Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling
2.4. Data Collection and Soil Analyses
2.5. Statistical Analysis
3. Results
3.1. Bulk Density
3.2. Soil Aggregate Distribution
3.3. Aggregate Stability
3.4. Soil Organic Carbon
3.5. Soil Moisture and Soil Temperature
3.6. Seed Emergence and Yield of Maize
4. Discussion
4.1. Effects of Tillage on Soil Properties
4.2. Effects of Tillage on PE and Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virto, I.; Imaz, M.J.; Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Enrique, A.; Bescansa, P. Soil degradation and soil quality in western Europe: Current situation and future perspectives. Sustainability 2015, 7, 313–365. [Google Scholar] [CrossRef] [Green Version]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services. Overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Triplett, G.B.; Dick, W.A. No-tillage crop production: A revolution in agriculture! Agron. J. 2008, 100, S-153. [Google Scholar] [CrossRef]
- Zhang, S.L.; Jiang, L.L.; Liu, X.B.; Zhang, X.Y.; Fu, S.C.; Dai, L. Soil nutrient variance by slope position in a Mollisol farmland area of Northeast China. Chin. Geogr. Sci. 2016, 26, 508–517. [Google Scholar] [CrossRef]
- Yang, X.M.; Drury, C.F.; Reynolds, W.D.; Tan, C.S. Impacts of long—term and recently imposed tillage practices on the vertical distribution of soil organic carbon. Soil Till. Res. 2008, 100, 120–124. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhang, X.Y.; Herbert, S.J. Feeding China’s growing needs for grain. Nature 2010, 465, 420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.S.; Chan, K.Y.; Oates, A.; Heenan, D.P.; Huang, G.B. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Till. Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Li, H.; Li, X.F.; Song, C.Y.; Cruse, R.M.; Zhang, X.Y. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China. Soil Till. Res. 2011, 115, 56–61. [Google Scholar] [CrossRef]
- Chen, X.W.; Liang, A.Z.; Jia, S.X.; Zhang, X.P.; Wei, S.C. Impact of tillage on physical characteristics in a Mollisol of Northeast China. Plant Soil Environ. 2014, 60, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Vyn, T.J.; Raimbult, B.A. Long-term effect of five tillage systems on corn response and soil structure. Agron. J. 1993, 85, 1074–1079. [Google Scholar] [CrossRef]
- Vetsch, J.A.; Randall, G.W. Corn production as affected by tillage system and starter fertilizer. Agron. J. 2002, 94, 532–540. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.E. Strip tillage for “no–till” row crop production. Appl. Eng. Agric. 2002, 18, 277. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Till. Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Randall, G.; Vetsch, J. Optimum placement of phosphorus for corn/soybean rotations in a strip-tillage system. J. Soil Water Conserv. 2008, 63, 152A–153A. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Fernández, F.G.; Nafziger, E.D. No-till and strip-till soybean production with surface and subsurface phosphorus and potassium fertilization. Agron. J. 2011, 103, 1862–1869. [Google Scholar] [CrossRef]
- Tillman, J.; Nair, A.; Gleason, M.; Batzer, J. Evaluating strip tillage and row cover use in organic and conventional muskmelon production. HortTechnology 2015, 25, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Endale, D.M.; Potter, T.L.; Strickland, T.C.; Bosch, D.D. Sediment-bound total organic carbon and total organic nitrogen losses from conventional and strip tillage cropping systems. Soil Till. Res. 2017, 171, 25–34. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhang, X.Y.; Liu, X.B.; Liu, W.; Liu, Z.H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: A case study of soil available potassium. Nutr. Cycl. Agroecosyst. 2013, 95, 319–331. [Google Scholar] [CrossRef]
- Sun, T.; Chen, Q.; Chen, Y.; Cruse, R.M.; Li, X.F.; Song, C.Y.; Kravchenko, Y.S.; Zhang, X.Y. A novel soil wetting technique for measuring wet stable aggregates. Soil Till. Res. 2014, 141, 19–24. [Google Scholar] [CrossRef]
- Yang, P.L.; Luo, Y.P.; Shi, Y.C. Fractal feature of soil on expression by mass distribution of particle size. Chin. Sci. Bull. 1993, 38, 1896–1899. (In Chinese) [Google Scholar]
- Bilbro, J.D.; Wanjura, D.F. Soil crusts and cotton emergence relationships. Trans. ASAE 1982, 25, 1484–1487. [Google Scholar] [CrossRef]
- Karayel, D.; Ozmerzi, A. Effect of tillage methods on sowing uniformity of maize. Can. Biosyst. Eng. 2002, 44, 2.23–2.26. [Google Scholar]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Evans, R.G. Bulk density, water content, and hydraulic properties of a sandy loam soil following conventional or strip tillage. Appl. Eng. Agric. 2011, 27, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Afzalinia, S.; Zabihi, J. Soil compaction variation during corn growing season under conservation tillage. Soil Till. Res. 2014, 137, 1–6. [Google Scholar] [CrossRef]
- Pöhlitz, J.; Rücknagel, J.; Koblenz, B.; Schlüter, S.; Vogel, H.J.; Christen, O. Computed tomography and soil physical measurements of compaction behaviour under strip tillage, mulch tillage and no tillage. Soil Till. Res. 2018, 175, 205–216. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Chen, X.; Fan, R.; Shi, X.; Liang, A.; Zhang, X.; Jia, S. Spatial variation of penetration resistance and water content as affected by tillage and crop rotation in a black soil in Northeast China. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 740–747. [Google Scholar] [CrossRef]
- Fernández, F.G.; Sorensen, B.A.; Villamil, M.B. A comparison of soil properties after five years of no-till and strip-till. Agron. J. 2015, 107, 1339–1346. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Mandiola, M.; Studdert, G.A.; Domínguez, G.F.; Videla, C.C. Organic matter distribution in aggregate sizes of a mollisol under contrasting management. J. Soil Sci. Plant Nutr. 2011, 11, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Till. Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Hammerbeck, A.L.; Stetson, S.J.; Osborne, S.L.; Schumacher, T.E.; Pikul, J.L., Jr. Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci. Soc. Am. J. 2012, 76, 1390–1398. [Google Scholar] [CrossRef]
- Sheehy, J.; Regina, K.; Alakukku, L.; Six, J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems. Soil Till. Res. 2015, 150, 107–113. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Gregorich, E.G.; McLaughlin, N.B.; Zhang, X.; Guo, Y.; Liang, A.Z.; Fan, R.Q.; Sun, B.J. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma 2018, 330, 204–211. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Kwaw-Mensah, D. Quantifying soil carbon change in a long-term tillage and crop rotation study across Iowa landscapes. Soil Sci. Soc. Am. J. 2020, 84, 182–202. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Licht, M.A. Effect of strip tillage on corn nitrogen uptake and residual soil nitrate accumulation compared with no-tillage and chisel plow. Agron. J. 2004, 96, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Al-Kaisi, M.M.; Yin, X.; Licht, M.A. Soil carbon and nitrogen changes as affected by tillage system and crop biomass in a corn–soybean rotation. Appl. Soil Ecol. 2005, 30, 174–191. [Google Scholar] [CrossRef]
- Liang, A.Z.; Zhang, X.P.; Fang, H.J.; Yang, X.M.; Drury, C.F. Short-term effects of tillage practices on organic carbon in clay loam soil of Northeast China. Pedosphere 2007, 17, 619–623. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Horwath, W.R.; Southard, R.J.; Madden, N.; Veenstra, J.; Munk, D.S. Tillage and cover cropping affect crop yields and soil carbon in the San Joaquin Valley, California. Agron. J. 2015, 107, 588–596. [Google Scholar] [CrossRef]
- Chen, Q.; Kravchenko, Y.S.; Li, H.; Chen, S.; Zhang, X.Y. Seasonal variation of physical and chemical properties in a black soil under No-till and conventional tillage in Northeast China. Philipp. Agric. Scient. 2016, 99, 277–282. [Google Scholar]
- Laufer, D.; Loibl, B.; Märländer, B.; Koch, H.J. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L.) in Central Europe. Soil Till. Res. 2016, 162, 1–7. [Google Scholar] [CrossRef]
- Luna, J.M.; Staben, M.L. Strip tillage for sweet corn production: Yield and economic return. HortScience 2002, 37, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
- Celik, A.; Altikat, S.; Way, T.R. Strip tillage width effects on sunflower seed emergence and yield. Soil Till. Res. 2013, 131, 20–27. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Brainard, D.C. Strip tillage and oat cover crops increase soil moisture and influence N mineralization patterns in cabbage. HortScience 2012, 47, 1596–1602. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Licht, M.A.; Al-Kaisi, M. Corn response, nitrogen uptake, and water use in strip-tillage compared with no-tillage and chisel plow. Agron. J. 2005, 97, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Voorhees, W.B.; Lindstrom, M.J. Long-term effects of tillage method on soil tilth independent of wheel traffic compaction. Soil Sci. Soc. Am. J. 1984, 48, 152–156. [Google Scholar] [CrossRef]
- Temesgen, M.; Rockstrom, J.; Savenije, H.H.G.; Hoogmoed, W.B. Assessment of strip tillage systems for maize production in semi-arid Ethiopia: Effects on grain yield and water balance. Hydrol. Earth Syst. Sci. 2007, 4, 2229–2271. [Google Scholar] [CrossRef]
- Leskovar, D.; Othman, Y.; Dong, X. Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Till. Res. 2016, 163, 266–273. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Till. Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Mullins, G.L.; Alley, S.E.; Reeves, D.W. Tropical maize response to nitrogen and starter fertilizer under strip and conventional systems in southern Alabama. Soil Till. Res. 1998, 45, 1–15. [Google Scholar] [CrossRef]
- Cruse, R.M. Strip Tillage Effects on Crop Production and Soil Erosion; Iowa State University: Ames, IA, USA, 2002. [Google Scholar]
Soil Depth (cm) | Organic Matter (g·kg−1) | Bulk Density (g·cm−3) | Field Capacity (%) | Saturated Content (%) | Wilting Point (%) | Clay Content (%) |
---|---|---|---|---|---|---|
0–20 | 49.1 | 1.25 | 38.5 | 50.5 | 17.2 | 40.8 |
20–30 | 44.8 | 1.29 | 36.9 | 45.4 | 17.1 | 39.9 |
Depth (cm) | Tillage | WR0.25 (%) | MWD (mm) | Dm | Depth (cm) | Tillage | WR0.25 (%) | MWD(mm) | Dm |
---|---|---|---|---|---|---|---|---|---|
0–5 | CT-IR | 59.90 b | 0.92 c | 2.34 b | 5–10 | CT-IR | 64.47 a | 0.93 b | 2.25 b |
CT-BR | 49.76 c | 0.68 d | 2.53 a | CT-BR | 43.95 b | 0.61 c | 2.58 a | ||
ST-IR | 60.82 b | 1.01 c | 2.20 c | ST-IR | 65.34 a | 0.92 b | 2.19 b | ||
ST-BR | 68.73 ab | 1.27 b | 2.16 c | ST-BR | 68.18 a | 1.08 a | 2.17 b | ||
NT | 72.15 a | 1.42 a | 2.11 c | NT | 68.55 a | 1.10 a | 2.20 b | ||
10–20 | CT-IR | 60.10 a | 0.94 a | 2.34 b | 20–30 | CT-IR | 57.27 a | 0.70 a | 2.48 a |
CT-BR | 39.04 b | 0.43 b | 2.64 a | CT-BR | 40.45 b | 0.45 b | 2.56 a | ||
ST-IR | 65.60 a | 1.00 a | 2.23 c | ST-IR | 52.49 a | 0.69 a | 2.52 a | ||
ST-BR | 65.08 a | 0.93 a | 2.24 c | ST-BR | 57.78 a | 0.78 a | 2.49 a | ||
NT | 67.38 a | 1.01 a | 2.19 c | NT | 59.46 a | 0.75 a | 2.46 a |
Depth (cm) | Soil Organic Carbon (g·kg−1) | ||||
---|---|---|---|---|---|
ST-IR | ST-BR | NT | CT-IR | CT-BR | |
0–5 | 26.82 b | 28.81 a | 30.20 a | 25.09 c | 22.92 d |
5–10 | 26.09 a | 26.22 a | 26.73 a | 25.71 a | 23.87 b |
10–20 | 22.83 a | 22.15 a | 22.99 a | 21.03 a | 20.46 a |
20–30 | 18.35 a | 18.61 a | 19.05 a | 19.47 a | 18.00 a |
Tillage | MET a (Day) | ERI b (Seedlings/d·m) | PE c (%) | Yield (kg·ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2011 | 2013 | 2015 | 2017 | 2019 | Mean | ||||
ST | 21.3 b | 0.224 a | 90.10 a | 8225 abB | 8775 bAB | 9477 aA | 9133 aA | 9239 aA | 8970 a | |
NT | 25.2 a | 0.172 b | 81.76 b | 6822 bD | 8030 bC | 9527 aAB | 9850 aA | 9129 aAB | 8975 aB | 8722 a |
CT | 20.9 b | 0.245 a | 96.46 a | 8096 aC | 8835 aB | 8570 bBC | 9740 aA | 8612 aBC | 9146 aAB | 8883 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhang, X.; Sun, L.; Ren, J.; Yuan, Y.; Zang, S. Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China. Agriculture 2021, 11, 939. https://doi.org/10.3390/agriculture11100939
Chen Q, Zhang X, Sun L, Ren J, Yuan Y, Zang S. Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China. Agriculture. 2021; 11(10):939. https://doi.org/10.3390/agriculture11100939
Chicago/Turabian StyleChen, Qiang, Xingyi Zhang, Li Sun, Jianhua Ren, Yaru Yuan, and Shuying Zang. 2021. "Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China" Agriculture 11, no. 10: 939. https://doi.org/10.3390/agriculture11100939
APA StyleChen, Q., Zhang, X., Sun, L., Ren, J., Yuan, Y., & Zang, S. (2021). Influence of Tillage on the Mollisols Physicochemical Properties, Seed Emergence and Yield of Maize in Northeast China. Agriculture, 11(10), 939. https://doi.org/10.3390/agriculture11100939