CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Stress Treatment
2.2. Isolation of the CsICE1 and Bioinformatics Analysis
2.3. Subcellular Localization of CsICE1
2.4. Expression Analysis by Quantitative Real-Time RT-PCR
2.5. Generation and Characterization of Transgenic Plants
2.6. Determination of Polyamines Levels
2.7. Cold Stress Assay of the Transgenic Plants
2.8. Transactivation Activity Assay
2.9. Physiological Measurements
2.10. Statistical Analysis
3. Results
3.1. Isolation and Bioinformatics Analysis of CsICE1
3.2. Subcellular Localization of CsICE1
3.3. Tissue-Specific Expression and Stress-Responsive Expression Patterns of CsICE1
3.4. Overexpression of CsICE1 Confers Cold tolerance in Transgenic Arabidopsis
3.5. CsICE1 Interacts With CsADC
3.6. Transgenic Arabidopsis Have Higher Level of ADC Transcript and Free Polyamines
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoard, K.G.; Crosbie, T.M. Correlated changes in agronomic traits from S1-line recurrent selection for cold tolerance in two maize populations. Crop Sci. 1986, 26, 519–522. [Google Scholar] [CrossRef]
- Nakashima, K.; Ito, Y.; Yamaguchi-Shinozaki, K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009, 149, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Gene regulation during cold acclimation in plants. Physiol. Plant. 2006, 126, 52–61. [Google Scholar] [CrossRef]
- Medina, J.; Catala, R.; Salinas, J. The CBFs, three Arabidopsis transcription factors to cold acclimate. Plant Sci. 2011, 180, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.H.; Peng, T.; Dai, W.S. Critical cis-acting elements and interacting transcription factors, key players associated with abiotic stress responses in plants. Plant Mol. Biol. Rep. 2014, 32, 303–317. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.K.; Sunkar, R. Gene regulation during cold stress acclimation in plants. Methods Mol. Biol. 2010, 639, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.H.; Henderson, D.A.; Zhu, J.K. The Arabidopsis cold responsive transcriptome and its regulation by ICE1. Plant Cell 2005, 17, 3155–3175. [Google Scholar] [CrossRef] [Green Version]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Ohta, M.; Kanrar, S.; Lee, B.H.; Hong, X.H.; Agarwal, M.; Zhu, J.K. ICE1, a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev. 2003, 17, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.M.; Zhao, Q.; Zhao, L.L.; Qiao, Y.; Xie, X.B.; Li, H.F.; Yao, Y.X.; You, C.X.; Hao, Y.J. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol. 2012, 12, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.L.; Ma, N.N.; Meng, X.; Zhang, S.; Wang, J.R.; Chai, S.; Meng, Q.W. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol. Biochem. 2013, 73, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.S.; Wang, W.; Zhang, Q.; Liu, J.H. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013, 162, 1178–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, W.; Kuang, J.F.; Lu, W.J.; Chen, J.Y. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. Plant Cell Environ. 2014, 37, 2116–2127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Feng, Z.G.; Yang, H.M.; Zhu, X.P.; Liu, J.; Yuan, H.Y. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco. Biochem. Biophys. Res. Commun. 2010, 394, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.W.; Zhao, Q.; Jing, S.L.; Chen, S.F.; Yuan, H.Y. Identification of genes induced in response to low-temperature treatment in tea leaves. Plant Mol. Biol. Rep. 2009, 27, 257–265. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Qian, W.; Yao, L.; Hao, X.; Li, N.; Yang, Y.; Wang, X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Ann. Bot. 2017, 119, 1195–1209. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Li, Q.; Hu, J.; Wang, M.; Li, X. Molecular cloning and characterization of spermine synthesis gene associated with cold tolerance in tea plant (Camellia sinensis). Appl. Biochem. Biotechnol. 2015, 177, 1055–1068. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, C.J.; Li, Y.Y.; Wei, C.L.; Deng, W.W. CsICE1 and CsCBF1: Two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep. 2012, 31, 27–34. [Google Scholar] [CrossRef]
- Ding, Z.T.; Li, C.; Shi, H.; Wang, H.; Wang, Y. Pattern of CsICE1 expression under cold or drought treatment and functional verification through analysis of transgenic Arabidopsis. Genet. Mol. Res. 2015, 14, 11259–11270. [Google Scholar] [CrossRef]
- Zhu, X.J.; Thalor, S.K.; Takahashi, Y.; Berberich, T.; Kusano, T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant Cell Environ. 2012, 35, 2014–2030. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.H.; Li, J.; Guo, S.R.; Tezuka, T. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth. Res. 2009, 100, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Shi, C.; Wan, X.; Tang, Z. Cloning and sequence analysis of arginine decarboxylase gene from Camellia sinensis. J. Anhui Agricul. Univ. 2013, 40, 464–469. (In Chinese) [Google Scholar]
- Chen, H.C.; Hsieh-Feng, V.; Liao, P.C.; Cheng, W.H.; Liu, L.Y.; Yang, Y.W.; Lai, M.H.; Chang, M.C. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol. Biol. 2017, 94, 531–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Hir, R.; Castelain, M.; Chakraborti, D.; Moritz, T.; Dinant, S.; Bellini, C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol. Plant. 2017, 160, 312–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo-Ortiz, G.; Huq, E.; Quail, P.H. The Arabidopsis basic/helixloop-helix transcription factor family. Plant Cell 2003, 15, 1749–1770. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.C.; Lopez-Cobollo, R.; Alcazar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; Tiburcio, A.F.; Ferrando, A. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol. 2008, 148, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Kou, S.; Chen, L.; Tu, W.; Scossa, F.; Wang, Y.; Liu, J.; Fernie, A.R.; Song, B.; Xie, C. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant J. 2018, 96, 1283–1298. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, P.P.; Chen, C.L.; Wang, Y.; Fu, X.Z.; Liu, J.H. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J. Exp. Bot. 2011, 62, 2899–2914. [Google Scholar] [CrossRef]
Primers | Sequence (5´-3´) | Remarks |
---|---|---|
Csβ-actin-F | GCCATCTTTGATTGGAATGG | Internal reference |
Csβ-actin-R | GGTGCCACAACCTTGATCTT | Internal reference |
CsICE1-FL-F | ATGGAAGTGAGTGAAGTGAATGAG | ORF amplification |
CsICE1-FL-R | AAGAAACCTACATCATGAAGCCAGC | ORF amplification |
CsICE1-gfp-F | GCTCTAGAATGGAAGTGAGTGAAGTGAATGAG | Subcellular localization |
CsICE1-gfp-R | CGGGATCCAAGAAACCTACATCATGAAGCCAGC | Subcellular localization |
CsICE1-Q-F | ATGTTTTGTAGCCGCAGAC | qPCR |
CsICE1-Q-R | GCTTTGATTTGGTCAGGATG | qPCR |
AtADC1-Q-F | accgtacgattgattacga | qPCR |
AtADC1-Q-R | taacttaaaactttaaaac | qPCR |
AtADC2-Q-F | atcgtaaaatcgtcattgta | qPCR |
AtADC2-Q-R | tcatggatctcatcatgcct | qPCR |
Plants | Pn (μmol·m−2·s−1) | Tr (mmol·m−2·s−1) | Sc (μmol·m−2·s−1) | WUE (CO2 (mmol·mol−1 H2O)) |
---|---|---|---|---|
WT | 5.13 ± 0.36b | 3.47 ± 0.16b | 89.36 ± 7.43c | 2.08 ± 0.12b |
T2-9 | 7.64 ± 0.31a | 4.88 ± 0.17a | 134.72 ± 10.35a | 2.19 ± 0.17a |
T3-4 | 7.33 ± 0.32a | 4.46 ± 0.12a | 120.27 ± 2.12a | 2.14 ± 0.12a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhao, X.; Ren, T.; Ma, Y.; Wang, Y.; Fang, W. CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree. Agriculture 2020, 10, 201. https://doi.org/10.3390/agriculture10060201
Zhu X, Zhao X, Ren T, Ma Y, Wang Y, Fang W. CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree. Agriculture. 2020; 10(6):201. https://doi.org/10.3390/agriculture10060201
Chicago/Turabian StyleZhu, Xujun, Xue Zhao, Taiyu Ren, Yuanchun Ma, Yuhua Wang, and Wanping Fang. 2020. "CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree" Agriculture 10, no. 6: 201. https://doi.org/10.3390/agriculture10060201
APA StyleZhu, X., Zhao, X., Ren, T., Ma, Y., Wang, Y., & Fang, W. (2020). CsICE1 Functions in Cold Tolerance by Regulating Polyamine levels May through Interacting with Arginine Decarboxylase in the Tea Tree. Agriculture, 10(6), 201. https://doi.org/10.3390/agriculture10060201