Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Seedling Conditions
2.2. Auxin Experiment and Growth Conditions
2.3. Measurement of Growth Parameters
2.4. Chlorophyll Fluorescence (Fv/Fm) and Relative Chlorophyll Values
2.5. Measurement of Leaf Gas Exchange Parameters
2.6. Analysis of Acacetin, Tilianin, and Rosmarinic Acid (RA) Concentrations and Contents
2.7. Statistical Analysis
3. Results
3.1. Plant Growth Parameters
3.2. Relative Chlorophyll Value, Chlorophyll Fluorescence (Fv/Fm), and Leaf Gas Exchange Parameters
3.3. Acacetin, Rosmarinic Acid (RA), and Tilianin Concentrations and Contents
4. Discussion
4.1. Plant Growth Parameters
4.2. Chlorophyll Fluorescence (Fv/Fm), Relative Chlorophyll Value, and Leaf Gas Exchange Parameters
4.3. Rosmarinic Acid (RA), Tilianin, and Acacetin Concentrations and Contents
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamani, H.; Mantri, N.; Morrison, P.D.; Pang, E. Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache Rugosa. BMC Complement. Altern. Med. 2014, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.J. The role of traditional medicine practice in primary health care within Aboriginal Australia: A review of the literature. J. Ethnobiol. Ethnomed. 2013, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Xu, H.; Kim, Y.K.; Park, S.U. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J. Microbiol. Biotechnol. 2008, 24, 969–972. [Google Scholar] [CrossRef]
- Tuan, P.A.; Park, W.T.; Xu, H.; Park, N.I.; Park, S.U. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache Rugosa. J. Agric. Food Chem. 2012, 60, 5945–5951. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Castro, G.; Estrada-Soto, S.; Arellano-Garcia, J.; Arias-Duran, L.; Valencia-Diaz, S.; Perea-Arango, I. High accumulation of tilianin in in-vitro cultures of Agastache mexicana and its potential vasorelaxant action. Mol. Biol. Rep. 2019, 46, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Cao, P.R.; Wang, J.M.; Kang, W.Y. Analysis of tilianin and acacetin in Agastache rugosa by high-performance liquid chromatography with ionic liquids-ultrasound based extraction. Chem. Cent. J. 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.J.; Xu, S.F.; Yin, P.; Wang, W.; Song, X.Z.; Liu, F.H.; Xu, J.Q.; Zoccarato, I. Active components of common traditional Chinese medicine decoctions have antioxidant functions. J. Anim. Sci. 2011, 89, 3107–3115. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Amoo, S.O.; Aremu, A.O.; Van Staden, J. In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult. 2012, 111, 345–358. [Google Scholar] [CrossRef]
- Akanda, M.R.; Uddin, M.N.; Kim, I.S.; Ahn, D.; Tae, H.J.; Park, B.Y. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur. J. Pharm. 2019, 842, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Trill, J.; Gibbons, S.; Viljoen, A. Acacetin-A simple flavone exhibiting diverse pharmacological activities. Phytochem. Lett. 2019, 32, 56–65. [Google Scholar] [CrossRef]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.; Niu, G.; Takagaki, M. Plant factory: An indoor vertical farming system for efficient quality food production. In Plant. Factory as a Resource-Efficient Closed Plant Production System, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 69–90. [Google Scholar]
- Kim, Y.B.; Kim, J.K.; Uddin, M.R.; Xu, H.; Park, W.T.; Tuan, P.A.; Li, X.; Chung, E.; Lee, J.H.; Park, S.U. Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE. 2013, 8, e64199. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Bok, K.J.; Lam, V.P.; Park, J.S. Response of nutrient solution and photosynthetic photon flux density for growth and accumulation of antioxidant in Agastache rugosa under hydroponic culture systems. Prot. Hortic. Plant. Fact. 2017, 26, 249–257. [Google Scholar] [CrossRef]
- Lam, V.P.; Kim, S.J.; Bok, G.J.; Lee, J.W.; Park, J.S. The effects of root temperature on growth, physiology, and accumulation of bioactive compounds of Agastache Rugosa. Agriculture 2020, 10, 162. [Google Scholar] [CrossRef]
- Lam, V.P.; Kim, S.J.; Park, J.S. Optimizing the electrical conductivity of a nutrient solution for plant growth and bioactive compounds of Agastache rugosa in a plant factory. Agronomy 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Bais, H.P.; Sudha, G.; George, J.; Ravishankar, G.A. Influence of exogenous hormones on growth and secondary metabolite production in hairy root cultures of Cichorium intybus L. cv. Lucknow Local. Vitr. Cell. Dev. Biol. Plant. 2001, 37, 293–299. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). J. Plant. Growth Regul. 2014, 73, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Synkova, H.; Semoradova, S.; Schnablova, R.; Witters, E.; Husak, M.; Valcke, R. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol. Plant. 2006, 50, 31–41. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, D.E.; Lee, H.S.; Kim, S.K.; Lee, W.; Kim, S.H.; Kim, M.W. Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.). Plant. Cell Tissue Organ. Cult. 2011, 105, 9–19. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A.; Kotowska, U.; Bralska, M.; Talarek-Karwel, M. Growth, metabolite profile, oxidative status, and phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. J. Plant. Growth Regul. 2018, 37, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Satdive, R.K.; Fulzele, D.P.; Eapen, S. Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Cathar. Roseus. Biotechnol. Prog. 2003, 19, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.D. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant. Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Haber, A.H. Effects of indoleacetic acid on growth without mitosis & on mitotic activity in absence of growth by expansion. Plant. Physiol. 1962, 37, 18–26. [Google Scholar]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant. Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef] [Green Version]
- Malik, D.K.; Sindhu, S.S. Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants. 2011, 17, 25–32. [Google Scholar]
- Fassler, E.; Evangelou, M.W.; Robinson, B.H.; Schulin, R. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 2010, 80, 901–907. [Google Scholar] [CrossRef]
- San-Francisco, S.; Houdusse, F.; Zamarreno, A.; Garnica, M.; Casanova, E.; Garcia-Mina, J. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Sci. Hortic. 2005, 106, 38–52. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, W.; Song, Y. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus Quadricauda. Algal Res. 2016, 18, 273–280. [Google Scholar] [CrossRef]
- Kobayashi, K.; Baba, S.; Obayashi, T.; Sato, M.; Toyooka, K.; Keränen, M.; Aro, E.M.; Fukaki, H.; Ohta, H.; Sugimoto, K.; et al. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 2012, 24, 1081–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Khan, M.; Ansari, H.R. Auxin and defoliation effects on photosynthesis and ethylene evolution in mustard. Sci. Hortic. 2002, 96, 43–51. [Google Scholar] [CrossRef]
- Bidwell, R.G.S.; Turner, W.B. Effect of growth regulators on CO2 assimilation in leaves, and its correlation with the bud break response in photosynthesis. Plant. Physiol. 1966, 41, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Kirecci, O.A. The effects of salt stress, SNP, ABA, IAA and GA applications on antioxidant enzyme activities in Helianthus Annuus L. Fresenius Environ. Bull. 2018, 27, 3783–3788. [Google Scholar]
- Lee, E.J.; Kim, M.K.; Paek, K.Y. Auxin and cytokinin affect biomass and bioactive compound production from adventitious roots of Eleutherococcus Koreanum. Korean J. Hortic. Sci. Technol. 2010, 28, 678–684. [Google Scholar]
- Thiruvengadam, M.; Chung, I.M. Phenolic compound production and biological activities from in vitro regenerated plants of gherkin (Cucumis anguria L.). Electron. J. Biotechnol. 2015, 18, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Galieni, A.; Di Mattia, C.; De Gregorio, M.; Speca, S.; Mastrocola, D.; Pisante, M.; Stagnari, F. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hortic. 2015, 187, 93–101. [Google Scholar] [CrossRef]
IAA Concentration w (M) | Leaf Length (cm) | Leaf Width (cm) | Number of Leaves | Leaf Area (cm2) | Stem Length (cm) | Root Length (cm) | Fresh Weight (g/plant) | Dry Weight (g/plant) | ||
---|---|---|---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | |||||||
Control | 9.09bc | 7.54c | 78.50ab | 860.25 | 41.86 | 54.85 | 25.56bc | 15.69ab | 3.12 | 0.80ab |
10−11 | 9.51a | 8.52a | 76.50b | 845.56 | 41.19 | 50.74 | 25.74abc | 14.98ab | 3.01 | 0.78ab |
10−9 | 9.45ab | 8.10b | 84.87a | 893.53 | 40.46 | 55.34 | 28.65a | 16.69a | 3.14 | 0.81a |
10−7 | 9.06bc | 8.06b | 85.50a | 925.99 | 41.61 | 57.49 | 28.38ab | 16.76a | 3.15 | 0.81a |
10−5 | 8.74c | 7.91b | 78.25ab | 858.28 | 40.97 | 50.91 | 25.09c | 14.70b | 2.95 | 0.75b |
Significance z | *** | *** | ** | NS | NS | NS | ** | ** | NS | ** |
L y | * | *** | NS | NS | NS | NS | NS | NS | NS | NS |
Q x | *** | *** | NS | NS | NS | NS | NS | NS | NS | NS |
IAA Concentration w (M) | RA Concentration in Plant Organs (mg·g−1 DW) | Tilianin Concentration in Plant Organs (mg·g−1 DW) | Acacetin Concentration in Plant Organs (mg·g−1 DW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Flowers | Stems | Roots | Leaves | Flowers | Stems | Roots | Leaves | Flowers | Stems | Roots | |
Control | 3.718d | 6.163a | 6.379bc | 19.153b | 1.480c | 2.919b | 0.931d | 0.033c | ND | 0.064b | ND | ND |
10−11 | 4.604c | 5.304ab | 5.495d | 10.348c | 2.311a | 5.781a | 1.715a | 0.034c | ND | 0.059b | ND | ND |
10−9 | 6.392a | 5.076b | 6.809b | 24.307ab | 1.908b | 5.011a | 1.150c | 0.038c | ND | 0.033c | ND | ND |
10−7 | 5.919b | 4.905b | 9.075a | 23.218b | 1.706b | 4.817a | 1.209bc | 0.055b | ND | 0.110a | ND | ND |
10−5 | 6.041b | 5.606ab | 6.068cd | 29.925a | 1.744b | 4.399a | 1.345b | 0.074a | ND | 0.104a | ND | ND |
Significance z | *** | ** | *** | ** | *** | ** | *** | *** | ND | *** | ND | ND |
L y | NS | ** | NS | NS | *** | *** | *** | NS | ND | NS | ND | ND |
Q x | *** | ** | NS | *** | *** | *** | ** | *** | ND | * | ND | ND |
IAA Concentration w (M) | RA Content in Plant Organs (mg/plant organs DW) | Tilianin Content in Plant Organs (mg/plant organs DW) | Acacetin Content in Plant Organs (mg/plant organs DW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Flowers | Stems | Roots | Leaves | Flowers | Stems | Roots | Leaves | Flowers | Stems | Roots | |
Control | 7.325d | 1.309a | 5.763c | 15.429b | 2.915c | 0.601b | 0.841c | 0.027c | ND | 0.014b | ND | ND |
10−11 | 8.670c | 1.061b | 4.962d | 8.139c | 4.353a | 1.156a | 1.549a | 0.026c | ND | 0.012b | ND | ND |
10−9 | 12.231a | 1.083ab | 6.582b | 20.101ab | 3.651b | 1.068a | 1.112b | 0.031c | ND | 0.007c | ND | ND |
10−7 | 11.719b | 1.030b | 8.228a | 19.119ab | 3.378b | 1.011a | 1.096b | 0.045b | ND | 0.023a | ND | ND |
10−5 | 11.559b | 1.156ab | 5.099d | 22.745a | 3.337bc | 0.909ab | 1.131b | 0.056a | ND | 0.021a | ND | ND |
Significance z | *** | NS | *** | *** | *** | ** | *** | *** | ND | *** | ND | ND |
L y | NS | ** | NS | NS | *** | *** | *** | NS | ND | NS | ND | ND |
Q x | *** | ** | NS | *** | *** | *** | *** | *** | ND | * | ND | ND |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, V.P.; Lee, M.H.; Park, J.S. Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory. Agriculture 2020, 10, 343. https://doi.org/10.3390/agriculture10080343
Lam VP, Lee MH, Park JS. Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory. Agriculture. 2020; 10(8):343. https://doi.org/10.3390/agriculture10080343
Chicago/Turabian StyleLam, Vu Phong, Mun Haeng Lee, and Jong Seok Park. 2020. "Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory" Agriculture 10, no. 8: 343. https://doi.org/10.3390/agriculture10080343
APA StyleLam, V. P., Lee, M. H., & Park, J. S. (2020). Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory. Agriculture, 10(8), 343. https://doi.org/10.3390/agriculture10080343