Assessment of Efficiency of Nutrient Uptake of Different Sources of Zn, Mn, Cu and B in Zea mays
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Micronutrient Deficiencies in Global Crop Production; Springer: Heidelberg, Germany, 2008. [Google Scholar]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. 2017, 8, 1–12. [Google Scholar]
- Brady, N.C.; Weil, R.R. Soil Aeration and Temperature. In The Nature and Properties of Soil, 12th ed.; Prentice Hall: New York, NY, USA, 1999; pp. 265–306. [Google Scholar]
- Sims, J.L.; Patrick, W.H. The Distribution of Micronutrient Cations in Soil Under Conditions of Varying Redox Potential and pH. Soil Sci. Soc. Am. J. 1978, 42, 258–262. [Google Scholar] [CrossRef]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil. Till. Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; IZA: Brussels, Belgium; IFA: Paris, France, 2008. [Google Scholar]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Vallee, B.L.; Auld, D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef] [PubMed]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant. Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Reid, R. Update on boron toxicity and tolerance in plants. In Advances in Plant and Animal Boron Nutrition; Springer: Dordrecht, The Netherlands, 2007; pp. 83–90. [Google Scholar]
- Blevins, D.G.; Lukaszewski, K.M. Boron in plant structure and function. Annu. Rev. Plant. Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Romheld, V. Boron in plant biology. Plant. Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Bassil, E.; Hu, H.; Brown, P.H. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant. Physiol. 2004, 136, 3383–3395. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Yruela, I. Copper in plants. Braz. J. Plant. Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant. Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Manganese uptake and transport in plants. In Metal Ions in Biological Systems; Siegel, H., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 105–136. [Google Scholar]
- Ahangar, A.G.; Karimian, N.; Abtahi, A.; Assad, M.T.; Emam, Y. Growth and manganese uptake by soybean in highly calcareous soils as affected by native and applied manganese and predicted by nine different extractants. Commun. Soil Sci. Plan. 1995, 26, 1441–1454. [Google Scholar] [CrossRef]
- Ndakidemi, P.A.; Bambara, S.; Makoi, J.H. Micronutrient uptake in common bean (Phaseolus vulgaris L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant. Omics 2011, 4, 40–52. [Google Scholar]
- Altland, J.E. Managing Manganese Deficiency in Nursery Production of Red Maple; OSU Extension Service: Corvallis, OR, USA, 2006; pp. 1–8. [Google Scholar]
- Shuman, L.M. Micronutrient fertilizers. J. Crop. Prod. 1998, 1, 165–195. [Google Scholar] [CrossRef]
- Amrani, M.; Westfall, D.G.; Peterson, G.A. Influence of water solubility of granular zinc fertilizers on plant uptake and growth. J. Plant. Nutr. 1999, 22, 1815–1827. [Google Scholar] [CrossRef]
- Wallace, A. Role of chelating agents on the availability of nutrients to plants. Soil Sci. Soc. Am. J. 1963, 27, 176–179. [Google Scholar] [CrossRef]
- Oviedo, C.; Rodríguez, J. EDTA: The chelating agent under environmental scrutiny. Quim. Nova 2003, 26, 901–905. [Google Scholar] [CrossRef] [Green Version]
- Reuther, W. Copper and soil fertility. In The Yearbook of Agriculture; Stefferud, A., Ed.; United States Department of Agriculture: Washington, DC, USA, 1957; pp. 128–135. [Google Scholar]
- Sherman, G.D. Manganese and soil fertility. In The Yearbook of Agriculture; Stefferud, A., Ed.; United States Department of Agriculture: Washington, DC, USA, 1957; pp. 135–139. [Google Scholar]
- Amrani, M.; Westfall, D.G.; Peterson, G. Zinc Plant Availability as Influenced by Zinc Fertilizer Sources and Zinc Water-Solubility; Technical Bulletin TB97-4; Colorado State University Agricultural Experiment Station: Fort Collins, CO, USA, September 1997. [Google Scholar]
- Martens, D.C.; Westermann, D.T. Fertilizer application for correcting micronutrient deficiencies. In Micronutrients in Agriculture, 2nd ed.; SSSA Book Series, No. 4; SSSA: Madison, WI, USA, 1991; pp. 549–592. [Google Scholar]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant. Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Phattarakul, N.; Rerkasem, B.; Li, L.J.; Wu, L.H.; Zou, C.Q.; Ram, H.; Sohu, V.S.; Kang, F.S.; Surek, H.; Kalayci, M.; et al. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant. Soil 2012, 361, 131–141. [Google Scholar] [CrossRef]
- Zou, C.Q.; Zhang, Y.Q.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.Z.; Ortiz-Monasterio, I.; Simunji, S.; Wang, Z.H.; Sohu, V.; et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant. Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Bryson, G.; Mills, H. Plant Analysis Handbook IV; Micro-Macro Publishing: Athens, Greece, 2014. [Google Scholar]
- Maftoum, M.; Karimian, N. Relative efficiency of two zinc sources for maize (Zea mays L.) in two calcareous soils from an arid area of Iran. Agronomie 1989, 9, 771–775. [Google Scholar] [CrossRef] [Green Version]
- Westfall, D.G.; Gangloff, W.J.; Peterson, G.A.; Mortvedt, J.J. Organic and inorganic fertilisers: Relative availability; Technical Bulletin (TB)00-1; Colorado State University Agricultural Experiment Station: Fort Collins, CO, USA, 2000. [Google Scholar]
- McBeath, T.M.; McLaughlin, M.J. Efficacy of zinc oxides as fertilisers. Plant. Soil 2014, 374, 843–855. [Google Scholar] [CrossRef]
- Schulte, E.E.; Walsh, L.M. Soil and Foliar Applied Zinc; University of Wisconsin Cooperative Extension: Madison, WI, USA, 1982; p. A2528. [Google Scholar]
- Schulte, E.E.; Kelling, K.A. Soil and Applied Manganese: Understanding Plant Nutrients; University of Wisconsin Cooperative Extension: Madison, WI, USA, 1999; p. A2526. [Google Scholar]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach, 2nd ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Mortvedt, J.J.; Woodruff, J.R. Technology and application of boron fertilizers for crops. In Boron and Its Role in Crop Production; CRC Press: Boca Raton, FL, USA, 1993; pp. 158–174. [Google Scholar]
- Follet, R.; Donahue, R.; Murphy, L. Soil and Soil Amendments; Prentice-Hall: Upper Saddle River, NJ, USA, 1981. [Google Scholar]
- Sparr, M.C. Micronutrient needs—which, where, on what—in the United States. Commun. Soil Sci. Plan. 1970, 1, 241–262. [Google Scholar] [CrossRef]
- Broschat, T.K. Release rates of soluble and controlled-release boron fertilizers. HortTechnology 2008, 18, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Babu, T.; Martin, E.; Geiger, R.A.; Gaige, A.R. Multi-Source Micronutrient Composition and Methods of Treating Soil with the Same. US Patent App. 16/252,120, 18 January 2019. [Google Scholar]
- Tilman, D.; Cassmann, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations. Current World Fertilizer Trends and Outlook to 2016; Food and Agricultural Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
Growing Media | Organic Matter (%) | CEC (meq/100 g) | Zn (ppm) | Mn (ppm) | Cu (ppm) | B (ppm) |
---|---|---|---|---|---|---|
Top Soil and Sand-1 | 3.5 | 9.5 | 1.3 | 10 | 0.5 | 0.2 |
Top Soil and Sand-2 | 3.8 | 9.1 | 1.2 | 9 | 0.5 | 0.2 |
Top Soil and Sand-3 | 3.8 | 9.6 | 1.3 | 8 | 0.5 | 0.2 |
Top Soil-1 | 8.7 | 16.8 | 2.1 | 7 | 0.9 | 0.4 |
Top Soil-2 | 10.4 | 19.7 | 2 | 5 | 0.9 | 0.3 |
Top Soil-3 | 9.5 | 17.9 | 1.8 | 6 | 0.7 | 0.2 |
Zinc Trials | Top Soil Experiment 1 | Top Soil Experiment 2 | Top Soil—Average | Top Soil and Sand Experiment 1 | Top Soil and Sand Experiment 2 | Top Soil and Sand—Average | ||||
Treatments | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
NPK | 0.0451 | 0.0023 | 0.0528 | 0.0059 | 0.0489 | 0.034 | 0.004 | 0.0184 | 0.0022 | 0.0262 |
Zinc EDTA | 0.1363 | 0.0063 | 0.1343 | 0.0166 | 0.1353 | 0.1147 | 0.0086 | 0.1116 | 0.0326 | 0.1131 |
Zinc Oxide | 0.0839 | 0.004 | 0.0719 | 0.0169 | 0.0779 | 0.0836 | 0.0039 | 0.0317 | 0.0026 | 0.0576 |
Zinc Sulfate | 0.148 | 0.0045 | 0.1474 | 0.023 | 0.1477 | 0.1245 | 0.0133 | 0.1297 | 0.013 | 0.1271 |
Manganese Trials | Top Soil Experiment 1 | Top Soil Experiment 2 | Top Soil—Average | Top Soil and Sand Experiment 1 | Top Soil and Sand Experiment 2 | Top Soil and Sand—Average | ||||
Treatments | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
NPK | 0.012 | 0.0013 | 0.0086 | 0.0018 | 0.0103 | 0.0085 | 0.0005 | 0.012 | 0.0013 | 0.0103 |
Manganese EDTA | 0.0265 | 0.0034 | 0.0237 | 0.0033 | 0.0251 | 0.0292 | 0.0041 | 0.0265 | 0.0034 | 0.0278 |
Manganese Oxide | 0.0159 | 0.0028 | 0.0143 | 0.0017 | 0.0151 | 0.0115 | 0.0029 | 0.0159 | 0.0028 | 0.0137 |
Manganese Sulfate | 0.0339 | 0.005 | 0.0304 | 0.0034 | 0.0322 | 0.0259 | 0.0041 | 0.0339 | 0.005 | 0.0299 |
Copper Trials | Top Soil Experiment 1 | Top Soil Experiment 2 | Top Soil—Average | Top Soil and Sand Experiment 1 | Top Soil and Sand Experiment 2 | Top Soil and Sand—Average | ||||
Treatments | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
NPK | 0.0022 | 0.0001 | 0.0026 | 0.0003 | 0.0024 | 0.0022 | 0.0004 | 0.002 | 0.0002 | 0.0021 |
Copper EDTA | 0.0086 | 0.0016 | 0.0078 | 0.0017 | 0.0082 | 0.0065 | 0.0005 | 0.0052 | 0.0007 | 0.0058 |
Copper Oxide | 0.004 | 0.0003 | 0.0041 | 0.0005 | 0.0041 | 0.0034 | 0.0003 | 0.0031 | 0.0003 | 0.0032 |
Copper Sulfate | 0.0091 | 0.0013 | 0.0097 | 0.0008 | 0.0094 | 0.0069 | 0.0008 | 0.0059 | 0.0004 | 0.0064 |
Boron Trials | Top Soil Experiment 1 | Top Soil Experiment 2 | Top Soil—Average | Top Soil and Sand Experiment 1 | Top Soil and Sand Experiment 2 | Top Soil and Sand—Average | ||||
Treatments | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
NPK | 0.0065 | 0.0014 | 0.0041 | 0.0004 | 0.0053 | 0.0037 | 0.0007 | 0.0029 | 0.0003 | 0.0033 |
Colemanite | 0.0407 | 0.0029 | 0.0242 | 0.0032 | 0.0324 | 0.018 | 0.0041 | 0.0191 | 0.006 | 0.0185 |
Boric Anhydride | 0.0718 | 0.0048 | 0.0631 | 0.0039 | 0.0675 | 0.0403 | 0.0034 | 0.0408 | 0.0038 | 0.0405 |
Zinc | Top Soil Differences | Zinc | Top Soil and Sand Differences | |||||
NPK | Oxide | Sulfate | NPK | Oxide | Sulfate | |||
EDTA | 176.59 | 73.65 | 9.19 | EDTA | 331.50 | 96.32 | 12.31 | |
NPK | 59.28 | 202.01 | NPK | 119.79 | 384.63 | |||
Oxide | 89.61 | Oxide | 120.50 | |||||
Sulfate | Sulfate | |||||||
Manganese | Top Soil Differences | Manganese | Top Soil and Sand Differences | |||||
NPK | Oxide | Sulfate | NPK | Oxide | Sulfate | |||
EDTA | 143.74 | 66.10 | 28.15 | EDTA | 170.61 | 102.75 | 7.45 | |
NPK | 46.74 | 212.35 | NPK | 33.47 | 190.77 | |||
Oxide | 112.85 | Oxide | 117.86 | |||||
Sulfate | Sulfate | |||||||
Copper | Top Soil Differences | Copper | Top Soil and Sand Differences | |||||
NPK | Oxide | Sulfate | NPK | Oxide | Sulfate | |||
EDTA | 241.18 | 101.32 | 14.34 | EDTA | 177.92 | 81.20 | 10.08 | |
NPK | 69.47 | 290.11 | NPK | 53.38 | 205.94 | |||
Oxide | 130.20 | Oxide | 99.47 | |||||
Sulfate | Sulfate | |||||||
Boron | Top Soil Differences | Boron | Top Soil and Sand Differences | |||||
Colemanite | NPK | Colemanite | NPK | |||||
Anhydride | 107.97 | 1170.43 | Anhydride | 118.77 | 1121.28 | |||
Colemanite | 510.87 | Colemanite | 458.25 | |||||
NPK | NPK |
Zinc | Average—Top Soil and Sand Experiment | ||||
EDTA | NPK | Oxide | Sulfate | ||
Average—Top Soil Experiment | EDTA | 19.58 | 415.97 | 134.76 | 6.47 |
NPK | 131.31 | 86.55 | 17.82 | 159.79 | |
Oxide | 45.22 | 197.13 | 35.19 | 63.1 | |
Sulfate | 30.57 | 463.39 | 156.33 | 16.25 | |
Boron | Average—Top Soil and Sand Experiment | ||||
Anhydride | Colemanite | NPK | |||
Average—Top Soil Experiment | Anhydride | 66.39 | 264.01 | 1932.08 | |
Colemanite | 24.99 | 75.03 | 877.09 | ||
NPK | 663.53 | 249.01 | 59.95 | ||
Manganese | Average—Top Soil and Sand Experiment | ||||
EDTA | NPK | Oxide | Sulfate | ||
Average—Top Soil Experiment | EDTA | 10.84 | 144.15 | 82.92 | 19.1 |
NPK | 170.15 | 0.17 | 33.24 | 190.28 | |
Oxide | 84.1 | 46.99 | 10.13 | 97.82 | |
Sulfate | 15.62 | 212.88 | 134.42 | 7.60 | |
Copper | Average—Top Soil and Sand Experiment | ||||
EDTA | NPK | Oxide | Sulfate | ||
Average—Top Soil Experiment | EDTA | 41 | 291.85 | 155.48 | 28.08 |
NPK | 141.98 | 14.85 | 33.54 | 166.38 | |
Oxide | 42.79 | 94.64 | 26.9 | 57.18 | |
Sulfate | 61.22 | 348.06 | 192.13 | 46.45 |
Zinc Trials | Top Soil | Top Soil and Sand |
NPK—Zinc EDTA | <0.0001 | <0.0001 |
Zinc Oxide—Zinc EDTA | 0.0001 | 0.0027 |
Zinc Sulfate—Zinc EDTA | 0.7139 | 0.7728 |
Zinc Oxide—NPK | 0.0806 | 0.1529 |
Zinc Sulfate—NPK | <0.0001 | <0.0001 |
Zinc Sulfate—Zinc Oxide | <0.0001 | 0.0002 |
Boron Trials | Top Soil | Top Soil and Sand |
Colemanite—Boric Anhydride | <0.0001 | <0.0001 |
NPK—Boric Anhdride | <0.0001 | <0.0001 |
NPK—Colemanite | <0.0001 | 0.0007 |
Manganese Trials | Top Soil | Top Soil and Sand |
NPK—Manganese EDTA | 0.0001 | <0.0001 |
Manganese Oxide—Manganese EDTA | 0.017446 | 0.0016 |
Manganese Sulfate—Manganese EDTA | 0.1061 | 0.9008 |
Manganese Oxide—NPK | 0.4587 | 0.6826 |
Manganese Sulfate—NPK | <0.0001 | 0.0004 |
Manganese Sulfate—Manganese Oxide | <0.0001 | 0.01 |
Copper Trials | Top Soil | Top Soil and Sand |
NPK—Copper EDTA | <0.0001 | <0.0001 |
Copper Oxide—Copper EDTA | 0.0009 | <0.0001 |
Copper Sulfate—Copper EDTA | 0.6056 | 0.7237 |
Copper Oxide—NPK | 0.3343 | 0.1935 |
Copper Sulfate—NPK | <0.0001 | <0.0001 |
Copper Sulfate—Copper Oxide | <0.0001 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes Gaige, A.; Rowe, B.; Jurin, V. Assessment of Efficiency of Nutrient Uptake of Different Sources of Zn, Mn, Cu and B in Zea mays. Agriculture 2020, 10, 247. https://doi.org/10.3390/agriculture10060247
Reyes Gaige A, Rowe B, Jurin V. Assessment of Efficiency of Nutrient Uptake of Different Sources of Zn, Mn, Cu and B in Zea mays. Agriculture. 2020; 10(6):247. https://doi.org/10.3390/agriculture10060247
Chicago/Turabian StyleReyes Gaige, Andres, Bruce Rowe, and Vatren Jurin. 2020. "Assessment of Efficiency of Nutrient Uptake of Different Sources of Zn, Mn, Cu and B in Zea mays" Agriculture 10, no. 6: 247. https://doi.org/10.3390/agriculture10060247
APA StyleReyes Gaige, A., Rowe, B., & Jurin, V. (2020). Assessment of Efficiency of Nutrient Uptake of Different Sources of Zn, Mn, Cu and B in Zea mays. Agriculture, 10(6), 247. https://doi.org/10.3390/agriculture10060247