The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental and Agronomic Management
2.2. Chemical Analysis of Seeds
2.3. Weather Conditions
3. Results and Discussion
3.1. Polyphenol Content Depending on Cultivated Cultivars
3.2. Polyphenol Content Depending on the Treatments of Biostimulants Used
3.3. Polyphenol Content Depending on Climatic Conditions in the Years of Research
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Reddivari, L.; Hale, A.L.; Miller, J.C. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 2007, 84, 275–282. [Google Scholar] [CrossRef]
- Le Marchand, L. Cancer preventive effects of flavonoids a review. Biomed. Pharmacother. 2002, 56, 296–301. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailabiligy metabolic effects, and safegy. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Perla, V.; Holm, D.G.; Jayanty, S.S. Effect of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. Food Sci. Technol. 2012, 45, 161–171. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Aniołowska, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Content of polyphenols in coloured and yellow fl eshed potatoes during dices processing. Food. 2014, 161, 224–229. [Google Scholar]
- Chun, O.K.; Kim, D.O.; Smith, N.; Schroeder, D.; Han, J.T.; Lee, C.Y. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Navarre, D.A.; Goyer, A.; Shakya, R. Chapter 14—Nutritional value of potatoes: Vitamin C, phytonutrient and mineral content. In Advances in Potato Chemistry and Technology; Academic Press: Cambridge, MA, USA, 2009; pp. 395–424. [Google Scholar]
- Zhang, G.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Hallmann, E.; Grudzińska, M. Polyphenol content in potatoes depending on the variety and effective microorganisms. Fragm. Agron. 2015, 32, 81–88. (In Polish) [Google Scholar]
- Hamouz, K.; Lachman, J.; Pazderu, K.; Hejtmankova, K.; Cimr, J.; Musilova, J.; Pivec, V.; Orsak, M.; Svobodova, A. Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant Soil Environ. 2013, 59, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.A.; Aliyu, M.M.; Kynoch, G.; Joseph, L.R.; Hungerford, G. Effect of cooking on the levels of bioactive compounds in Purple Majesty Potato. In Proceedings of the Inside Food Symposium, Leuven, Belgium, 9–12 April 2013; pp. 1–6. [Google Scholar]
- Murniece, I.; Kruma, Z.; Skrabule, I.; Vaivode, A. Carotenoids and phenols of organically and conventionally cultivated potato varieties. Int. J. Chem. Eng. Appl. 2013, 4, 342–348. [Google Scholar] [CrossRef]
- Keutgen, A.; Pobereżny, J.; Wszelaczyńska, E.; Murawska, B.; Spychaj-Fabisiak, E. The impact of storage on the darkening processes of potato tubers (Solanum tuberosum L.) and their health promoting properties. Inż. Ap. Chem. 2014, 53, 86–88. (In Polish) [Google Scholar]
- Grudzińska, M.; Czerko, Z.; Zarzyńska, K.; Borowska-Komenda, M. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color. PLoS ONE 2016, 11, e0153980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kołodziejczyk, M. Effect of nitrogen fertilization and microbial preparations on quality and storage lossesin potato cultivation. Acta Agroph. 2016, 23, 67–78. [Google Scholar]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, K.; Romanowska-Duda, Z. Positive impact of biostimulators on growth and physiological activity of willow in climate change conditions. Int. Agrophys. 2018, 32, 279–286. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Ratajczak, K.; Waraczewska, Z.; Budka, A. The Influence of Bio-Stimulants and Foliar Fertilizerson Yield, Plant Features, and the Level of Soil Biochemical Activity in White Lupine (Lupinus albus L.) Cultivation. Agronomy 2020, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikos-Bielak, M.; Czeczko, R. Analysis of the possibilities of using Atonik—Asahi growth stimulator in potato cultivation. Zesz. Probl. Post. Nauk Rol. 2002, 489, 157–164. (In Polish) [Google Scholar]
- Nowacki, W. Characteristic of Native Potato Cultivars Register, XVI and XXII ed.; Plant Breeding Acclimatization Institute—National Research Institute: Jadwisin, Poland, 2019; pp. 1–43. (In Polish) [Google Scholar]
- Ministry of Agriculture and Rural Development. The Register of Authorized Plant Protection Products Placed on the Polish Market. 2020. Available online: https://bip.minrol.gov.pl (accessed on 20 April 2020).
- WRB FAO World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil. FAO. World Soil Resources Reports No. 106; Field Experiment: Rome, Italy, 2014; Available online: http://www.fao.org (accessed on 20 April 2020).
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971−2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Gheribi, E. Importance of polyphenolic compounds from fruits and vegetables in atherosclerosis dietotherapy. Med. Rodz. 2013, 4, 149–153. (In Polish) [Google Scholar]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral cotent of early crop potato. J. Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Brazinskiene, V.; Asakaviciute, R.; Miezeliene, A.; Alencikiene, G.; Ivanauskas, L.; Jakstas, V.; Viskelis, P.; Razukas, A. Effect of farming systems on the yield, quality parameters and sensoryproperties of conventionally and organically grown potato (Solanum tuberosum L.) tubers. Food Chem. 2014, 145, 903–909. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.A.; Shahidi, F. Phenolic content and antioxidant activities of lected potato varieties and their processing by-producs. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Navarre, D.A.; Pillai, S.S.; Shakya, R.; Holden, M.J. HPLC profiling of phenolics in diverse po genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Sikora, E.; Cieślik, E.; Topolska, K. The sources of natural antioxidants. Acta Sci. Pol. Technol. Aliment 2008, 71, 5–17. [Google Scholar]
- Lombardo, S.; Lo Monaco, A.; Pandino, G.; Mauromicale, G. The phenology, yield and tuber composition of ‘early’ crop potatoes: A comparison between organic and conventional cultivation systems. Renew. Agric. Food Syst. 2013, 28, 50–58. [Google Scholar] [CrossRef]
- Przybysz, A.; Gawrońska, H.; Gajc-Wolska, J. Biological mode of action of a nitrophenolates-based biostymulant: Case study. Front. Plant Sci. 2014, 5, 713. [Google Scholar] [CrossRef] [PubMed]
- Xiuhong, J.; Rivers, L.; Zieliński, Z.; Xu, M.; MacDougall, E.; Stephen, J.; Zhang, S.; Wang, Y.; Chap, R.G.; Charter, E.; et al. Quantitative analysis of phenolic components and glycoalkaloid from 20 potato clones and in vitro evaluation of antioxidant, uptake and neuroprotector activities. Food Chem. 2012, 133, 1177–1187. [Google Scholar]
- Zarzecka, K.; Gugała, M. The effect of herbicides and soil tillage systems on the content of polyphenols in potato tubers. Pol. J. Environ. Stud. 2011, 20, 513–517. [Google Scholar]
- Brand, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Cri. Rev. Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Hajślova, J.; Schulzova, V.; Slanina, P.; Janne, K.; Hellenas, K.E.; Andersson, C.H. Quality of organically and conventionally grown potatoes; Four year study of micronutrients, metals, secondary, metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef]
Cultivar | Maturity | Color of Flesh | Color of Skin | Registration Year | Yeldt·ha−1 |
---|---|---|---|---|---|
Jelly | medium late | yellow | yellow | 2005 | 50.2 |
Honorata | medium early | light yellow | light beige | 2012 | 44.1 |
Tajfun | medium early | yellow | yellow | 2004 | 49.8 |
No. | Treatment | Active Substance/Composition |
---|---|---|
1 | Kelpak®SL | extract from algae Ecklonia maxima-auxins 11 mg dm3 and gibberellins 0.031 mg dm3 |
2 | Tytanit® | titanium |
3 | GreenOk® | humus substances 20 g·dm−1 |
4 | BrunatneBio Złoto® | plant hormones: auxin 0.06 mg·dm−1 and cytokinin 12 mg·dm−1 |
Treatments | Specification | Dates |
---|---|---|
Fertilization | 25 t ha−1 farmyard P 44.0 (100 P2O5∙0.44) kg·ha−1 | autumn |
(lubofos for potatoes 7%) and K 124.5 (150 K2O∙0.83) kg·ha−1 (lubofos for potatoes 25%) | ||
N 100 kg/ha (nitro–chalk 27%) | spring—before planting | |
Insecticides | Actara 25 WG (thiamethoxam) at a dose of 0.08 kg·ha−1 and Calipso 480 S.C. (thiacloprid) at a dose of 0.1 dm·ha−1 | during vegetation |
Fungicides | Ridomil Gold MZ 68 WG (metalaxyl-M+mancozeb) and Copper Max New 50 WP at a dose 2.0 g·kg−1 and Dithane at a dose 2.0 kg·ha−1 | during vegetation |
Biostimulants | Kelpak SL, Titanit, GreenOk, BrunatneBio Złoto at a dose 0.2 kg·ha−1 | beginning of flowering, fully flowering and after flowering of plants |
Years | Months | ||||||
---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | IV–IX | |
Rainfall (mm) | Sum | ||||||
2016 | 28.7 | 54.8 | 36.9 | 35.2 | 31.7 | 13.6 | 200.9 |
2017 | 59.6 | 49.5 | 57.9 | 23.6 | 54.7 | 80.1 | 325.4 |
2018 | 34.5 | 27.3 | 31.5 | 67.1 | 54.7 | 80.6 | 295.7 |
Multiyear sum (1996–2010) | 33.6 | 58.3 | 59.6 | 57.5 | 59.9 | 42.3 | 335.4 |
Air temperature (°C) | Mean | ||||||
2016 | 9.1 | 15.1 | 18.4 | 19.1 | 18.0 | 14.9 | 15.8 |
2017 | 6.9 | 13.9 | 17.8 | 16.9 | 18.4 | 13.9 | 14.6 |
2018 | 13.1 | 17.0 | 18.3 | 20.4 | 20.6 | 15.9 | 17.6 |
Multiyear mean (1996–2010) | 8.0 | 13.5 | 17.0 | 19.7 | 18.5 | 13.5 | 15.0 |
Selyaninov hydrothermal coefficient * | Mean | ||||||
2016 | 1.07 | 1.47 | 0.72 | 0.64 | 0.2 | 1.2 | 0.88 |
2017 | 3.19 | 1.52 | 1.06 | 0.47 | 0.61 | 0.28 | 1.18 |
2018 | 0.99 | 0.59 | 0.61 | 1.12 | 1.00 | 1.92 | 1.04 |
Table 2016. | Cultivars (I) | Years | Mean | ||||
---|---|---|---|---|---|---|---|
Jelly | Honorata | Tajfun | 2016 | 2017 | 2018 | ||
Polyphenol content (mg kg−1) | |||||||
1. Control Treatment | 171.2 A | 160.2 A | 153.1 A | 172.6 D | 153.8 C | 158.0 C | 161.5 d |
2. Kelpak SL® | 178.3 A | 162.4 A | 154.2 A | 176.8 C | 157.0 B | 161.2 B | 165.0 c |
3. Tytanit® | 175.9 A | 165.7 A | 154.9 A | 177.0 B,C | 157.0 B | 162.5 A,B | 165.5 b,c |
4. GreenOk® | 176.5 A | 168.7 A | 155.6 A | 179.7 A,B | 158.1 A | 162.8 A,B | 166.9 b |
5. BrunatneBio Złoto® | 179.6 A | 170.2 A | 157.2 A | 181.6 A | 161.0 A | 164.3 A | 169.0 a |
Mean | 176.3 a | 165.4 b | 155.0 c | 177.5 a | 157.4 c | 161.8 b |
Years (III) | Cultivars (I) | Mean | ||
---|---|---|---|---|
Jelly | Honorata | Tajfun | ||
Polyphenol content (mg kg−1) | ||||
2016 | 179.9 A | 177.4 A | 175.1 A | 177.5 a |
2017 | 170.9 C | 157.3 C | 143.8 C | 157.4 c |
2018 | 178.1 B | 161.5 B | 145.7 B | 161.8 b |
Mean | 176.3 a | 165.4 b | 155.0 c | 165.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mystkowska, I.; Zarzecka, K.; Gugała, M.; Sikorska, A. The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used. Agriculture 2020, 10, 269. https://doi.org/10.3390/agriculture10070269
Mystkowska I, Zarzecka K, Gugała M, Sikorska A. The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used. Agriculture. 2020; 10(7):269. https://doi.org/10.3390/agriculture10070269
Chicago/Turabian StyleMystkowska, Iwona, Krystyna Zarzecka, Marek Gugała, and Anna Sikorska. 2020. "The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used" Agriculture 10, no. 7: 269. https://doi.org/10.3390/agriculture10070269
APA StyleMystkowska, I., Zarzecka, K., Gugała, M., & Sikorska, A. (2020). The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used. Agriculture, 10(7), 269. https://doi.org/10.3390/agriculture10070269