Influence of Copra Meal in the Lambs Diet on In Vitro Ruminal Kinetics and Greenhouse Gases Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Productive Phase
2.2. In Vitro Gas Production
2.3. Gas Production
2.4. In Vitro Dry Matter Degradability (IVDMD)
2.5. Carbon Dioxide (CO2) and Methane (CH4) Estimation
2.6. Statistical Analysis
3. Results
3.1. Productive Test
3.2. In Vitro Dry Matter Degradability (IVDMD)
3.3. In Vitro Gas Production
4. Discussion
4.1. Productive Test
4.2. In Vitro Dry Matter Degradability (IVDMD) and In Vitro Gas Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguayo-Ulloa, L.; Lama, G.; Pascual-Alonso, M.; Olleta, J.; Villarroel, M.; Sañudo, C.; María, G. Effect of enriched housing on welfare production performance and meat quality in finishing lambs: The use of feeder ramps. Meat Sci. 2014, 97, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.; Ayala-Burgos, A.; Solorio-Sánchez, F.; Briceño-Poot, E.; Ruiz-González, A.; Piñeiro-Vázquez, A.; Barros-Rodríguez, M.; Soto-Aguilar, A.; Espinoza-Hernández, J.; Albores-Moreno, S.; et al. Tropical tree foliages and shrubs as feed additives in ruminant rations. In Nutritional Strategies of Animal Feed Additives; Nova Sci. Publishers: New York, NY, USA, 2013; pp. 59–76. [Google Scholar]
- Rodrigues, L.S.; Menezes, B.P.; Silva, A.G.M.; Faturi, C.; Silva, J.A.R.; Garcia, A.R.; Nahúm, B.S.; Andrade, S.J.T.; Lourenço Junior, J.B. Ovine feed intake digestibility and nitrogen balance in feeds containing different amounts of cupuaçu meal. Semin. Cienc. Agrar. 2015, 36, 2799–2808. [Google Scholar] [CrossRef] [Green Version]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Tech. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Ng, S.P.; Tan, C.P.; Lai, O.M.; Long, K.; Mirhosseini, H. Extraction and characterization of dietary fiber from coconut residue. J. Food Agric. Environ. 2010, 8, 172–177. [Google Scholar]
- González-Garduño, R.; Torres-Hernández, G.; Arece-García, J. Ganancia de peso de ovinos alimentados con pasto Taiwán (Pennisetum purpureum) suplementados con diversas fuentes de proteína. AIA 2011, 15, 3–20. [Google Scholar]
- IPCC. IPCC summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Effect of dried distillers’ grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Can. J. Anim. Sci. 2013, 93, 373–385. [Google Scholar] [CrossRef] [Green Version]
- O’Mara, F.P. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 2011, 166, 7–15. [Google Scholar] [CrossRef] [Green Version]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, Y.; Wu, L.; Xun, W.; Liu, Q.; Cao, T.; Hou, G.; Zhou, H. Moderate Coconut Oil Supplement Ameliorates Growth Performance and Ruminal Fermentation in Hainan Black Goat Kids. Front. Vet. Sci. 2020, 23, 622259. [Google Scholar] [CrossRef]
- Jordan, E.; Lovett, D.K.; Hawkins, M.; Callan, J.J.; O’Mara, F.P. The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Anim. Sci. 2006, 82, 859–865. [Google Scholar] [CrossRef]
- Jordan, E.; Lovett, D.K.; Monahan, F.J.; Callan, J.; Flynn, B.; O’Mara, F.P. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. J. Anim. Sci. 2006, 84, 162–170. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants; The National Academies Press: Washington, DC, USA, 2007; p. 384. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cobos, P.M.; Yokoyama, M.T. Clostridium Paraputrificum var. Ruminantium: Colonization and degradation of shrimp carapaces in vitro observed by scanning electron microscopy. In Rumen Ecology Research Planning, 1st ed.; Wallace, R.J., Lahlou-Kassi, A., Eds.; ILRI: Addis Ababa, Ethiopia, 1995; Volume 1, pp. 151–162. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 9–52. [Google Scholar]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical browses: Contents of phenolics compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid an in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Singh, G.P.; Mohini, M. Effect of different levels of Rumensin in diet on rumen fermentation, nutrient digestibility, and methane production in cattle. Asian Aust J. Anim. Sci. 1999, 12, 1215–1221. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfí, M.; Uggetti, E.; Ferrer-Martí, L.; Calderon, A.; Velo, E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; MacGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Sall, J.; Lehman, A.; Stephens, M.; Creighton, L. JMP® Start Statistics: A Guide to Statistics and Data Analysis, 5th ed.; SAS Institute Inc: Cary, NC, USA, 2012. [Google Scholar]
- Bharanidharan, R.; Arokiyaraj, S.; Baik, M.; Ibidhi, R.; Lee, S.J.; Lee, Y.; Nam, I.S.; Kim, K.H. In Vitro Screening of East Asian Plant Extracts for Potential Use in Reducing Ruminal Methane Production. Animals 2021, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.J.; Paula, T.A.; Castagnino, P.S.; Teixeira, I.A.M.A.; Beelen, R.N.; Guimarães Beelen, P.M. Kinetic and in vitro ruminal fermentation characteristics of copra meal diets with different fat levels. Acta Vet. Bras. 2017, 11, 35–41. [Google Scholar]
- Bayat, A.R.; Tapio, I.; Vilkki, J.; Shingfield, K.J.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, M.; Beede, D.K. Comparison of effects of dietary coconut oil and animal fat blend on lactational performance of Holstein cows fed a high-starch diet. J. Dairy Sci. 2012, 95, 1484–1499. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.K.; Trivedi, S.; Mohapatra, A.; Kolte, A.P.; Sejian, V.; Bhatta, R.; Rahman, H. Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet. PLoS ONE 2021, 16, e0256048. [Google Scholar]
- Scarpa, G.; Tarricone, S.; Ragni, M. Carcass composition, meat quality and sensory quality of Gentile di Puglia light lambs: Effects of dietary supplementation with oregano and linseed. Animals 2021, 11, 607. [Google Scholar] [CrossRef]
- Soliva, C.R.; Amelchanka, S.L.; Duval, S.M.; Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Br. J. Nutr. 2011, 106, 114–122. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.; Navarro-Villa, A.; Purcell, P.J.; Boland, T.M.; O’Kiely, P. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim. Prod. Sci. 2014, 54, 141–157. [Google Scholar] [CrossRef] [Green Version]
Ingredients, g kg−1 of DM | Copra Meal g kg−1 of DM | |||
---|---|---|---|---|
0 | 50 | 100 | 150 | |
Alfalfa Hay | 285 | 275 | 230 | 180 |
Corn Stover | 150 | 160 | 160 | 160 |
Corn Grain | 270 | 250 | 255 | 255 |
Ground Sorghum | 150 | 130 | 130 | 130 |
Soybean Meal | 50 | 40 | 30 | 30 |
Copra Meal | 0 | 50 | 100 | 150 |
Cane Molasses | 75 | 75 | 75 | 75 |
Urea | 15 | 15 | 15 | 15 |
Minerals Premix 1 | 5 | 5 | 5 | 5 |
Chemical composition, g kg−1 of DM | ||||
Dry Matter | 898 | 899 | 898 | 890 |
Crude Protein | 164 | 166 | 166 | 167 |
Ash | 154 | 176 | 139 | 137 |
Ether Extract | 330 | 343 | 371 | 375 |
NDF | 346 | 301 | 329 | 314 |
Item | Copra Meal g kg−1 DM | p-Value | |||||
---|---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | SEM ‡ | l ¥ | q Ұ | |
Initial weight, kg−1 | 26.48 | 30.16 | 28.08 | 26.72 | 1.34 | 0.92 | 0.23 |
Final weight, kg−1 | 37.84 | 41.40 | 35.80 | 38.20 | 2.41 | 1.23 | 1.85 |
Dry matter intake, kg−1 | 1.32 | 1.37 | 1.24 | 1.33 | 0.05 | 0.67 | 0.34 |
Daily live weight gain g/day | 0.25 | 0.24 | 0.21 | 0.25 | 0.31 | 0.73 | 0.50 |
Feed conversion | 5.48 | 5.71 | 6.90 | 5.67 | 0.80 | 0.54 | 0.82 |
Copra Meal g kg−1 DM | p-Value | ||||||
---|---|---|---|---|---|---|---|
Item | 0 | 50 | 100 | 150 | SEM ‡ | l ¥ | q Ұ |
V, mL g−1 | 173.8 | 179.05 | 188.7 | 153.02 | 4.51 | 0.03 | 0.82 |
s, mL g−1 | 0.029 | 0.029 | 0.031 | 0.3 | 0.01 | 0.02 | 0.44 |
L, h | 5.27 | 4.94 | 5.17 | 5.68 | 0.25 | 0.61 | 0.87 |
Dioxide Carbon (CO2), % | 68.79 | 66.84 | 65.96 | 72.98 | 1.78 | 0.17 | 0.04 |
Methane (CH4), % | 31.2 | 33.15 | 34.03 | 27.01 | 1.29 | 0.94 | 0.01 |
ME, MJ kg−1 MS | 15.49 | 15.99 | 17.32 | 14.20 | 1.30 | 0.94 | 0.23 |
SCFA mmol L−1 | 2.16 | 2.24 | 2.46 | 1.95 | 0.01 | 0.58 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee-Rangel, H.A.; Vázquez Valladolid, A.; Mendez-Cortes, H.; Garcia-Lopez, J.C.; Álvarez-Fuentes, G.; Roque-Jimenez, J.A.; Mejia-Delgadillo, M.A.; Negrete-Sánchez, L.O.; Cifuentes-López, O.; Ramírez-Tobías, H.M. Influence of Copra Meal in the Lambs Diet on In Vitro Ruminal Kinetics and Greenhouse Gases Production. Agriculture 2021, 11, 925. https://doi.org/10.3390/agriculture11100925
Lee-Rangel HA, Vázquez Valladolid A, Mendez-Cortes H, Garcia-Lopez JC, Álvarez-Fuentes G, Roque-Jimenez JA, Mejia-Delgadillo MA, Negrete-Sánchez LO, Cifuentes-López O, Ramírez-Tobías HM. Influence of Copra Meal in the Lambs Diet on In Vitro Ruminal Kinetics and Greenhouse Gases Production. Agriculture. 2021; 11(10):925. https://doi.org/10.3390/agriculture11100925
Chicago/Turabian StyleLee-Rangel, Héctor Aarón, Anayeli Vázquez Valladolid, Heriberto Mendez-Cortes, Juan Carlos Garcia-Lopez, Gregorio Álvarez-Fuentes, Jose Alejandro Roque-Jimenez, Mario Alejandro Mejia-Delgadillo, Luis Octavio Negrete-Sánchez, Oswaldo Cifuentes-López, and Hugo Magdaleno Ramírez-Tobías. 2021. "Influence of Copra Meal in the Lambs Diet on In Vitro Ruminal Kinetics and Greenhouse Gases Production" Agriculture 11, no. 10: 925. https://doi.org/10.3390/agriculture11100925
APA StyleLee-Rangel, H. A., Vázquez Valladolid, A., Mendez-Cortes, H., Garcia-Lopez, J. C., Álvarez-Fuentes, G., Roque-Jimenez, J. A., Mejia-Delgadillo, M. A., Negrete-Sánchez, L. O., Cifuentes-López, O., & Ramírez-Tobías, H. M. (2021). Influence of Copra Meal in the Lambs Diet on In Vitro Ruminal Kinetics and Greenhouse Gases Production. Agriculture, 11(10), 925. https://doi.org/10.3390/agriculture11100925