Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay
Abstract
:1. Introduction
2. Methods
2.1. Study Data
2.1.1. Spatial Unit and Cattle Price
2.1.2. Market and Cattle Characteristics
2.1.3. Agro-Ecological Conditions
2.2. Statistical Models
2.3. Data Preparation
3. Results
3.1. Estimation of the LR Model
3.2. Estimation of the LMM
3.3. Estimation of the MGWR Model
3.3.1. Bandwidths and Identified Nonstationary Relationships
3.3.2. Stationary Relationships and Their Significance
3.3.3. Nonstationary Relationships and Their Significance
3.4. Summary
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lanfranco, B.A.; Ferraro, B.; Rostán, F. Cointegration and Price Linkages in The Mercosur Beef Cattle Markets. IJFAEC 2019, 7, 159–174. [Google Scholar]
- Lanfranco, B.; Ois, C.; Bedat, A. Variabilidad de Corto Plazo en la Formación de Precios en el Mercado Vacuno de Reposición; Serie Técnica 155; INIA: Montevideo, Uruguay, 2006; 58p. [Google Scholar]
- Lanfranco, B.A.; Castaño, J.P. Hedonic Pricing of Grass-Fed Cattle in Uruguay: Effect of Regional Resource Endowments. Rangel. Ecol. Manag. 2017, 70, 549–559. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Ladd, G.W.; Martin, M.B. Prices and Demands for Input Characteristics. Am. J. Agric. Econ. 1976, 58, 21–30. [Google Scholar] [CrossRef]
- Buccola, S.T. An Approach to the Analysis of Feeder Cattle Price Differentials. Am. J. Agric. Econ. 1980, 62, 574–580. [Google Scholar] [CrossRef]
- Kolstad, C.D.; Turnovsky, M.H.L. Cost functions and non-linear prices: Estimating a technology with quality-differentiated products. Rev. Econ. Stat. 1998, 80, 444–453. [Google Scholar] [CrossRef]
- Schroeder, T.; Mintert, J.; Brazle, F.; Grunewald, O. Factors affecting feeder cattle price differentials. West J. Agric. Econ. 1988, 13, 71–81. [Google Scholar]
- Bartik, T.J. The Estimation of Demand Parameters in Hedonic Price Models. J. Political Econ. 1987, 95, 81–88. [Google Scholar] [CrossRef]
- Epple, D. Hedonic prices in implicit markets: Estimating demand and supply functions for differentiated products. J. Political Econ. 1987, 95, 51–80. [Google Scholar] [CrossRef] [Green Version]
- Kristofersson, D.; Rickertsen, K. Efficient Estimation of Hedonic Inverse Input Demand Systems. In Proceedings of the American Agricultural Economics Association Annual Meeting, Montreal, QC, Canada, 27–30 July 2003. [Google Scholar]
- Buccola, S.T.; Jessee, D.L. A U.S. Regional Model of Feeder Steer-Heifer Price Differentials. J. Agric. Appl. Econ. 1979, 11, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Buccola, S.T. Price Trends at Livestock Auctions. Am. J. Agric. Econ. 1982, 64, 63–69. [Google Scholar] [CrossRef]
- Schultz, R.W.; Marsh, J.M. Steer and heifer price differentials in the live cattle and carcass markets. West. J. Agric. Econ. 1985, 10, 77–92. [Google Scholar]
- Mintert, J.; Blair, J.; Schroeder, T.; Brazle, F. Analysis of factors affecting cow auction price differentials. South. J. Agric. Econ. 1990, 22, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Schabenberger, O.; Gotway, C.A. Statistical Methods for Spatial Data Analysis; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2005; 488p. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M. Some Notes on Parametric Significance Tests for Geographically Weighted Regression. J. Reg. Sci. 1999, 39, 497–524. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression—The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002; 282p. [Google Scholar]
- Cassetti, E. Generating models by the expansion method: Applications to geographical research. Geogr. Anal. 1972, 4, 81–92. [Google Scholar] [CrossRef]
- Dubin, R.; Sung, C.-H. Spatial Variation in the Price of Housing: Rent Gradients in Non-Monocentric Cities. Urban Stud. 1987, 24, 193–204. [Google Scholar] [CrossRef]
- Farber, S.; Yates, M. A comparison of localized regression models in a hedonic price context. Can. J. Reg. Sci. 2006, 39, 405–419. [Google Scholar]
- Bitter, C.; Mulligan, G.F.; Dall’Erba, S. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, A.E.; Banerjee, S.; Sirmans, C.; Tu, Y.; Ong, S.E. Multilevel modeling using spatial processes: Application to the Singapore housing market. Comput. Stat. Data Anal. 2007, 51, 3567–3579. [Google Scholar] [CrossRef]
- Páez, A.; Long, F.; Farber, S. Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques. Urban Stud. 2008, 45, 1565–1581. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted regression with parameter-specific distance metrics. Int. J. Geogr. Inf. Sci. 2016, 31, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Comber, A.; Chi, K.; Huy, M.Q.; Nguyen, T.Q.; Lu, B.; Phe, H.H.; Harris, P. Distance metric choice can both reduce and induce collinearity in geographically weighted regression. Environ. Plan. B Urban Anal. City Sci. 2018, 47, 489–507. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Seya, H. Spatially filtered unconditional quantile regression: Application to a hedonic analysis. Environmetrics 2019, 30, e2556. [Google Scholar] [CrossRef]
- Lanfranco, B.; Sapriza, G. Incidencia del CONEAT y otros factores de calidad en el precio de la tierra. Agrociencia Urug. 2010, 14, 89–102. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models 2020. Available online: https://CRAN.R-project.org/package=nlme (accessed on 10 July 2020).
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Leong, Y.-Y.; Yue, C.-S. A modification to geographically weighted regression. Int. J. Health Geogr. 2017, 16, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression. Geogr. Anal. 2019, 52, 87–106. [Google Scholar] [CrossRef]
- Diggle, P.J.; Menezes, R.; Su, T.-L. Geostatistical inference under preferential sampling. J. R. Stat. Soc. Ser. C Appl. Stat. 2010, 59, 191–232. [Google Scholar] [CrossRef]
- Harris, P.; Fotheringham, S.A.; Juggins, S. Robust geographically weighed regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Ann. Assoc. Am. Geogr. 2010, 100, 286–306. [Google Scholar] [CrossRef]
- Harris, P. A simulation study on specifying a regression model for spatial data: Choosing between heterogeneity and autocorrelation effects. Geogr. Anal. 2019, 51, 151–181. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Brunsdon, C.; Charlton, M.; Harris, P. A response to ‘A comment on geographically weighted regression with parameter-specific distance metrics’. Int. J. Geogr. Inf. Sci. 2019, 33, 1300–1312. [Google Scholar] [CrossRef]
- Cressie, N.; Chan, N.H. Spatial modeling of regional variables. J. Am. Stat. Assoc. 1989, 84, 393–401. [Google Scholar] [CrossRef]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Oshan, T. Geographically weighted regression and multicollinearity: Dispelling the myth. J. Geogr. Syst. 2016, 18, 303–329. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Brunsdon, C.; Charlton, M.; Harris, P. Living with Collinearity in Local Regression Models. In Proceedings of the Spatial Accuracy 2012: 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Florianópolis, SC, Brazil, 10–13 July 2012. [Google Scholar]
- Harris, P.; Brunsdon, C.; Lu, B.; Nakaya, T.; Charlton, M. Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spat. Stat. 2017, 21, 241–261. [Google Scholar] [CrossRef] [Green Version]
- Finley, A.O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evol. 2010, 2, 143–154. [Google Scholar] [CrossRef]
- Murakami, D.; Yoshida, T.; Seya, H.; Griffith, D.A.; Yamagata, Y. A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spat. Stat. 2017, 19, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Wolf, L.J.; Oshan, T.M.; Fotheringham, A.S. Single and Multiscale Models of Process Spatial Heterogeneity. Geogr. Anal. 2017, 50, 223–246. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Lu, B.; Harris, P.; Brunsdon, C.; Charlton, M.; Nakaya, T.; Griffith, D.A. The Importance of Scale in Spatially Varying Coefficient Modeling. Ann. Am. Assoc. Geogr. 2019, 109, 50–70. [Google Scholar] [CrossRef]
- USDA-FAS. Production, Supply, and Distribution Online. United States Department of Agriculture, Foreign Agricultural Service. 2020. Available online: http://apps.fas.usda.gov/psdonline/psdquery.aspx (accessed on 10 July 2020).
- URUMOL Descartes Datamyne LatAm. 2020. Available online: http://datamynelatam.com/ (accessed on 10 July 2020).
- FAOSTAT. FAO Database. 2017. Available online: http://faostat.fao.org/ (accessed on 22 March 2017).
- WOAH. World Organization for Animal Health. 2020. Available online: http://www.oie.int/en/animal-health-in-the-world/official-disease-status/fmd/list-of-fmd--free-members/ (accessed on 10 July 2020).
- GIRA. Consultancy & Research, Prospective ét Stratégie. 2017. Available online: https://www.girafood.com/studies-reports/meat-market-reports/ (accessed on 28 March 2017).
- Bonsignore, S. Agregando valor a los productos cárnicos; Marca País y Marca Empresa. ¿Cómo integrar ambos enfoques? Foro de las Carnes. Instituto Nacional de Carnes. Mesa 5 Marca País. 2010. Available online: http://www.inac.gub.uy/innovaportal/file/6067/1/mesa_5_-inac.pdf (accessed on 10 July 2020).
- Lu, B.; Harris, P.; Charlton, M.; Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo Spat. Inf. Sci. 2014, 17, 85–101. [Google Scholar] [CrossRef]
- Gollini, I.; Lu, B.; Charlton, M.; Brunsdon, C.; Harris, P. GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models. J. Stat. Softw. 2015, 63, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Tsutsumida, N.; Yoshida, T.; Nakaya, T.; Lu, B. A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels. arXiv 2019, arXiv:1905.00266. [Google Scholar]
- Pebesma, E. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Ribeiro, P.J.; Diggle, P.J. geoR: A package for geostatistical analysis. R News 2001, 1, 15–18. [Google Scholar]
Predictor Variables | Name | Type | Comments |
---|---|---|---|
Beef and General Market Conditions | |||
Steer price (US$/kg LW) | PSTEER | Numeric | Slaughter price of steers at sale |
Exchange rate (UY$/US$) | EXRT | Numeric | General market conditions at sale |
Auction Marketing Strategy | |||
Order of entry (#) | ORDER | Numeric | Order in which the lot was auctioned ** |
Lot size (#) | LOTSZ | Numeric | Size of the cattle lot ** |
Recommended lot (Yes/No) | RECOM | Binary | Lot explicitly recommended by inspector |
Cattle Attributes | |||
Males (Yes/No) | MALE | Binary | Lot 100% composed by male calves or steers |
Live weight (kg) | KLW | Numeric | Average weight of the animals in the lot ** |
Class (scored 3 to 10) | CLASS | Ordinal Set | Class of animals (regular to excellent) |
Condition (scored 3 to 10) | COND | Ordinal Set | Condition of animals (regular to excellent) |
Age uniformity (Yes/No) | AGEU | Binary | Uniformity of cattle lot according to age |
Shape uniformity (Yes/No) | UNIF | Binary | Uniformity according to size, frame, etc. |
Improved nutrition (Yes/No) | INUT | Binary | Cattle lot receiving improved nutrition level |
Tick area (Yes-high/Yes-low/No) | TKAR | Ordinal Set | Lot from tick-infested area. 0—No (no risk); 1—Yes (no ticks—low risk); 2 Yes (ticks—high risk) |
Mio-Mio (Yes/No) | BCAR | Binary | Lot from area infested with Bacharis coridifolia |
Predominant breed (Yes/No) | BD1–BD6 | Binary Set | 1—Hereford *; 2—Angus; 3—Other British; 4—Continental; 5—Dairy; 6—Zebu |
Crossbreeds (Yes/No) | CZ1–CZ3 | Binary Set | Hereford/Angus (CZ1), British/Continent. (CZ2), Dairy/Zebu (CZ3) |
Interactions between predictors | |||
Lot size × Weight (kg) | LXW | Numeric | Interaction between weight and lot size |
Condition × Weight (kg) | CXW | Numeric | Interaction between condition and lot size |
Predictor Variables | Name | Type | Comments |
---|---|---|---|
Permanent | |||
Soil productivity (#) | CONEAT | Index | Soil productivity (CONEAT index) **. It measures the productivity (in terms of meat) of any piece of rural land according to the proportion of soils (composition, fertility, slope, physical structure). |
Water hold. capacity (mm) | WHC | Numeric | Capacity of holding water in soil profile ** |
Temporary | |||
Season of sale (Yes/No) | T1–T4 | Binary Set | 1—Summer; 2—Fall; 3—Winter; 4—Spring * |
Pastures condition (#) | NDVI | Index | Normalized Difference Vegetation Index **. It takes values between 0 and 100, so is compositional in form. |
Surface water runoff (mm) | SWR | Numeric | Water runoff (not penetrating in soil) ** |
Available water (%) | PAW | Percentage | Water already available in soil profile ** |
Interactions between temporary predictors only | |||
SWR × PAW | SXP | Numeric | Interaction of SWR and PAW |
NDVI × Season of the year | NXT1-T3 | Numeric | Interaction of pasture condition and season |
SWR × Season of the year | SXT1-T3 | Numeric | Interaction of water runoff and season |
PAW × Season of the year | PXT1-T3 | Numeric | Interaction of water in soil and season |
Model | Spatial Effects? | R2 | AIC | Intercept Behavior |
---|---|---|---|---|
LR | No | 0.85 | −5144 | Stationary and significant * |
LMM | Yes | 0.85 | −5168 | Stationary and significant * |
MGWR | Yes | 0.89 | −5426 | Nonstationary and significant at all locations * |
Model | Market and Cattle Characteristics * | Permanent Agro-Ecological Conditions * | Temporary Agro-Ecological Conditions * |
---|---|---|---|
Coefficients Estimated as Stationary: | |||
LR | PSTEER, EXRT, ORDER, ORDER2, LOTSZ, LOTSZ2, RECOM, MALE, KLW, KLW2, CLASS, BD2, BD5, CZ1 | WHC, WHC2 | T2, NDVI, NDVI2, SWR, SWR2, PAW, PAW2, SXP, NXT1, NXT2, SXT2, PXT1 |
LMM | PSTEER, EXRT, ORDER, ORDER2, LOTSZ, LOTSZ2, RECOM, MALE, KLW, KLW2, CLASS, BD2, BD5, CZ1 | WHC, WHC2 | T2, NDVI, NDVI2, SWR2, PAW, SXP, NXT1, NXT2, SXT2, PXT1 |
MGWR | EXRT, ORDER, ORDER2, LOTSZ, RECOM, KLW2, CLASS, BD5, CZ1 | WHC | NDVI2, SWR2, PAW, SXP, NXT1, NXT2, PXT1 |
Coefficients estimated as nonstationary: | |||
MGWR | PSTEER, MALE, KLW, BD2 | NONE | SXT2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, P.; Lanfranco, B.; Lu, B.; Comber, A. Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay. Agriculture 2020, 10, 299. https://doi.org/10.3390/agriculture10070299
Harris P, Lanfranco B, Lu B, Comber A. Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay. Agriculture. 2020; 10(7):299. https://doi.org/10.3390/agriculture10070299
Chicago/Turabian StyleHarris, Paul, Bruno Lanfranco, Binbin Lu, and Alexis Comber. 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay" Agriculture 10, no. 7: 299. https://doi.org/10.3390/agriculture10070299
APA StyleHarris, P., Lanfranco, B., Lu, B., & Comber, A. (2020). Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay. Agriculture, 10(7), 299. https://doi.org/10.3390/agriculture10070299