Influence of A Cooled, Solid Lying Area on the Pen Fouling and Lying Behavior of Fattening Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Housing
2.3. Floor Cooling System
2.4. Data Collection
2.5. Data Aggregation
2.6. Experimental Design and Statistical Data Analysis
3. Results
3.1. Temperature and Relative Humidity
3.2. Daily Weight Gain
3.3. Floor Cooling System and Surface Temperature
3.4. Lying Behavior
3.5. Fouling of Lying Area and Animals
4. Discussion
4.1. Experimental Setup
4.2. Temperature and Relative Humidity
4.3. Functionality and Efficiency of the Floor Cooling System
4.4. Effect of Floor Cooling on Weight Gain and Behavior
4.5. Effect of the Pen Design
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deutscher Tierschutzbund e.V. Richtlinie Mastschweine 3.0. Kriterienkatalog für die Haltung und Behandlung von Mastschweinen. Available online: https://www.tierschutzlabel.info/richtlinien/ (accessed on 4 June 2020).
- Börgermann, B.; Rus, M.; Kaufmann, O. Sensorgestützte Überprüfung des Wahlverhaltens von Mastschweinen – Welche Fußböden und Beschäftigungsangebote werden bevorzugt? Landtechnik 2007, 62, 228–229. [Google Scholar] [CrossRef]
- Candotti, P.; Rota Nodari, S.; Archetti, I.; De Angelis, E.; Caldara, G.; Borghetti, P. Influence of the floor type on the indecence and serverity of leg weakness syndrome (LWS) and of articular osteochondrosis (OC) in Italian heavy pig. In Proceedings of the Congress of The International Society for Animal Hygiene, Saint-Malo, France, 11–13 October 2004; Available online: https://www.isah-soc.org/userfiles/downloads/symposiums/2004/Candotti.pdf (accessed on 27 February 2020).
- Gillman, C.E.; Kilbride, A.L.; Ossent, P.; Green, L.E. A cross-sectional study of the prevalence and associated risk factors for bursitis in weaner, grower and finisher pigs from 93 commercial farms in England. Prev. Vet. Med. 2008, 83, 308–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T. Temperature and body weight affect fouling of pig pens. J. Anim. Sci. 2006, 84, 2224–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, T.T.T.; Aarnink, A.J.A.; Gerrits, W.J.J.; Heetkamp, M.J.H.; Canh, T.T.; Spoolder, H.A.M.; Kemp, B.; Verstegen, M.W.A. Thermal behaviour of growing pigs in response to high temperature and humidity. App. Anim. Behav. Sci. 2005, 91, 1–16. [Google Scholar] [CrossRef]
- Simonsen, H.B. Behaviour and distribution of fattening pigs in the multi-activity pen. App. Anim. Behav. Sci. 1990, 27, 311–324. [Google Scholar] [CrossRef]
- Whatson, T.S. Development of eliminative behaviour in piglets. App. Anim. Behav. Sci. 1985, 14, 365–377. [Google Scholar] [CrossRef]
- Larsen, M.L.V.; Bertelsen, M.; Juul Pedersen, L. How do stocking density and straw provision affect fouling in conventionally housed slaughter pigs? Livest. Sci. 2017, 205, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Randall, J.M.; Armsby, A.W.; Sharp, J.R. Cooling gradients across pens in a finishing piggery. J. Agric. Eng. Res. 1983, 28, 247–259. [Google Scholar] [CrossRef]
- Savary, P.; Gygax, L.; Wechsler, B.; Hauser, R. Effect of a synthetic plate in the lying area on lying behaviour, degree of fouling and skin lesions at the leg joints of finishing pigs. App. Anim. Behav. Sci. 2009, 118, 20–27. [Google Scholar] [CrossRef]
- Hacker, R.R.; Ogilvie, J.R.; Morrison, W.D.; Kains, F. Factors affecting excretory behavior of pigs. J. Anim. Sci. 1994, 72, 1455–1460. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Swierstra, D.; van den Berg, A.J.; Speelman, L. Effect of type of slatted floor and degree of fouling of solid floor on ammonia emission rates from fattening piggeries. J. Agric. Eng. Res. 1997, 66, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Vermeer, H.M.; Altena, H.; Vereijken, P.F.G.; Bracke, M.B.M. Rooting area and drinker affect dunging behaviour of organic pigs. App. Anim. Behav. Sci. 2015, 165, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Buchenauer, D.; Luft, C.; Grauvogl, A. Investigations on the eliminative behaviour of piglets. Appl. Anim. Ethol. 1982, 9, 153–164. [Google Scholar] [CrossRef]
- Guo, Y.; Lian, X.; Yan, P. Diurnal rhythms, locations and behavioural sequences associated with eliminative behaviours in fattening pigs. App. Anim. Behav. Sci. 2015, 168, 18–23. [Google Scholar] [CrossRef]
- Wechsler, B.; Bachmann, I. A sequential analysis of eliminative behaviour in domestic pigs. App. Anim. Behav. Sci. 1998, 56, 29–36. [Google Scholar] [CrossRef]
- Christison, G.I. Dim light does not reduce fighting or wounding of newly mixed pigs at weaning. Can. J. Anim. Sci. 1996, 76, 141–143. [Google Scholar] [CrossRef]
- Taylor, N.; Prescott, N.; Perry, G.; Potter, M.; Le Sueur, C.; Wathes, C. Preference of growing pigs for illuminance. App. Anim. Behav. Sci. 2006, 96, 19–31. [Google Scholar] [CrossRef]
- Opderbeck, S.; Keßler, B.; Gordillo, W.; Schrade, H.; Piepho, H.-P.; Gallmann, E. Influence of increased light intensity on the acceptance of a solid lying area and a slatted Elimination Area in Fattening Pigs. Agriculture 2020, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Justino, E.; Nääs, I.d.A.; Carvalho, T.M.R.; Neves, D.P.; Salgado, D.D. The impact of evaporative cooling on the thermoregulation and sensible heat loss of sows during farrowing. Eng. Agricola 2014, 1050–1061. [Google Scholar] [CrossRef]
- Jensen, P.; von Borell, E.; Broom, D.M.; Csermely, D.; Dijkhuizen, A.A.; Hylkema, S.; Edwards, S.A.; Madec, F.; Stamatatis, C. The Welfare of Intensively Ke pt Pigs; Report of the Scientific Veterinary Committee; Scientific Veterinary Committee: Brussels, Belgium, 1997. [Google Scholar]
- Bracke, M.B.M. Review of wallowing in pigs: Description of the behaviour and its motivational basis. App. Anim. Behav. Sci. 2011, 132, 1–13. [Google Scholar] [CrossRef]
- Feske, I.; Hesse, A.; Hesse, D. Welche Bodenstruktur und Lufttemperatur bevorzugen Mastschweine? Landtechnik 2004, 59, 46–47. [Google Scholar] [CrossRef]
- Kaspar, F.; Friedrich, K. Rückblick auf die Temperatur in Deutschland im Jahr 2019 und die langfristige Entwicklung. Available online: https://www.dwd.de/DE/klimaumwelt/aktuelle_meldungen/200103/temperatur_d_2019_langfristig.html?nn=344870 (accessed on 25 March 2020).
- Bull, R.P.; Harrison, P.C.; Riskowski, G.L.; Gonyou, H.W. Preference among cooling systems by gilts under heat stress. J. Anim. Sci. 1997, 2078–2083. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.T.T.; Aarnink, A.J.A. Heat stress in pigs. Pig Progress 2005, 30–32. [Google Scholar]
- Muns, R.; Malmkvist, J.; LArsen, M.L.V.; Sorensen, D.; Pedersen, L.J. High environmental temperature around farrowing induced heat stress in crated sows. J. Anim. Sci. 2016, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.W.; Hale, B.J.; Gabler, N.K.; Rhoads, R.P.; Keating, A.F.; Baumgard, L.H. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1381. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Li, B.; Chen, G.; Shi, Z.X.; Ji, X.H. Cooling effect analysis on four types of cooling lying-beds for pigs. In Proceedings of the Seventh International Symposium, Beijing, China, 18–20 May 2005. [Google Scholar]
- Parois, S.P.; Cabezón, F.A.; Schinckel, A.P.; Johnson, J.S.; Stwalley, R.M.; Marchant-Forde, J.N. Effect of floor cooling on behavior and heart rate of late lactation sows under acute heat stress. Front. Vet. Sci. 2018, 5, 223. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.A.N.; Oliveira, R.F.M.; Donzele, J.L.; Fernandes, H.C.; Abreu, M.L.T.; Noblet, J.; Nunes, C.G.V. Effect of floor cooling on performance of lactating sows during summer. Livest. Sci. 2006, 176–184. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Spoolder, H.A.M.; Verstegen, M.W.A.; Kemp, B. Effects of floor cooling during high ambient temperatures on the lying behavior and productivity of growing finishing pigs. Am. Soc. Agric. Eng. 2004, 47, 1773–1782. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Li, B.; Zhang, X.; Wang, C.; Zhou, D.; Zhang, G. Using Floor Cooling as an approach to improve the thermal environment in the sleeping area in an open pig house. Biosyst. Eng. 2006, 93, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Pertagnol, J. Untersuchung zu verschiedenen Zuluftführungs- und Kühlungsmöglichkeiten in Mastschweineställen. Dissertation, Universität Hohenheim, Stuttgart, Germany, 2014. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 53, 983. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.; Berry, J.J. The efficiency of simulation-based multiple comparisons. Biometrics 1987, 43, 913. [Google Scholar] [CrossRef] [PubMed]
- Van der Hel, W.; Verstegen, M.W.; Baltussen, W.; Brandsma, H. The effect of ambient temperature on diurnal rhythm in heat production and activity in pigs kept in groups. Int. J. Biometeorol. 1984, 28, 303–315. [Google Scholar] [CrossRef]
- Hoy, S. Nutztierethologie. Verhalten von Schweinen; Verlag Eugen Ulmer: Stuttgart, Germany, 2009; ISBN 978-3-8252-3312-9. [Google Scholar]
- Normenausschuss Bauwesen (NABau) - Deutsche Institut für Normung e.V. Wärmeschutz geschlossener Ställe. Wärmedämmung und Lüftung. Teil1: Planungs- und Berechnungsgrundlagen für geschlossene zwangsbelüftete Ställe. DIN 18910-1; Beuth Verlag GmbH: Berlin, Germany, 2004. [Google Scholar]
- Hoy, S.; Krieter, J.; Gauly, M. Nutztierhaltung und -hygiene, 2. überarbeitete Auflage; Verlag Eugen Ulmer: Stuttgart, Germany, 2016; ISBN 9783825243692. [Google Scholar]
- Tan, Z.; Zhang, Y. A review of effects and control methods of particulate matter in animal indoor environments. J. Air Waste Manag. Assoc. 2004, 54, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honey, L.; McQuilly, J. Some physical factors affecting durst cencetration in pig facility. Can. Agric. Eng. 1979, 21, 9–14. [Google Scholar]
- Brown-Brandl, T.; Hayes, M.; Xin, H.; Nienaber, J.; Li, H.; Eigenberg, R.; Stinn, J.; Shepherd, T. Heat and moisture production of modern swine. ASHRAE Transactions 2014, 469–489. [Google Scholar]
- Häussermann, A.; Hartung, E.; Jungbluth, T.; Vranken, E.; Aerts, J.-M.; Berckmans, D. Cooling effects and evaporation characteristics of fogging systems in an experimental piggery. Biosyst. Eng. 2007, 97, 395–405. [Google Scholar] [CrossRef]
- Quiniou, N.; Noblet, J. Influence of high ambient temperatures on performance of multiparous lactating sows. J. Anim. Sci. 1999, 77, 2124–2134. [Google Scholar] [CrossRef]
- Rohlmann, C.; Verhaagh, M.; Efken, J. Steckbriefe zur Tierhaltung in Deutschland: Ferkelerzeugung und Schweinemast. 2020. Available online: https://www.thuenen.de/media/ti-themenfelder/Nutztierhaltung_und_Aquakultur/Haltungsverfahren_in_Deutschland/Schweinehaltung/Steckbrief_Schweine2019.pdf (accessed on 28 May 2020).
- Spoolder, H.A.M.; Aarnink, A.A.J.; Vermeer, H.M.; van Riel, J.; Edwards, S.A. Effect of increasing temperature on space requirements of group housed finishing pigs. App. Anim. Behav. Sci. 2012, 138, 229–239. [Google Scholar] [CrossRef]
- Hillmann, E.; Mayer, C.; Schrader, L. Lying behaviour and adrenocortical response as indicators of the thermal tolerance of pigs of different weights (Abstract). Anim. Welfare 2004, 13, 329–335. [Google Scholar]
- McKinnin, A.J.; Edwards, S.A.; Stephens, D.B.; Walters, D.E. Behaviour of groups of weaner pigs in three diffrent housing systems. Br. Vet. J. 1989, 367–372. [Google Scholar] [CrossRef]
- Ingram, D.L. Evaporative cooling in the pig. Nature 1965, 415–416. [Google Scholar] [CrossRef] [PubMed]
- EFSA European Food Safety Authority. Animal health and welfare in fattening pigs in relation to housing and husbandry. Scientific opinion of the panel on animal health and welfare. EFSA J. 2007, 1–14. [Google Scholar]
- Aarnink, A.J.A.; van den Berg, A.J.; Keen, A.; Hoeksma, P.; Verstegen, M.W.A. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs. J. Agric. Eng. Res. 1996, 64, 299–310. [Google Scholar] [CrossRef]
Measured Variable | Unit | Number/ Position | Measuring Range/Accuracy | Sensor Type |
---|---|---|---|---|
Relative humidity | % | 2 per compartment, between the pens of each side, 1.5 m above the floor | Range 0%–100%, accuracy 5% (±2.5% for 23 °C) | MELA Feuchtesensoren IBF2.11.F100.C97.1K6 |
Room temperature | °C | 6 per compartment, between pens of each side and above the lying area in each pen, 1.5 m above the floor | Range 190–260 °C | SensorShop 24, Kabelführer |
Surface temperature | 8 per compartment, embedded in the floor elements 1 cm below the surface of the lying and slatted area in each pen | Range 35–400 °C | SensorShop 24, Oberflächenfühler |
Period | Measuring Period (Day/Month/Year) | Compart-ment | Temperature (°C) | Relative Humidity (%) |
---|---|---|---|---|
1 | 11.07.18–07.10.18 | B1 | 22.1 ± 3.0 (min. 15.1; max. 30.5) | 53.0 ± 5.1 (min. 36; max. 84) |
01.08.18–24.10.18 | B2 | 23.3 ± 2.3 (min. 12.1; max. 28.8) | 49.0 ± 7.3 (min. 20; max. 85) | |
2 | 20.03.19–16.06.19 | B1 | 21.2 ± 1.9 (min. 16.4; max. 32.7) | 42.9 ± 8.5 (min. 17; max. 68) |
09.04.19–07.07.19 | B2 | 23.2 ± 2.1 (min. 17.2; max. 32.3) | 42.8 ± 9.6 (min. 20; max. 69) | |
3 | 24.07.19–20.10.19 | B1 | 22.2 ± 2.6 (min. 15.3; max. 30.0) | 51.1 ± 2.9 (min. 30; max. 63) |
14.08.19–10.11.19 | B2 | 20.9 ± 2.3 (min. 13.2; max. 27.9) | 48.7 ± 5.4 (min. 32; max. 68) |
Pen Design | Treatment | n | Mean (g/d) | SD (g/d) | Min. (g/d) | Max. (g/d) | Median(g/d) |
---|---|---|---|---|---|---|---|
A | Cooling | 162 | 940 | 94 | 673 | 1188 | 937 |
Control | 163 | 942 | 102 | 635 | 1198 | 948 | |
B | Cooling | 150 | 942 | 109 | 667 | 1196 | 950 |
Control | 156 | 939 | 118 | 597 | 1142 | 956 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opderbeck, S.; Keßler, B.; Gordillio, W.; Schrade, H.; Piepho, H.-P.; Gallmann, E. Influence of A Cooled, Solid Lying Area on the Pen Fouling and Lying Behavior of Fattening Pigs. Agriculture 2020, 10, 307. https://doi.org/10.3390/agriculture10070307
Opderbeck S, Keßler B, Gordillio W, Schrade H, Piepho H-P, Gallmann E. Influence of A Cooled, Solid Lying Area on the Pen Fouling and Lying Behavior of Fattening Pigs. Agriculture. 2020; 10(7):307. https://doi.org/10.3390/agriculture10070307
Chicago/Turabian StyleOpderbeck, S., B. Keßler, W. Gordillio, H. Schrade, Hans-Peter Piepho, and Eva Gallmann. 2020. "Influence of A Cooled, Solid Lying Area on the Pen Fouling and Lying Behavior of Fattening Pigs" Agriculture 10, no. 7: 307. https://doi.org/10.3390/agriculture10070307
APA StyleOpderbeck, S., Keßler, B., Gordillio, W., Schrade, H., Piepho, H. -P., & Gallmann, E. (2020). Influence of A Cooled, Solid Lying Area on the Pen Fouling and Lying Behavior of Fattening Pigs. Agriculture, 10(7), 307. https://doi.org/10.3390/agriculture10070307