38 * | −0.20 | 0.09 | −0.53 ** | 1 | |||||||||||
CEC | 0.45 ** | 0.26 | 0.32 * | −0.22 | −0.66 ** | 0.79 ** | 0.86 ** | 0.62 ** | 0.84 ** | −0.33 * | 1 | ||||||||||
CCE | 0.19 | 0.03 | 0.09 | −0.20 | −0.39 * | 0.45 * | 0.61 ** | 0.27 | 0.64 ** | −0.36 * | 0.55 ** | 1 | |||||||||
Fe | 0.50 ** | 0.22 | 0.18 | −0.14 | −0.29 * | 0.49 ** | 0.67 ** | 0.47 ** | 0.40 ** | −0.11 | 0.57 ** | 0.44 * | 1 | ||||||||
Al | 0.59 ** | 0.42 * | 0.45 * | −0.16 | −0.63 ** | 0.70 ** | 0.85 ** | 0.65 ** | 0.68 ** | −0.26 | 0.92 ** | 0.44 * | 0.60 ** | 1 | |||||||
Sand | −0.55 ** | −0.39 * | −0.42 * | 0.09 | 0.65 ** | −0.69 ** | −0.88 ** | −0.71 ** | −0.75 ** | 0.28 * | −0.95 ** | −0.52 ** | −0.57 ** | −0.96 ** | 1 | ||||||
Silt | 0.53 ** | 0.43 * | 0.45 * | −0.04 | −0.65 ** | 0.64 ** | 0.83 ** | 0.68 ** | 0.74 ** | −0.28 * | 0.90 ** | 0.53 ** | 0.59 ** | 0.92 ** | −0.96 ** | 1 | |||||
Clay | 0.51 ** | 0.29 * | 0.32 * | −0.16 | −0.59 ** | 0.67 ** | 0.84 ** | 0.63 ** | 0.68 ** | −0.24 | 0.88 ** | 0.44 * | 0.49 ** | 0.90 ** | −0.93 ** | 0.82 ** | 1 | ||||
DPS | −0.06 | 0.25 | 0.26 | 0.17 | 0.22 | −0.49 ** | −0.55 ** | −0.26 | −0.48 ** | 0.07 | −0.56 ** | −0.31 * | −0.44 * | −0.58 ** | 0.58 ** | −0.55 ** | −0.56 ** | 1 | |||
SPSC | 0.14 | −0.15 | −0.15 | −0.13 | −0.47 ** | 0.72 ** | 0.71 ** | 0.32 * | 0.70 ** | 0.30 * | 0.78 ** | 0.43 * | 0.50 ** | 0.77 ** | −0.77 ** | 0.74 ** | 0.74 ** | −0.87 | 1 | ||
P/Ca | −0.12 | 0.08 | 0.10 | −0.02 | 0.78 ** | −0.54 ** | −0.43 * | −0.11 | −0.74 ** | 0.74 ** | −0.59 ** | −0.40 * | −0.27 | −0.49 ** | 0.53 ** | −0.51 ** | −0.50 ** | 0.43 * | −0.59 ** | 1 | |
P/Al | −0.11 | 0.25 | 0.25 | 0.25 | 0.30 * | −0.53 ** | 0.59 ** | −0.25 | −0.59 ** | 0.13 | −0.61 ** | −0.35 * | −0.42 * | −0.60 ** | 0.60 ** | −0.55 ** | −0.60 ** | 0.94 ** | −0.81 ** | 0.51 | 1 |
Parameters | Rotated Component Matrix a | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
POlsen | 0.36 | 0.82 | 0.04 | −0.19 |
PBray | 0.11 | 0.98 | 0.05 | 0.07 |
PM3 | 0.14 | 0.93 | 0.053 | 0.14 |
pH | −0.14 | 0.04 | 0.08 | 0.94 |
EC | −0.38 | −0.26 | −0.85 | −0.12 |
OM | 0.73 | −0.12 | 0.34 | −0.33 |
Mg | 0.93 | 0.14 | 0.12 | 0.03 |
K | 0.66 | 0.53 | −0.15 | 0.39 |
Ca | 0.67 | −0.07 | 0.63 | −0.10 |
Na | −0.08 | 0.06 | −0.93 | −0.01 |
CEC | 0.89 | 0.18 | 0.35 | −0.09 |
CCE | 0.55 | −0.07 | 0.36 | −0.17 |
Fe | 0.69 | 0.16 | −0.03 | −0.15 |
B | 0.63 | 0.39 | −0.30 | 0.36 |
Al | 0.86 | 0.34 | 0.24 | −0.06 |
Si | 0.71 | 0.44 | −0.08 | 0.18 |
Sand | −0.89 | −0.29 | −0.28 | −0.02 |
Silt | 0.84 | 0.32 | 0.30 | 0.05 |
Clay | 0.85 | 0.22 | 0.23 | −0.08 |
DSP | −0.90 | 0.26 | −0.02 | 0.01 |
SPSC | 0.09 | −0.12 | 0.29 | 0.03 |
P/Ca | −0.40 | 0.11 | −0.81 | 0.05 |
P/Al | −0.88 | 0.24 | −0.11 | −0.08 |
Parameters | Component | Initial Eigenvalues | ||
Total | Total | % of Variance | Cumulative % | |
POlsen | 1 | 10.045 | 52.866 | 52.866 |
PBray | 2 | 3.076 | 16.191 | 69.058 |
PM3 | 3 | 1.605 | 8.447 | 77.505 |
pH | 4 | 1.199 | 6.309 | 83.814 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbasiouny, H.; Elbehiry, F.; El-Ramady, H.; Brevik, E.C. Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture 2020, 10, 172. https://doi.org/10.3390/agriculture10050172
Elbasiouny H, Elbehiry F, El-Ramady H, Brevik EC. Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture. 2020; 10(5):172. https://doi.org/10.3390/agriculture10050172
Chicago/Turabian StyleElbasiouny, Heba, Fathy Elbehiry, Hassan El-Ramady, and Eric C. Brevik. 2020. "Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils" Agriculture 10, no. 5: 172. https://doi.org/10.3390/agriculture10050172
APA StyleElbasiouny, H., Elbehiry, F., El-Ramady, H., & Brevik, E. C. (2020). Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture, 10(5), 172. https://doi.org/10.3390/agriculture10050172