African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern
Abstract
:1. Introduction
2. Materials and Methods
- passive surveillance (found dead), parts II-III (areas acc. to 2014/709/EU decision);
- passive surveillance (road-killed), parts II-III (areas acc. to 2014/709/EU decision);
- active surveillance (hunted), parts II-III (areas acc. to 2014/709/EU decision);
- passive surveillance (found dead), part I-0 (areas acc. to 2014/709/EU decision);
- active surveillance (hunted), parts I-0 (areas acc. to 2014/709/EU decision);
- passive surveillance (road-killed), parts I-0 (areas acc. to 2014/709/EU decision).
- parts II-III;
- parts 0-I.
- βi—regression coefficient for i = 0, …, n,
- xi—independent variables (measurable or qualitative) for i = 1, 2, …, n.
3. Results
3.1. Passive Surveillance of ASF in Wild Boar Populations (Found Dead)
3.2. Passive Surveillance of ASF in Wild Boar Populations (Road-Killed)
3.3. Active Surveillance of ASF in Wild Boar Populations (Hunted)
3.4. ASF-Positive Results in Part II-III (Areas Acc. to 2014/709/EU Decision)
3.5. ASF-Positive Results in Part 0-I (Areas Acc. to 2014/709/EU Decision)
3.6. Comprehensive Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, X.; White, A.; Ruiz-Fons, F.; Gortazar, C. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci. Rep. 2020, 10, 5895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinat, C.; Gogin, A.; Blome, S.; Keil, G.; Pollin, R.; Pfeiffer, D.U.; Dixon, L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Record 2016, 178, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.A.; Condoleo, R.; Simons, R.R.; Gale, P.; Kelly, L.A.; Snary, E.L. The Risk of Infection by African Swine Fever Virus in European Swine Throught Boar Movement and Legal Trade of Pigs and Pig Meat. Front. Vet. Sci. 2020, 6, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frant, M.; Lyjak, M.; Bocian, L.; Barszcz, A.; Niemczuk, K.; Wozniakowski, G. African swine fever virus (ASFV) in Poland: Prevalence in wild boar population (2017–2018). Vet. Med. Czech. 2020, 65, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Smietanka, K.; Wozniakowski, G.; Kozak, E.; Niemczuk, K.; Fraczyk, M.; Bocian, L.; Kowalczyk, A.; Pejsak, Z. African Swine Fever Epidemic, Poland, 2014–2015. Emerg Infect. Dis. 2016, 22, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- Salguero, F.J. Comparative Pathology and Pathogenesis of African Swine Fever Infected in Swine. Front. Vet. Sci. 2020, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Animal Disease Notification System (ADNS). Available online: https://ec.europa.eu/food/animals/animal-diseases/not-system_en (accessed on 20 October 2020).
- World Organisation for Animal Health. African Swine Fever. Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/african-swine-fever/ (accessed on 20 October 2020).
- Cukor, J.; Linda, R.; Václavek, P.; Šatrán, P.; Mahlerová, K.; Vacek, Z.; Kunca, T.; Havránek, F. Wild boar deathbed choice in relation to ASF: Are there any differences between positive and negative carcasses? Prev. Vet. Med. 2020, 177, 104943. [Google Scholar] [CrossRef]
- Cwynar, P.; Stojkov, J.; Wlazlak, K. African Swine Fever Status in Europe. Viruses 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Jurado, C.; Martínez-Avilés, M.; De La Torre, A.; Stukelj, M.; Cardoso de Carvalho Ferreira, H.; Cerioli, M.; Sánchez-Vizcaíno, J.M.; Bellini, S. Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig Sector. Front. Vet. Sci. 2018, 5, 77. [Google Scholar]
- EFSA (European Food Safety Authority). Available online: https://www.efsa.europa.eu/en (accessed on 21 October 2020).
- Bonnet, S.I.; Bouhsire, E.; De Regge, N.; Fite, J.; Etore, F.; Garigliany, M.M.; Jori, F.; Lempereur, L.; Le Potie, M.F.; Quillery, E.; et al. Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses 2020, 12, 778. [Google Scholar] [CrossRef]
- Lamberga, K.; Oļševskis, E.; Seržants, M.; Bērziņš, A.; Viltrop, A.; Depner, K. African Swine Fever in Two Large Commercial Pig Farms in LATVIA-Estimation of the High Risk Period and Virus Spread within the Farm. Vet. Sci. 2020, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Botner, A. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transbound Emerg. Dis. 2018, 65, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Belsham, G.J.; Rasmussen, T.B.; Lohse, L.; Bodker, R.; Halasa, T.; Boklund, A.; Botner, A. Potential routes for indirect transmission of African swine fever virus into domestic pig herbs. Transbound Emerg. Dis. 2020, 67, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- General Veterinary Inspectorate/Glówny Inspektorat Weterynarii. Afrykanski Pomór Świń (ASF). Available online: https://www.wetgiw.gov.pl/nadzor-weterynaryjny/afrykanski-pomor-swin (accessed on 22 October 2020).
- European Union. 2014/709/EU: Commission Implementing Decision of 9 October 2014 Concerning Animal Health Control Measures Relating to African Swine Fever in Certain Member States and Repealing Implementing Decision 2014/178/EU (Notified under Document C(2014) 7222) Text with EEA Relevance (This Act Has Been Changed, Current Consolidated Version: 25/09/2020); European Union: Brussels, Belgium, 2014. [Google Scholar]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. The Spillover of African Swine Fever in Western Poland Revealed Its Estimated Origin on the Basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L Genomic Sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef]
- Woźniakowski, G.; Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Frant, M.; Niemczuk, K. Attempts at the development of a recombinant African swine fever virus strain with abrogated EP402R, 9GL, and A238L gene structure using the CRISPR/Cas9 system. J. Vet. Res. 2020, 64, 197–205. [Google Scholar] [CrossRef]
- Dixon, L.K.; Sun, H.; Roberts, H. African swine fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef]
- Vergne, T.; Guinat, C.; Petkova, P.; Gogin, A.; Kolbasov, D.; Blome, S.; Molia, S.; Pinto Ferreira, J.; Wieland, B.; Nathues, H.; et al. Attitudes and Beliefs of Pig Farmers and Wild Boar Hunters Towards Reporting of African Swine Fever in Bulgaria, Germany and the Western Part of the Russian Federation. Transbound Emerg. Dis. 2016, 63, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Lopez, J.; Acevedo, P.; Blanco-Aquiar, J.A.; Vicente, J. Analysis of wild boar-domestic pig interference in Europe preliminary analysis. EFSA J. 2020, 17, 1834E. [Google Scholar] [CrossRef]
- Fernandez-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gómez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library. Transbound Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Keuling, O.; Baubet, E.; Duscher, A.; Ebert, C.; Fischer, C.; Monaco, A.; Podgórski, T.; Prevot, C.; Ronnenberg, K.; Sodeikat, G.; et al. Mortality rates of wild boar Sus scrofa L. in central Europe. Eur. J. Wildl. Res. 2013, 59, 805–814. [Google Scholar] [CrossRef]
- Johann, F.; Handschuh, M.; Linderoth, P.; Dormann, C.F.; Arnold, J. Adaptation of wild boar (Sus scrofa) activity in a human-dominated landscape. BMC Ecol. 2020, 20, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boklund, A.; Cay, B.; Depner, K.; Földi, Z.; Guberti, V.; Masiulis, M.; Miteva, A.; More, S.; Olsevskis, E.; Šatrán, P.; et al. Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J. 2018, 16, e05494. [Google Scholar] [PubMed]
- More, S.; Miranda, M.A.; Bicout, D.; Bøtner, A.; Butterworth, A.; Calistri, P.; Edwards, S.; Garin-Bastuji, B.; Good, M.; Michel, V.; et al. African swine fever in wild boar. EFSA J. 2018, 16, e05344. [Google Scholar] [PubMed] [Green Version]
- Martínez-Avilés, M.; Iglesias, I.; De La Torre, A. Evolution of the ASF Infection Stage in Wild Boar Within the EU (2014–2018). Front. Vet. Sci. 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pautienius, A.; Schulz, K.; Staubach, C.; Grigas, J.; Zagrabskaite, R.; Buitkuviene, J.; Stankevicius, R.; Streimikyte, Z.; Oberauskas, V.; Zienius, D.; et al. African swine fever in the Lithuanian wild boar population in 2018: A snapshot. Virol. J. 2020, 17, 148. [Google Scholar] [CrossRef]
- Gervasi, V.; Marcon, A.; Bellini, S.; Guberti, V. Evaluation of the Efficiency of Active and Passive Surveillance in the Detection of African Swine Fever in Wild Boar. Vet. Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.; Conraths, F.J.; Staubach, C.; Viltrop, A.; Oļševskis, E.; Nurmoja, I.; Lamberga, K.; Sauter-Louis, C. To sample or not to sample? Detection of African swine fever in wild boar killed in road traffic accidents. Transbound Emerg. Dis. 2020, 67, 1816–1819. [Google Scholar] [CrossRef]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Oļševskis, E.; Thulke, H.-H.; Viltrop, A.; Woźniakowski, G.; Abrahantes, J.C.; et al. Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J. 2017, 15, e05068. [Google Scholar]
- Pittiglio, C.; Khomenko, S.; Beltran-Alcrudo, D. Wild boar mapping using population-density statistics: From polygons to high resolution raster maps. PLoS ONE 2018, 13, e0193295. [Google Scholar] [CrossRef] [Green Version]
Significance Assessment of Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Passive surveillance model (found dead) of ASF in Parts II-III in 2019—influence of the month on the result (reference month: September) | |||||||
<0.0001 | Absolute term (β0) | −1.05711 | 0.18180 | p < 0.0001 | 0.34746 | 0.24329 | 0.49623 |
January | 2.57172 | 0.21813 | 0 | 13.08827 | 8.53422 | 20.07247 | |
February | 2.36645 | 0.21169 | p < 0.0001 | 10.65944 | 7.03874 | 16.14261 | |
March | 2.18922 | 0.20665 | p < 0.0001 | 8.92825 | 5.95412 | 13.38798 | |
April | 1.91084 | 0.20557 | p < 0.0001 | 6.75877 | 4.51691 | 10.11334 | |
May | 1.96901 | 0.20807 | p < 0.0001 | 7.16361 | 4.76409 | 10.7717 | |
June | 1.29659 | 0.23257 | p < 0.0001 | 3.65682 | 2.31785 | 5.76927 | |
July | 1.42924 | 0.21655 | p < 0.0001 | 4.17553 | 2.73112 | 6.38385 | |
August | 1.25709 | 0.21661 | p < 0.0001 | 3.51517 | 2.29891 | 5.37491 | |
October | 0.50740 | 0.21616 | p < 0.0001 | 1.66096 | 1.08723 | 2.53747 | |
November | 1.28299 | 0.21200 | p < 0.0001 | 3.60742 | 2.37600 | 5.47705 | |
December | 1.61809 | 0.20133 | p < 0.0001 | 5.04344 | 3.39870 | 7.48411 | |
Passive surveillance model (found dead) of ASF in Parts 0-I in 2019—influence of the month on the result (reference month: January, February, April, September and October combine) | |||||||
<0.0001 | Absolute term (β0) | −5.50262 | 0.57870 | p < 0.0001 | 0.00408 | 0.00131 | 0.01268 |
March | 1.68858 | 0.82181 | 0.04006 | 5.41177 | 1.07978 | 27.12343 | |
May | 3.08472 | 0.67508 | p < 0.0001 | 21.86139 | 5.81638 | 82.16792 | |
June | 1.58064 | 0.91911 | 0.08565 | 4.85809 | 0.80090 | 29.46818 | |
July | 2.70941 | 0.71524 | 0.00016 | 15.02041 | 3.69362 | 61.08176 | |
August | 3.49286 | 0.64960 | p < 0.0001 | 32.87973 | 9.19623 | 117.5565 | |
November | 3.45880 | 0.61639 | p < 0.0001 | 31.77893 | 9.48654 | 106.4562 | |
December | 3.022 | 0.62593 | p < 0.0001 | 20.53451 | 6.01630 | 70.09733 |
Significance Assessment of Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Passive surveillance model (road-killed) of ASF in Parts II-III in 2019—influence of the month on the result (reference month: January) | |||||||
0.0019 | Absolute term (β0) | −2.02443 | 0.40221 | p < 0.0001 | 0.13207 | 0.06000 | 0.29071 |
February | −0.57831 | 0.65595 | 0.37813 | 0.56085 | 0.15489 | 2.03087 | |
March | −0.86599 | 0.71670 | 0.22713 | 0.42063 | 0.10311 | 1.71591 | |
April | −0.80884 | 0.71753 | 0.25984 | 0.44538 | 0.10900 | 1.81983 | |
May | −1.28980 | 0.82466 | 0.11804 | 0.27532 | 0.05461 | 1.38808 | |
June | −1.02014 | 0.82801 | 0.21814 | 0.36054 | 0.07105 | 1.82970 | |
July | −1.08914 | 0.82705 | 0.18810 | 0.33651 | 0.06643 | 1.70454 | |
August | −2.46425 | 1.08310 | 0.02305 | 0.08507 | 0.01016 | 0.71210 | |
September | −21.68095 | 2378.285 | 0.99273 | <0.0001 | 0 | 0 | |
October | −1.83283 | 0.57621 | 0.0015 | 0.15996 | 0.05165 | 0.49535 | |
November | −2.41433 | 0.70647 | 0.00065 | 0.08943 | 0.02237 | 0.35756 | |
December | −2.46800 | 0.70636 | 0.00049 | 0.08475 | 0.02120 | 0.33880 | |
Passive surveillance model (road-killed) of ASF in Parts 0-I in 2019—influence of the month on the result (reference month: October) | |||||||
0.0005 | Absolute term (β0) | −7.32778 | 1.00070 | p < 0.0001 | 0.00066 | 0.00009 | 0.00468 |
November | 2.63144 | 1.04523 | 0.01188 | 13.89378 | 1.78931 | 107.8835 |
Significance Assessment of Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Active surveillance model (hunted) of ASF in Parts II-III in 2019—influence of the month on the result (reference month: May) | |||||||
0.01 | Absolute term (β0) | −4.73884 | 0.24241 | 0 | 0.00875 | 0.00544 | 0.01407 |
January | 0.81408 | 0.26623 | 0.00223 | 2.25709 | 1.33940 | 3.80354 | |
February | 0.26434 | 0.35073 | 0.45105 | 1.30256 | 0.65498 | 2.59041 | |
March | 0.39574 | 0.33693 | 0.24019 | 1.48549 | 0.76743 | 2.87540 | |
April | 0.43176 | 0.30396 | 0.15549 | 1.53997 | 0.84869 | 2.79430 | |
June | 0.20551 | 0.49343 | 0.67705 | 1.22815 | 0.46688 | 3.23075 | |
July | 0.13366 | 0.25307 | 0.59741 | 1.143 | 0.696 | 1.87708 | |
August | 0.60490 | 0.28435 | 0.03340 | 1.83108 | 1.04868 | 3.19721 | |
September | 0.63386 | 0.26966 | 0.01875 | 1.88487 | 1.11102 | 3.19773 | |
October | 0.44049 | 0.25995 | 0.09017 | 1.55347 | 0.93328 | 2.58580 | |
November | 0.61648 | 0.26635 | 0.02065 | 1.85239 | 1.09897 | 3.12232 | |
December | 0.61788 | 0.26062 | 0.01775 | 1.85499 | 1.11297 | 3.09174 | |
Active surveillance model (hunted) of ASF in Parts 0-I in 2019—influence of the month on the result (reference months: August) | |||||||
0.03 | Absolute term (β0) | −5.28899 | 0.37995 | 0 | 0.00505 | 0.00240 | 0.01062 |
January | −2.79927 | 1.07221 | 0.00904 | 0.06086 | 0.00744 | 0.49778 | |
June | −1.66661 | 1.06840 | 0.11881 | 0.18889 | 0.02327 | 1.53358 | |
July | −0.65905 | 0.69091 | 0.34016 | 0.51734 | 0.13354 | 2.0042 | |
November | −0.89722 | 0.53862 | 0.09578 | 0.40770 | 0.14185 | 1.17180 | |
December | −1.20603 | 0.55866 | 0.03088 | 0.29939 | 0.10015 | 0.89495 |
Significance Assessment of Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Surveillance model in Parts II-III in 2019—influence of the type of surveillance on the result (found dead + road-killed vs. hunted) | |||||||
<0.0001 | Absolute term (β0) | −4.20815 | 0.04074 | 0 | 0.01487 | 0.01373 | 0.01611 |
Found dead | 4.83717 | 0.05097 | 0 | 126.1116 | 114.1189 | 139.3646 | |
Road-killed | 0.58529 | 0.17522 | 0.00083 | 1.79552 | 1.27355 | 2.53141 |
Significance Assessment of Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
Surveillance model in Parts 0-I in 2019—influence of the type of surveillance on the result (found dead + road-killed vs. hunted) | |||||||
<0.0001 | Absolute term (β0) | −6.86468 | 0.21685 | 0 | 0.00104 | 0.00068 | 0.00160 |
Found dead | 3.81482 | 0.24513 | 0 | 45.36845 | 28.0599 | 73.35367 | |
Road-killed | 0.26097 | 0.43431 | 0.54793 | 1.29818 | 0.55415 | 3.04119 |
Significance Assessment of the Model (p Value of LR 1 Test) | Independent Variable | Coefficient (βi) | Std. 2 Error | p Value (Wald) | Odds Ratio | Confidence OR 3 − 95% | Confidence OR 3 + 95% |
---|---|---|---|---|---|---|---|
<0.0001 | Absolute term (β0) | −7.62727 | 0.11215 | 0 | 0.00049 | 0.00037 | 0.00065 |
January | 1.41178 | 0.11212 | 0 | 4.10323 | 3.29282 | 5.11311 | |
February | 1.28645 | 0.11910 | p < 0.0001 | 3.61992 | 2.86560 | 4.57279 | |
March | 1.30786 | 0.12078 | p < 0.0001 | 3.69824 | 2.91795 | 4.68719 | |
April | 1.04541 | 0.11949 | p < 0.0001 | 2.84457 | 2.25011 | 3.59609 | |
May | 1.06977 | 0.12014 | p < 0.0001 | 2.91470 | 2.30262 | 3.68949 | |
June | 0.58602 | 0.15095 | 0.000104 | 1.79684 | 1.33626 | 2.41616 | |
July | 0.57061 | 0.13341 | p < 0.0001 | 1.76934 | 1.36187 | 2.29873 | |
August | 0.60239 | 0.12991 | p < 0.0001 | 1.82647 | 1.41552 | 2.35673 | |
October | 0.08943 | 0.08318 | 0.28233 | 1.09355 | 0.92889 | 1.28740 | |
November | 0.81967 | 0.11439 | p < 0.0001 | 2.26976 | 1.81349 | 2.84083 | |
December | 0.84847 | 0.10738 | p < 0.0001 | 2.33607 | 1.89231 | 2.88391 | |
Part 0 | −1.79986 | 0.21278 | p < 0.0001 | 0.16532 | 0.10890 | 0.25098 | |
Part II | 2.45275 | 0.11672 | 0 | 11.62024 | 9.24184 | 14.61071 | |
Part III | 3.02873 | 0.12497 | 0 | 20.6709 | 16.1761 | 26.41465 | |
Found dead | 4.76653 | 0.05199 | 0 | 117.5102 | 106.1143 | 130.1299 | |
Road-killed | 0.86516 | 0.15383 | p < 0.0001 | 2.37538 | 1.75654 | 3.21223 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frant, M.; Gal, A.; Bocian, Ł.; Ziętek-Barszcz, A.; Niemczuk, K.; Woźniakowski, G. African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern. Agriculture 2021, 11, 45. https://doi.org/10.3390/agriculture11010045
Frant M, Gal A, Bocian Ł, Ziętek-Barszcz A, Niemczuk K, Woźniakowski G. African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern. Agriculture. 2021; 11(1):45. https://doi.org/10.3390/agriculture11010045
Chicago/Turabian StyleFrant, Maciej, Anna Gal, Łukasz Bocian, Anna Ziętek-Barszcz, Krzysztof Niemczuk, and Grzegorz Woźniakowski. 2021. "African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern" Agriculture 11, no. 1: 45. https://doi.org/10.3390/agriculture11010045
APA StyleFrant, M., Gal, A., Bocian, Ł., Ziętek-Barszcz, A., Niemczuk, K., & Woźniakowski, G. (2021). African Swine Fever Virus (ASFV) in Poland in 2019—Wild Boars: Searching Pattern. Agriculture, 11(1), 45. https://doi.org/10.3390/agriculture11010045