Environmental Sustainability of Plastic in Agriculture
Abstract
:1. Introduction
2. Review of Plastic Nets and Covers
2.1. Modification of Mechanical Properties of Shade Nets and Environmental Sustainability
2.2. Modification of Optical Properties of Shade Nets and Environmental Sustainability
2.3. Plastic Covers/Films for Greenhouses
Potato Starch
2.4. Modification of Plastic Covers/Films
2.5. Degradation and Compostability
2.6. Life Cycle Analysis
2.6.1. Production of Synthetic and Biodegradable Polymers
2.6.2. Useful Life and Disposal
2.7. Spread of Micro-Plastics in the Environment
2.8. Plastics for Packaging Versus Plastics for Farm Applications
Production Strategy of Farms (Seasonal, Early, Postponed Production) and Environmental Analysis
2.9. Plastics for Soil Solarization and Degradable Sprays Used as Mulch
2.10. An Economic Study of the Costs of Synthetic Versus Biodegradable Plastics
2.11. Limitations
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
HMP | High methoxyl pectin |
LCA | Life cycle analysis |
LLDPE | Linear low-density polyethylene |
LMP | Low methoxyl pectin |
PAR | Photosynthetically active radiation |
PBA | Poly (butyl acrylate) |
PBAT | Poly (butylene adipate-co-terephthalate) |
PBSA | Poly (butylene succinate-co-adipate) |
PCL | Polycaprolactone |
PE | Polyethylene |
PET | Polyethylene terephthalate |
PHA | Polyhydroxyalkanoates |
PLA | Poly-lactic acid |
References
- Maraveas, C. The sustainability of plastic nets in agriculture. Sustainability 2020, 12, 3625. [Google Scholar] [CrossRef]
- Maraveas, C. Environmental sustainability of greenhouse covering materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef] [Green Version]
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Ili, S.Z.; Milenkovi, L.; Dimitrijevi, A.; Stanojevi, L.; Cvetkovi, D.; Kevre, Ž.; Fallik, E.; Mastilovi, J. Scientia Horticulturae Light modi fi cation by color nets improve quality of lettuce from summer production. Sci. Hortic. 2017, 226, 389–397. [Google Scholar]
- Abdel-Ghany, A.M.; Al-Helal, I.M. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net. Energy Convers. Manag. 2011, 52, 1755–1762. [Google Scholar] [CrossRef]
- Djordjevic, B.; Šavikin, K.; Djurovic, D.; Veberic, R. Biological and nutritional properties of blackcurrant berries (Ribes nigrum L) under conditions of shading nets. J. Sci. Food Agric. 2014, 95, 2416–2423. [Google Scholar] [CrossRef]
- Castellano, S.; Russo, G.; Briassoulis, D. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agric. 2013, 24, 799–808. [Google Scholar] [CrossRef]
- Živković, P.; Lemic, D.; Samu, F.; Kos, T.; Barić, B. Spider communities affected by exclusion nets. Appl. Ecol. Environ. Res. 2019, 17, 879–887. [Google Scholar] [CrossRef]
- Roselli, L.; Casieri, A.; de Gennaro, B.C.; Sardaro, R.; Russo, G. Environmental and economic sustainability of table grape production in Italy. Sustainability 2020, 12, 3670. [Google Scholar] [CrossRef]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018, 67, 99–109. [Google Scholar] [CrossRef]
- Zhang, X.; You, S.; Tian, Y.; Li, J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019, 249, 38–48. [Google Scholar] [CrossRef]
- Brodhagen, M.; Peyron, M.; Miles, C.; Inglis, D.A. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 2015, 99, 1039–1056. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Cui, S.; Borgemenke, J.; Liu, Z.; Li, Y. Recent advances of “ soft ” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. J. CO2 Util. 2019, 34, 40–52. [Google Scholar] [CrossRef]
- Tabasum, S.; Younas, M.; Ansab, M.; Majeed, I.; Majeed, M.; Noreen, A.; Naeem, M.; Mahmood, K. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [Google Scholar] [CrossRef]
- Hamdan, S.; Ahmed, A.S. Effect of chemical treatment on rice husk (rh) reinforced polyethylene (pe) composites. Bioresources 2010, 5, 854–869. [Google Scholar]
- Mellinas, C.; Ramos, M.; Jim, A. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef] [Green Version]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Song, H.; Kim, K.; Kwon, E.E.; Jae, Y. Production of bioplastic through food waste valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef]
- Bagde, P.; Nadanathangam, V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr. Polym. 2019, 222, 115021. [Google Scholar] [CrossRef]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Castellano, S.; Hemming, S.; Russo, G.; Mohammadkkhani, V.; Swinkels, G.J.; Scarascia, M.G. Radiometric properties of agricultural permeable coverings. J. Agric. Eng. 2010, 41, 1–12. [Google Scholar]
- Sica, C.; Picuno, P. Spectro-radiometrical characterization of plastic nets for protected cultivation. Acta Hortic. 2008, 801, 245–252. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Mugnozza, G.S.; Vox, G.; Feuilloley, P.; Sto, J.A. Radiometric and Thermal Properties of and Testing Methods for Greenhouse Covering Materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Black-Solis, J.; Ventura-Aguilar, R.I.; Correa-Pacheco, Z.; Corona-Rangel, M.L.; Bautista-Baños, S. Preharvest use of biodegradable polyester nets added with cinnamon essential oil and the effect on the storage life of tomatoes and the development of Alternaria alternata. Sci. Hortic. 2019, 245, 65–73. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Eco-friendly Polymer Nanocomposites: Processing and Materials. In Advanced Structured Materials; Thakur, V.K.; Thakur, M.K. (Eds.) Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9788132224693. [Google Scholar]
- Bashir, A.; Jabeen, S.; Gull, N.; Islam, A.; Sultan, M. Macromolecules Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging. Int. J. Biol. Macromol. 2018, 106, 351–359. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Briassoulis, D.Ã.; Mistriotis, A.; Eleftherakis, D. Mechanical behaviour and properties of agricultural nets—Part I: Testing methods for agricultural nets. Polym. Test. 2007, 26, 822–832. [Google Scholar] [CrossRef]
- Abdel-ghany, A.M.; Al-helal, I.M.; Alzahrani, S.M.; Alsadon, A.A. Covering materials incorporating radiation-preventing techniques to meet greenhouse cooling challenges in arid regions. Sci. World J. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Mormile, P.; Rippa, M.; Ritieni, A. Use of greenhouse-covering films with tailored UV-B transmission dose for growing ‘ medicines ’ through plants: Rocket salad case. J. Sci. Food Agric. 2019, 99, 1–6. [Google Scholar] [CrossRef]
- Briassoulis, D.Ã.; Mistriotis, A.; Eleftherakis, D. Mechanical behaviour and properties of agricultural nets. Part II: Analysis of the performance of the main categories of agricultural nets. Polym. Test. 2007, 26, 970–984. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers—A review on recent trends and emerging Perspectives. J. Polym. Env. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Rigakis, V.; Bartzanas, T.; Kitta, E. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Hortic. Sci. Biotechnol. 2012, 87, 7–12. [Google Scholar] [CrossRef]
- Milenkovi, L. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 2012, 139, 90–95. [Google Scholar]
- Oz, H.; Coskan, A.; Atilgan, A. Determination of effects of various plastic covers and biofumigation on soil temperature and soil nitrogen form in greenhouse solarization: New solarization cover material. J. Polym. Environ. 2017, 25, 370–377. [Google Scholar] [CrossRef]
- Bonanomi, G.; Chiurazzi, M.; Caporaso, S.; Del Sorbo, G.; Moschetti, G.; Felice, S. Soil solarization with biodegradable materials and its impact on soil microbial communities. Soil Biol. Biochem. 2008, 40, 1989–1998. [Google Scholar] [CrossRef]
- Russo, G.; Candura, A.; Scarascia-Mugnozza, G. Soil solarization with biodegradable plastic films: Two years of experimental tests. Acta Hortic. 2005, 691, 717–724. [Google Scholar] [CrossRef]
- Antón, A.; Torrellas, M.; Raya, V.; Montero, J.I. Modelling the amount of materials to improve inventory datasets of greenhouse infrastructures. Int. J. Life Cycle Assess. 2014, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Seven, S.A.; Tastan, Ö.F.; Tas, C.E.; Ünal, H.; Ince, İ.A. Insecticide-releasing LLDPE films as greenhouse cover materials Senem Avaz Seven. Mater. Today Commun. 2019, 19, 170–176. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Andersson, S.O.; Karlsson, S. The mechanism of biodegradation of polyethylene. Polym. Degrad. Stab. 1987, 18, 73–87. [Google Scholar] [CrossRef]
- Russo, G.; Vivaldi, G.A.; De Gennaro, B.; Camposeo, S. Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod. 2015, 107, 498–508. [Google Scholar] [CrossRef]
- Anifantis, A.; Canzio, G.; Giuseppe, C.; Santagata, G. Influence of the use of drip irrigation systems and different mulching materials on ornamental sunflowers in greenhouse cultivation. Acta Hortic. 2012, 952, 385–392. [Google Scholar] [CrossRef]
- Giaccone, M.; Cirillo, C.; Scognamiglio, P.; Teobaldelli, M.; Mataffo, A.; Stinca, A.; Pannico, A.; Immirzi, B.; Santagata, G.; Malinconico, M.; et al. Biodegradable mulching spray for weed control in the cultivation of containerized ornamental shrubs. Chem. Biol. Technol. Agric. 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Taiebat, M.; Miller, S.A. Life cycle assessment of end-of-life treatments for plastic film Waste. J. Clean. Prod. 2018, 201, 1052–1060. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Singh, V.; Tiwari, A.; Singh, S.; Singh, S. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation. eXPRESS Polym. Lett. 2007, 1, 51–58. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Amountzias, I.; Kokkinou, I.; Ntoulas, N. Green roof substrate type and depth affect the growth of the native species Dianthus fruticosus under reduced irrigation regimens. HortScience 2011, 46, 1208–1216. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Sun, Z.; Sigrimis, N.; Li, T. Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects. Biosyst. Eng. 2018, 176, 88–102. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Rudnik, E.; Briassoulis, D. Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J. Polym. Environ. 2011, 19, 18–39. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, D.; Dejean, C.; Picuno, P. Critical review of norms and standards for biodegradable agricultural plastics part II: Composting. J. Polym. Env. 2010, 18, 364–383. [Google Scholar] [CrossRef]
- Mukherjee, A.; Knoch, S.; Tavares, J.R. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019, 180, 121–145. [Google Scholar] [CrossRef]
- Grigale, Z.; Simanovska, J.; Kalnins, M.; Dzene, A.; Tupureina, V. Biodegradable packaging from life cycle perspective. Sci. J. Riga Tech. Univ. 2010, 21, 90–96. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Resources, Conservation & recycling agricultural plastic waste mapping using GIS. A case study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar]
- Zhong, X.; Zhao, X.; Qian, Y.; Zou, Y. Polyethylene plastic production process. Insight Mater. Sci. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pikoń, K.; Czop, M. Environmental impact of biodegradable packaging waste utilization. Pol. J. Environ. Stud. 2014, 23, 969–973. [Google Scholar]
- Hatti-kaul, R.; Nilsson, L.J.; Zhang, B.; Rehnberg, N.; Lundmark, S. Review designing biobased recyclable polymers for plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in developing countries: A review of global issues. Int. J. Env. Res. Public Heal. 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briassoulis, D.; Dejean, C. Critical review of norms and standards for biodegradable agricultural plastics part I. Biodegradation in soil. J. Polym. Env. 2010, 18, 384–400. [Google Scholar] [CrossRef]
- Janssen, D.; Cenis, J.L. Incidences and progression of tomato chlorosis virus disease and tomato yellow leaf curl virus disease in tomato under different greenhouse covers in southeast Spain. J. Polym. Env. 2008, 153, 335–344. [Google Scholar]
- Ilić, Z.; Milenković, L.; Đurovka, M.; Kapoulas, N. The effect of color shade nets on the greenhouse climate and pepper yield. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2009; pp. 529–532. [Google Scholar]
- Mantia, F.P. La closed-loop recycling. A case study of films for greenhouses. Polym. Degrad. Stab. 2010, 95, 285–288. [Google Scholar] [CrossRef]
- Fahim, I.S.; Chbib, H.; Mohamed, H. The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustain. Chem. Pharm. 2019, 12, 100142. [Google Scholar]
- Duque, T. Plastic Gets a Do-Over: Breakthrough Discovery Recycles Plastic from the Inside out. Berkeley Lab, 2019. Available online: https://newscenter.lbl.gov/2019/05/06/recycling-plastic-from-the-inside-out/ (accessed on 10 May 2020).
Property | Type of Biopolymer | ||||||
---|---|---|---|---|---|---|---|
PLA | l-PLA | dl-PLA | PGA | PCL | PHB | Starch | |
Density (kg/m3) | 1210 | 1240 | 1250 | 1500 | 1110 | 1180 | - |
Tensile strength (MPa) | 21 | 15.5 | 27.6 | 60 | 20.7 | 40 | 5.0 |
Young’s Modulus (GPa) | 0.35 | 2.7 | 1 | 6 | 0.21 | 3.5 | 0.125 |
Elongation (%) | 2.5 | 3 | 2 | 1.5 | 300 | 5 | 31 |
Glass transition temperature (°C) | 45 | 55 | 50 | 35 | −60 | 5 | - |
Melting temperature (°C) | 150 | 170 | am | 220 | 58 | 168 | - |
Transmission Coefficient | Screen House Material | ||||
---|---|---|---|---|---|
Control | |||||
(No Screen) | Gr34 | B&Gr40 | B40 | B49 | |
PAR | – | 63.4 | 57.4 | 60.7 | 51.3 |
NIR | – | 71.2 | 60.7 | 60.5 | 53.4 |
TMB | – | 65.6 | 58.8 | 60.6 | 52.2 |
b | 1.26 | 1.16 | 1.20 | 1.26 | 1.25 |
n | 1.30 | 1.22 | 1.26 | 1.28 | 1.27 |
B: R | 1.04 | 1.13 | 1.04 | 1.02 | 1.04 |
B: FR | 1.32 | 1.30 | 1.25 | 1.28 | 1.29 |
PAR: TMB | 0.58 | 0.56 | 0.57 | 0.58 | 0.58 |
PAR: NIR | 1.39 | 1.23 | 1.31 | 1.39 | 1.35 |
Material | Energy | Weight | Energy | GHG Emissions | GHG Emissions |
---|---|---|---|---|---|
MJ/kg | kg/FU | MJ/FU | kg CO2 eq/kg | kg CO2 eq/FU | |
PE | 76 | 0.2 | 15.20 | 4.80 | 0.96 |
oxo-PE | - | 0.2 | 15.20 | 4.80 | 0.94 |
PE | 76 | 0.196 | 14.90 | 4.80 | 0.94 |
Fe | 68 | 0.00132 | 0.09 | - | - |
Mn | 52.78 | 0.00132 | 0.07 | - | - |
Co | 109.1 | 0.00132 | 0.14 | - | - |
PLA1 | 54 | 0.3 | 16.20 | 4.00 | 1.20 |
PLA2 | 40 | 0.3 | 12 | 3 | 0.90 |
PLA3 | 29 | 0.3 | 8.7 | 1.89 | 0.57 |
PLA4 | 26 | 0.3 | 7.8 | 1.80 | 0.54 |
Item | Number of Units | Cost Per Unit in L.E. | Item Cost in L.E. |
---|---|---|---|
Land (4000 m2) | - | - | 11,000,000 |
Building (2000 m2) | - | - | 20,000,000 |
Waste Conveyer Belt | 2 | 85,000 | 170,000 |
Forklifts | 4 | 25,000 | 100,000 |
Pellets Rack | 100 | 1800 | 180,000 |
Chemical Storage Cabinet | 10 | 5100 | 51,000 |
Packaging Machines | 2 | 50,000 | 100,000 |
Glassware | NA | 100,000 | 100,000 |
Total | - | - | 31,701,000 |
Item | Number of Units | Cost Per Unit in L.E. | Item Cost in L.E. |
---|---|---|---|
Magnetic Stirrer | 1 | 100,000 | 100,000 |
Shaker | 5 | 2000 | 10,000 |
Spectroscope | 2 | 100,000 | 200,000 |
Refrigerator | 4 | 20,000 | 80,000 |
pH Meter | 2 | 20,000 | 40,000 |
Fermenter | 4 | 200,000 | 800,000 |
Autoclave | 4 | 20,000 | 80,000 |
Centrifuge | 4 | 50,000 | 200,000 |
Incubator | 10 | 35,000 | 350,000 |
Evaporator | 2 | 50,000 | 100,000 |
HPLC Apparatus | 2 | 300,000 | 600,000 |
Computer | 4 | 25,000 | 100,000 |
Deionized Water Apparatus | 1 | 35,000 | 35,000 |
Total | - | - | 2,695,000 |
Item | Quantity | Revenue | Cost | Profit | ROI Yearly |
---|---|---|---|---|---|
PLA Pellets | 176 | 1,267,200 | 944,370.24 | 322,829.76 | 10.8% |
PLA Filaments | 44 | 1,584,000 | 231,692.56 | 1,352,307.44 | 45.6% |
Total | 220 | 2,851,200 | 1,176,062.8 | 1,675,137.2 | 56.4% |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraveas, C. Environmental Sustainability of Plastic in Agriculture. Agriculture 2020, 10, 310. https://doi.org/10.3390/agriculture10080310
Maraveas C. Environmental Sustainability of Plastic in Agriculture. Agriculture. 2020; 10(8):310. https://doi.org/10.3390/agriculture10080310
Chicago/Turabian StyleMaraveas, Chrysanthos. 2020. "Environmental Sustainability of Plastic in Agriculture" Agriculture 10, no. 8: 310. https://doi.org/10.3390/agriculture10080310
APA StyleMaraveas, C. (2020). Environmental Sustainability of Plastic in Agriculture. Agriculture, 10(8), 310. https://doi.org/10.3390/agriculture10080310