Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Animals and Experimental Design
2.2. Measurements
2.3. Data Analysis and Statistics
3. Results
3.1. The Relationship between the Level of Milk Lactose and Milk Characteristics of Cows
3.2. The Relationship between the Level of Milk Lactose and Biomarkers from AMS
3.3. Relationship between Milk Lactose and Cow Reproduction Success
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. Off. Int. Epiz. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- Spahr, S.L.; Maltz, E. Herd management for robot milk-ing. Comp. Electron. Agric. 1997, 17, 53–62. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M. Editorial: Precision livestock farming: A “per animal” approach using advanced monitoring technologies. Anim. Consortc. 2016, 10, 1482–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halachmi, I. Designing the automatic milking farm in a hot climate. J. Dairy Sci. 2004, 87, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Egger-Danner, C.; Mészáros, G.; Fuerst, C.; Penasa, M.; Sölkner, J.; Fuerst-Waltl, B. Genetic associations of lactose and its ratios to other milk solids with health traits in Austrian Fleckvieh cows. J. Dairy Sci. 2019, 102, 4238–4248. [Google Scholar] [CrossRef] [PubMed]
- Miglior, F.; Sewalem, A.; Jamrozik, J.; Lefebvre, D.M.; Moore, R.K. Analysis of Milk Urea Nitrogen and Lactose and Their Effect on Longevity in Canadian Dairy Cattle. J. Dairy Sci. 2006, 89, 4886–4894. [Google Scholar] [CrossRef]
- Francisco, C.C.; Spicer, L.J.; Payton, M.E. Predicting cholesterol, progesterone, and days to ovulation using postpartum metabolic and endocrine measures. J. Dairy Sci. 2003, 86, 2852–2863. [Google Scholar] [CrossRef] [Green Version]
- Buckley, F.; O’Sullivan, K.; Mee, J.F.; Evans, R.D.; Dillon, P. Relationships among milk yield, body condition, cow weight, and reproduction in spring-calved Holstein-Friesians. J. Dairy Sci. 2003, 86, 2308–2319. [Google Scholar] [CrossRef]
- Reksen, O.; Havrevoll, Ø.; Gröhn, Y.T.; Bolstad, T.; Waldmann, A.; Ropstad, E. Relationships among body condition score, milk constituents, and postpartum luteal function in Norwegian dairy cows. J. Dairy Sci. 2002, 85, 1406–1415. [Google Scholar] [CrossRef]
- Steen, A.; Østerås, O.; Grønstøl, H. Evaluation of additional acetone and urea analyses, and of the fat-lactose-quotient in cow milk samples in the herd recording system in Norway. J. Vet. Med. A 1996, 43, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Reist, M.; Erdin, D.; von Euw, D.; Tschuemperlin, K.; Leuenberger, H.; Chilliard, Y.; Hammon, H.M.; Morel, C.; Philipona, C.; Zbinden, Y.; et al. Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows. J. Dairy Sci. 2002, 85, 3314–3327. [Google Scholar] [CrossRef]
- Pyöräla, S. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 2003, 34, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Leitner, G.; Lavi, Y.; Merin, U.; Lemberskiy-Kuzin, L.; Katz, G. Online evaluation of milk quality according to coagulation properties for its optimal distribution for industrial applications. J. Dairy Sci. 2011, 94, 2923–2932. [Google Scholar] [CrossRef] [PubMed]
- Rigout, S.; Lemosquet, S.; van Eys, J.E.; Blum, J.W.; Rulquin, H. Duodenal glucose increases glucose fluxes and lactose synthesis in grass silage-fed dairy cows. J. Dairy Sci. 2002, 85, 595–606. [Google Scholar] [CrossRef]
- Qiao, F.; Trout, D.R.; Xiao, C.; Cant, J.P. Kinetics of glucose transport and sequestration in lactating bovine mammary glands measured in vivo with a paired indicator/nutrient dilution technique. J. Applied Phys. 2005, 99, 799–806. [Google Scholar] [CrossRef]
- Berglund, I.; Pettersson, G.; Ostensson, K.; Svennersten-Sjaunja, K. Quarter milking for improved detection of increased SCC. Rep. Dom. Anim. Malden. 2007, 42, 427–432. [Google Scholar] [CrossRef]
- Leitner, G.; Merin, U.; Lavi, Y.; Egber, A.; Silanikove, N. Aetiology of intramammary infection and its effect on milk composition in goat flocks. J. Dairy Res. 2007, 74, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Moussaoui, F.; Vangroenweghe, F.; Haddadi, K.; Le Roux, Y.; Laurent, F.; Duchateau, L.; Burvenich, C. Proteolysis in milk during experimental Escherichia coli mastitis. J. Dairy Sci. 2004, 87, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Alessio, M.; Regina, D.; André, T.N.; Pedro, V.J.; Ildemar, B.P.; José, M.D.; Aline, K.D.; Claudineli, G.S. Multivariate analysis of lactose content in milk of Holstein and Jersey cows. Ciênci. Agrár. 2016, 37, 2641–2652. [Google Scholar] [CrossRef] [Green Version]
- Lindmark-Mansson, H.; Branning, C.; Alden, G.; Paulsson, M. Relationship between somatic cell count individual leukocyte populations and milk components in bovine udder quarter milk. Inter. Dairy J. 2006, 16, 717–727. [Google Scholar] [CrossRef]
- Miglior, F.; Sewalem, A.; Jamprozik, J.; Bohmanova, J.; Lefebvre, D.M.; Moore, R.K. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J. Dairy Sci. 2007, 90, 2468–2479. [Google Scholar] [CrossRef] [PubMed]
- Pessora, R.B.; Blagitz, M.G.; Batista, C.F.; Santos, B.P.; Parra, A.C.; Souza, F.N.; Della Libera, A.M.M.P. Polymorphonuclear leukocytes CH138+ apoptosis evaluation in milk with high and low somatic cell count—preliminary data. Arq. Bras. Med. Vet. Zootec. 2012, 64, 533–539. [Google Scholar]
- Ben Chedly, H.; Lacasse, P.; Marnet, P.; Wiart-Letort, S.; Finot, L.; Boutinaud, M. Cell junction disruption after 36 h milk accumulation was associated with changes in mammary secretory tissue activity and dynamics in lactating dairy goats. J. Phys. Pharm. Off. J. Pol. Physiol. Soc. 2009, 60, 105–111. [Google Scholar]
- Schneeberger, E.E.; Lynch, R.D. Structure, function and regulation of cellular tight junctions. Americ. J. Phys. 1992, 262, 647–661. [Google Scholar] [CrossRef]
- Capuco, A.V.; Ellis, S.E.; Hale, S.A.; Long, E.; Erdman, R.A.; Zhao, X.; Paape, M.J. Lactation persistency: Insights from mammary cell proliferation studies. J. Anim. Sci. 2003, 81, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Stelwagen, K.; Davis, S.R.; Farr, V.C.; Eichler, S.J.; Politis, I. Effect of once daily milking and concurrent somatotropin on mammary tight junction permeability and yield of cows. J. Dairy Sci. 1994, 77, 2994–3001. [Google Scholar] [CrossRef]
- Leitner, G.; Chaffer, M.; Shamay, A.; Shapiro, F.; Merin, U.; Ezra, E.; Saran, A.; Silanikove, N. Changes in milk composition as affected by subclinical mastitis in sheep. J. Dairy Sci. 2004, 87, 46–52. [Google Scholar] [CrossRef]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, T.; Petrovski, K.R. A large-scale study of indicators of sub-clinical mastitis in dairy cattle by attribute weighting analysis of milk composition features: Highlighting the predictive power of lactose and electrical conductivity. J. Dairy Res. 2018, 85, 193–200. [Google Scholar] [CrossRef]
- Geary, U.; Lopez-Villalobos, N.; O’Brien, B.; Garrick, D.J.; Shalloo, L. Estimating the impact of somatic cell count on the value of milk utilising parameters obtained from the published literature. J. Dairy Res. 2014, 81, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Vilas Boas, D.F.; Vercesi Filho, A.E.; Pereira, M.A.; Roma Junior, L.C.; El Faro, L. Association between electrical conductivity and milk production traits in Dairy Gyr cows. J. Appl. Anim. Res. 2017, 45, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited review: Milk lactose—Current status and future challenges in dairy cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef] [PubMed]
- Toni, F.; Vincenti, L.; Grigoletto, L.; Ricci, A.; Schukken, Y.H. Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival. J. Dairy Sci. 2011, 94, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Gantner, V.; Bobic, T.; Potocnik, K. Prevalence of metabolic disorders and effect on subsequent daily milk quantity and quality in Holstein cows. Arch. Anim. Breed. 2016, 59, 381–386. [Google Scholar] [CrossRef]
- Antanaitis, R.; Žilaitis, V.; Kučinskas, K.; Juozaitienė, V.; Leonauskaitė, K. Changes in cow activity, milk yield, and milk conductivity before clinical diagnosis of ketosis, and acidosis. Vet. Med. Zoot. 2015, 70, 1392–2130. [Google Scholar]
- Church, D.C. Salivary function and production. In The Ruminant Animal, Digestive Physiology and Nutrition; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; pp. 117–124. [Google Scholar]
- Plaiziera, J.C.; Krausea, D.O.; Gozhob, G.N.; McBridec, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute Ruminal Acidosis Induces Ruminal Lipopolysaccharide Endotoxin Release and Triggers an Inflammatory Response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [Green Version]
- Hibbard, B.; Peters, J.P.; Chester, S.T.; Robinson, J.A.; Kotarski, S.; Croom, W.J.; Hagler, W.M. The effect of slaframine on salivary output and subacute and acute acidosis in growing beef steers. J. Anim. Sci. 1995, 73, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Kriehbiel, C.R.; Britton, R.A.; Harmon, D.L.; Wester, T.J.; Stock, R.A. The effects of ruminal acidosis on volatile fatty acid absorption and plasma activities of pancreatic enzymes in lambs. J. Anim. Sci. 1995, 73, 3111–3121. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Yang, W.Z.; Rode, L.M. Effects of barley grain processing on the site and extent of digestion in beef. J. Anim. Sci. 2001, 79, 1925–1936. [Google Scholar] [CrossRef] [Green Version]
- Antanaitis, R.; Juozaitienė, V.; Malašauskienė, D.; Televičius, M. Can rumination time and some blood biochemical parameters be used as biomarkers for the diagnosis of subclinical acidosis and subclinical ketosis. Vet. Anim. Sci. 2019, 8, 100077. [Google Scholar] [CrossRef] [PubMed]
- Shimkiene, A.; Juozaitiene, V.; Juozaitis, A.; Shimkus, A.; Zilaitis, V.; Urbonavicius, A. Relationship between lactose content in cow’s milk with selection attributes and heritability. Veterinarija ir zootechnika. Vet. Med. Zoot. 2009, 45, 81–86. [Google Scholar]
Group of Cows | Statistic | Reticulorumen pH | Reticulorumen T°C | Rumination Time, min/d. | Activity of Cows, Steps/Hour |
---|---|---|---|---|---|
1–30 d.p.p. | |||||
1 | M | 6.34 | 38.84 | 467.40 | 8.39 |
SE | 0.291 | 0.113 | 34.230 | 1.006 | |
2 | M | 6.50 ** | 38.82 | 421.33 | 12.96 ** |
SE | 0.302 | 0.263 | 49.600 | 4.186 | |
Correlation | 0.762 * | 0.130 | −0.296 | 0.751 * | |
30 d.p.p.—until insemination | |||||
1 | M | 6.48 | 38.85 | 465.67 | 8.22 |
SE | 0.039 | 0.088 | 13.951 | 0.515 | |
2 | M | 6.62 | 38.66 ** | 443.00 | 9.67 |
SE | 0.001 | 0.002 | 10.157 | 0.001 | |
Correlation | 0.567 * | 0.176 | −0.223 | 0.753 * |
Source | B | S.E. B | Wald χ2 | df | P | OR |
---|---|---|---|---|---|---|
Group | 3.258 | 1.136 | 8.221 | 1 | 0.004 | 26.000 |
Constant | −3.877 | 1.397 | 7.707 | 1 | 0.006 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Televičius, M.; Juozaitiene, V.; Malašauskienė, D.; Antanaitis, R.; Rutkauskas, A.; Urbutis, M.; Baumgartner, W. Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows. Agriculture 2021, 11, 38. https://doi.org/10.3390/agriculture11010038
Televičius M, Juozaitiene V, Malašauskienė D, Antanaitis R, Rutkauskas A, Urbutis M, Baumgartner W. Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows. Agriculture. 2021; 11(1):38. https://doi.org/10.3390/agriculture11010038
Chicago/Turabian StyleTelevičius, Mindaugas, Vida Juozaitiene, Dovilė Malašauskienė, Ramunas Antanaitis, Arūnas Rutkauskas, Mingaudas Urbutis, and Walter Baumgartner. 2021. "Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows" Agriculture 11, no. 1: 38. https://doi.org/10.3390/agriculture11010038
APA StyleTelevičius, M., Juozaitiene, V., Malašauskienė, D., Antanaitis, R., Rutkauskas, A., Urbutis, M., & Baumgartner, W. (2021). Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows. Agriculture, 11(1), 38. https://doi.org/10.3390/agriculture11010038