The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Crop Management
2.3. Irrigation Scheduling
2.4. Municipal Solid Waste Compost
2.5. Crop Growth and Yield Study
2.6. Water Use Efficiency
2.7. Soil Microbial Population Study
2.8. Statistical Analysis
3. Results
3.1. Growth of Rice Is Influenced by Irrigation Scheduling, Varieties, and Nutrient Management
3.2. Yield Attributes and Yield
3.3. Different Metabolic Group of Soil Microbes
3.4. Water Use Efficiency
4. Discussion
4.1. Growth
4.2. Yield Attributes and Yield
4.3. Microbial Population
4.4. Water Use Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ricepedia. Productivity in Global Rice Environments. 2020. Available online: http://ricepedia.org/rice-as-a-crop/rice-productivity (accessed on 25 December 2020).
- Pathak, H.; Nayak, A.K.; Jena, M.; Singh, O.N.; Samal, P.; Sharma, S.G. Revitalizing Rice–Systems for Enhancing Productivity, Profitability and Climate Resilience; ICAR-National Rice Research Institute: Cuttack, India, 2018. [Google Scholar]
- United Nations. Growing at a Slower Pace, the World Population Is Expected to Reach 9.7 Billion in 2050 and Could Peak at nearly 11 Billion Around 2100. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 25 December 2020).
- Pramanick, B.; Brahmachari, K.; Ghosh, A.; Zodape, S.T. Foliar nutrient management through Kappaphycus and Gracilaria sap in rice–potato–green gram crop sequence. J. Sci. Ind. Res. 2014, 73, 613–617. [Google Scholar]
- Pramanick, B.; Bera, P.S.; Kundu, C.K.; Badopadhyay, P.; Brahmachari, K. Effect of different herbicides used in transplanted rice on weed management in rice–lathyrus cropping system. J. Crop Weed 2014, 10, 433–436. [Google Scholar]
- Mishra, J.S.; Kumar, R.; Saurabh, K.; Bhatt, B.P. Conservation Agriculture for Climate Resilient Farming and Doubling Farmers’ Income; ICAR Research Complex for Eastern Region: Patna, India, 2019; p. 246. [Google Scholar]
- Kaur, J.; Singh, A. Direct seeded rice: Prospects, problems/constraints and researchable issues in India. Curr. Agri. Res. 2017, 5, 2212. [Google Scholar] [CrossRef]
- CPCB. Status Report on Municipal Solid Waste Management, Central Pollution Control Board. 2012. Available online: http://www.cpcbenvis.nic.in/newsletter/solidwastejun1997/jun97xvi.htm (accessed on 20 December 2020).
- Taherymoosavi, S.; Verheyen, V.; Munroe, P.; Joseph, S.; Reynolds, A. Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag. 2017, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.D.; Rovira, A.D. The rhizosphere and its management to improve plant growth. Adv. Agron. 1999, 66, 100–102. [Google Scholar]
- Minorsky, P.V. On the inside. Plant Physiol. 2008, 146, 323–324. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Panneerselvam, P.; Jambhulkar, N.N.; Annapurna, K. Effect of inoculation of rhizobacterial consortia for enhancement of growth promotion and nutrient uptake in basmati rice. Oryza 2016, 53, 282–287. [Google Scholar]
- Pugliese, M.; Liu, B.P.; Gullino, M.L.; Garibaldi, A. Microbial enrichment of compost with biological control agents to enhance suppressiveness to four soil-borne diseases in greenhouse. J. Plant Dis. Prot. 2011, 118, 45–50. [Google Scholar] [CrossRef]
- Singh, S.P.; Mahapatra, B.S.; Pramanick, B.; Yadav, V.R. Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil. Agric. Water Manag. 2021, 244, 106539. [Google Scholar] [CrossRef]
- Gregory, F.G. Physiological conditions in cucumber housed. In Third Annual Report; Experimental and Research Station: Cheshunt, UK, 1917; Volume 19, pp. 353–360. [Google Scholar]
- Brouwer, C.; Heibloem, M. Irrigation water needs, chapter 4. In Irrigation Water Management Training Manual No. 3; FAO: Rome, Italy, 1986; Available online: http://www.fao.org/docrep/s2022e/s2022e08.htm (accessed on 21 January 2021).
- Reddy, S.R. Principles of Agronomy; Kalyani Publishers: New Delhi, India, 2010; pp. 309–310. [Google Scholar]
- Jensen, H.L. Actinomycetes in Danish soils. Soil Sci. 1930, 30, 59–77. [Google Scholar] [CrossRef]
- Martin, J.P. Rose Bengal agar base. Soil Sci. 1950, 69, 215. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure for Agricultural Research; Wiley Inter-Science Publication: New York, NY, USA, 1976; p. 680. [Google Scholar]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekara, B.G.; Bandi, A.G.; Shreedhara, D.; Krishnamurthy, N. Effect of irrigation schedules on growth and yield of aerobic rice under varied levels of farm yard manure. Oryza 2011, 48, 324–328. [Google Scholar]
- Jat, A.L.; Srivastava, V.K.; Singh, R.K. Effect of crop-establishment methods and integrated nitrogen management on productivity of hybrid rice (Oryza sativa)–wheat (Triticum aestivum) cropping system. Indian J. Agron. 2015, 60, 341–346. [Google Scholar]
- Narolia, R.S.; Singh, P.; Prakash, C.; Meena, H. Effect of irrigation schedule and weed-management practices on productivity and profitability of direct-seeded rice (Oryza sativa) in South-eastern Rajasthan. Indian J. Agron. 2014, 59, 398–403. [Google Scholar]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, F.; Shen, S.H.; Cheng, H.P.; Jing, Y.X.; Yanni, Y.G.; Dazzo, F.B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 2005, 71, 7271–7278. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gu, D.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crop J. 2018, 6, 495–508. [Google Scholar] [CrossRef]
- Show, R.; Ghosh, D.C.; Malik, G.C.; Banerjee, M. Effect of water regime and nitrogen on growth, productivity and economics of summer rice varieties. Int. J. Bio-Res. Stress Manag. 2014, 5, 47–52. [Google Scholar] [CrossRef]
- Lützow, R.C.C.; Torben, A.B.; Rosswall, T. Seasonal variation of soil microbial biomass–The effects of clear felling a tropical rainforest and establishment of pasture in the central amazon. Soil Biol. Biochem. 1992, 24, 805–813. [Google Scholar]
- Sarig, S.; Roberson, B.E.; Firestone, M.K. Microbial activity-soil structure: Response to saline water irrigation. Soil Biol. Biochem. 1992, 25, 693–697. [Google Scholar] [CrossRef]
- Jensen, L.S.; Christensen, L.; Muller, T.; Nielsen, N.E. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.). Plant Soil 1997, 190, 193–202. [Google Scholar] [CrossRef]
- Li, Q.; Allen, H.L.; Wollum, A.G., II. Microbial biomass and bacterial functional diversity in forest soils: Effects of organic matter removal, compaction, and vegetation control. Soil Biol. Biochem. 2004, 36, 571–579. [Google Scholar] [CrossRef]
- Gill, G.K.; Gosal, S.K.; Sharma, S. Microbial activities and soil health in rice rhizosphere as affected by long term integrated use of organic and inorganic fertilizers. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 568–580. [Google Scholar]
- Wang, J.; Song, Y.; Ma, T.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.; Shen, Q. Impact of inorganic and fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 2017, 112, 42–50. [Google Scholar] [CrossRef]
- Sannathimmappa, H.G.; Gurumurthy, B.R.; Jayadeva, H.M.; Rajanna, D.; Shivanna, M.B. Effective recycling of paddy straw through microbial degradation for enhancing grain and straw yield in rice. J. Agric. Vet. Sci. 2015, 8, 70–73. [Google Scholar]
- Shafei, A.; Yehia, M.; Naqib, F. Impact of effective microorganisms’ compost on soil fertility and rice productivity and quality. Misr J. Agric. Eng. 2008, 25, 1067–1093. [Google Scholar]
Particulars of Agronomic Practices | Time Schedule | |
---|---|---|
2017 | 2018 | |
Land preparation | 24 June 2017 | 24 June 2018 |
Seed sowing | 25 June 2017 | 25 June 2018 |
Basal fertilizer application | 25 June 2017 | 25 June 2018 |
1st top dressing of urea | 2 August 2017 | 3 August 2018 |
2nd top dressing of urea | 2 September 2017 | 1 September 2018 |
Application of herbicide | 9 July 2017 | 9 July 2018 |
Harvesting | 11 October 2017 | 12 October 2017 |
(for var. Sahbhagi) | (for var. Sahbhagi) | |
15 November 2018 | 14 November 2018 | |
(for var. Swarna) | (for var. Swarna) |
Attributes | Amounts | |
---|---|---|
2017 | 2018 | |
pH | 6.97 | 6.93 |
Nitrogen (g·kg−1) | 5.2 | 5.1 |
Phosphorus (g·kg−1) | 0.53 | 0.54 |
Potassium (g·kg−1) | 2.8 | 2.7 |
Calcium (g·kg−1) | 3.6 | 3.6 |
Magnesium (g·kg−1) | 1.0 | 0.9 |
Sulphate (g·kg−1) | 1.06 | 1.06 |
Total Carbon (g·kg−1) | 283.5 | 282.1 |
Irrigation Scheduling with Rice Variety | Irrigation (no.) | Total Applied Irrigation (mm) [A] | Total Rainfall (mm) [B] | Effective Rainfall (mm) [C] | Soil Water Contribution (mm) [D] | Water Cuptakeby Plant (mm) [A + C + D] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
50 mm CPE in Swarna | 6 | 4 | 300 | 200 | 789 | 1004 | 606 | 777 | 5.8 | 5.2 | 912 | 982 |
50 mm CPE in Sahbhagi | 4 | 2 | 200 | 100 | 789 | 1004 | 606 | 777 | 5.8 | 5.2 | 812 | 882 |
75 mm CPE in Swarna | 3 | 2 | 150 | 100 | 789 | 1004 | 606 | 777 | 8.0 | 7.0 | 764 | 884 |
75 mm CPE in Sahbhagi | 1 | 1 | 50 | 50 | 789 | 1004 | 606 | 777 | 8.0 | 7.0 | 664 | 834 |
Treatments | Plant Height at Harvest (cm) | DMA at Harvest (g·m−2) | LAI at 90 DAS | NAR during 60–90 DAS (g·m−2·d−1) | ||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Irrigation scheduling | ||||||||
50 mm CPE | 107 ± 7.5 a | 109 ± 5.9 a | 699 ± 33.9 a | 725 ± 71.2 a | 5.99 ± 2.3 a | 6.12 ± 3.3 a | 3.65 ± 1.1 a | 3.63 ± 0.9 a |
75 mm CPE | 100 ± 5.1 b | 101 ± 5.8 b | 660 ± 41.7 b | 686 ± 53.3 b | 5.59 ± 2.9 b | 5.51 ± 1.5 b | 3.57 ± 1.9 a | 3.61 ± 1.0 a |
LSD (p ≤ 0.05) | 3 | 3 | 23 | 14 | 0.21 | 0.37 | ns | ns |
Varieties | ||||||||
Swarna | 90 ± 4.9 b | 92 ± 6.7 b | 709 ± 99.3 a | 735 ± 104.3 a | 6.15 ± 1.0 a | 6.17 ± 1.1 a | 4.11 ± 0.9 a | 4.12 ± 0.9 a |
Sahbhagi | 117 ± 9.1 a | 118 ± 11.1 a | 650 ± 72.1 b | 676 ± 70.1 b | 5.44 ± 0.9 b | 5.46 ± 1.2 b | 3.11 ± 0.8 b | 3.13 ± 0.7 b |
LSD (p ≤ 0.05) | 3 | 3 | 23 | 14 | 0.21 | 0.37 | 0.14 | 0.46 |
Nutrient management | ||||||||
T1 | 106 ± 3.9 a | 103 ± 12.3 bc | 644 ± 63.0 cd | 672 ± 45.5 cd | 5.20 ± 0.3 e | 5.23 ± 0.5 de | 3.85 ± 0.6 bc | 3.62 ± 0.9 bc |
T2 | 100 ± 2.5 b | 99 ± 8.9 c | 611 ± 78.9 d | 627 ± 57.9 e | 4.75 ± 0.9 f | 4.77 ± 0.6 e | 3.07 ± 0.4 f | 3.00 ± 0.8 c |
T3 | 101 ± 11.2 b | 101 ± 7.2 c | 627 ± 40.7 d | 652 ± 88.2 d | 5.22 ± 0.5 de | 5.25 ± 1.1 d | 3.19 ± 0.5 f | 3.13 ± 1.1 c |
T4 | 107 ± 10.2 a | 108 ± 7.9 ab | 714 ± 39.9 b | 744 ± 67.7 b | 6.17 ± 0.4 c | 6.20 ± 1.3 c | 3.61 ± 0.9 de | 3.62 ± 1.0 bc |
T5 | 98 ± 5.5 bc | 103 ± 9.9 bc | 696 ± 33.3 b | 724 ± 103.1 b | 5.51 ± 0.7 d | 5.53 ± 1.1 d | 3.44 ± 1.0 e | 3.43 ± 1.2 c |
T6 | 95 ± 5.1 c | 102 ± 4.7 c | 665 ± 55.1 c | 692 ± 100.1 c | 5.43 ± 1.0 de | 5.45 ± 0.9 d | 3.66 ± 0.8 cd | 3.59 ± 0.7 b |
T7 | 108 ± 6.0 a | 109 ± 5.0 a | 724 ± 90.0 ab | 760 ± 57.3 a | 6.85 ± 0.3 b | 6.86 ± 0.8 a | 3.95 ± 0.5 ab | 4.14 ± 0.9 ab |
T8 | 110 ± 6.1 a | 112 ± 7.1 a | 754 ± 77.9 a | 775 ± 33.9 a | 7.22 ± 1.1 a | 7.25 ± 0.8 a | 4.10 ± 1.1 a | 4.44±1.2 a |
LSD (p ≤ 0.05) | 4 | 5 | 33 | 20 | 0.29 | 0.53 | 0.20 | 0.65 |
Treatments | Panicles.m−2 | Filled Grains.Panicle−1 | Test Weight (g) | Grain Yield (Mg·ha−1) | Straw Yield (Mg·ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Irrigation scheduling | ||||||||||
50 mm CPE | 238 ± 29.9 a | 255 ± 21.3 a | 94.4 ± 3.8 a | 99.1 ± 3.2 a | 20.7 ± 0.9 a | 20.9 ± 0.6 a | 4.10 ± 1.1 a | 4.22 ± 1.0 a | 5.57 ± 0.7 a | 5.42 ± 1.2 a |
75 mm CPE | 227 ± 31.5 b | 234 ± 11.2 b | 91.0 ± 9.9 b | 96.3 ± 2.3 b | 20.7 ± 0.8 a | 20.8 ± 0.7 a | 3.66 ± 0.8 b | 3.84 ± 0.9 b | 5.33 ± 0.6 a | 5.06 ± 1.0 b |
LSD (p ≤ 0.05) | 8 | 7 | 3.2 | 1.2 | ns | ns | 0.14 | 0.16 | ns | 0.19 |
Varieties | ||||||||||
Swarna | 255 ± 33.5 a | 267 ± 22.4 a | 100.4 ± 19.9 a | 106.2 ± 12.3 a | 20.3 ± 0.9 b | 20.4 ± 1.0 b | 4.23 ± 0.9 a | 4.37 ± 1.1 a | 5.90 ± 1.2 a | 5.72 ± 0.7 a |
Sahbhagi | 210 ± 31.2 b | 222 ± 21.3 b | 85.9 ± 17.8 b | 89.2 ± 15.7 b | 21.1 ± 1.2 a | 21.4 ± 1.1 a | 3.52 ± 1.2 b | 3.68 ± 1.1 b | 5.00 ± 1.3 b | 4.75 ± 0.9 b |
LSD (p ≤ 0.05) | 8 | 7 | 3.2 | 1.2 | 0.7 | 0.9 | 0.14 | 0.16 | 0.36 | 0.19 |
Nutrient management | ||||||||||
T1 | 226 ± 21.2 d | 240 ± 19.3 d | 92.4 ± 3.9 cd | 96.7 ± 3.5 c | 20.5 ± 0.4 a | 20.8 ± 0.6 a | 3.82 ± 0.9 cd | 3.96 ± 0.4 de | 5.28 ± 1.1 bc | 5.22 ± 0.7 bc |
T2 | 204 ± 22.4 e | 210 ± 18.0 f | 77.8 ± 7.7 e | 80.5 ± 4.5 e | 20.4 ± 0.7 a | 20.5 ± 0.5 a | 3.15 ± 1.0 e | 3.23 ± 1.2 f | 5.15 ± 1.4 bc | 5.02 ± 0.8 c |
T3 | 210 ± 38.8 e | 226 ± 23.2 e | 89.9 ± 7.9 d | 93.0 ± 4.9 d | 20.3 ± 0.3 a | 20.6 ± 0.4 a | 3.69 ± 0.7 d | 3.84 ± 0.8 e | 5.07 ± 2.3 c | 5.08 ± 0.9 c |
T4 | 241 ± 25.1 bc | 253 ± 10.8 bc | 96.4 ± 11.1 bc | 101.5 ± 5.0 b | 20.7 ± 0.5 a | 20.8 ± 0.3 a | 4.01 ± 2.2 bc | 4.22 ± 1.1 bc | 5.49 ± 1.1 b | 5.27 ± 0.3 bc |
T5 | 236 ± 12.9 cd | 249 ± 22.2 cd | 94.7 ± 5.5 bc | 101.2 ± 11.2 b | 20.8 ± 0.8 a | 20.9 ± 0.4 a | 3.99 ± 1.2 bc | 4.14 ± 1.9 bcd | 5.37 ± 0.9 bc | 5.21 ± 1.1 bc |
T6 | 234 ± 33.3 cd | 244 ± 29.5 cd | 95.1 ± 3.4 bc | 100.5 ± 9.2 b | 20.8 ± 0.7 a | 20.9 ± 0.3 a | 3.92 ± 1.0 c | 4.02 ± 1.3 cd | 5.03 ± 0.3 c | 5.16 ± 0.4 bc |
T7 | 250 ± 35.1 ab | 262 ± 22.9 ab | 97.9 ± 8.9 ab | 103.5 ± 8.9 a | 21.0 ± 0.5 a | 21.0 ± 0.2 a | 4.17 ± 0.8 ab | 4.35 ± 0.7 ab | 5.97 ± 1.2 a | 5.38 ± 0.3 ab |
T8 | 259 ± 21.2 a | 271 ± 28.1 a | 101.2 ± 10.0 a | 104.7 ± 9.5 a | 21.1 ± 0.4 a | 21.1 ± 0.5 a | 4.27 ± 0.9 a | 4.47 ± 0.6 a | 6.24 ± 0.5 a | 5.56 ± 0.7 a |
LSD (p ≤ 0.05) | 12 | 10 | 4.6 | 1.7 | ns | ns | 0.19 | 0.23 | 0.41 | 0.26 |
Treatments | NFB × 105 (Cfu·g−1 of Soil) | PSB × 105 (Cfu·g−1 of Soil) | ZSB × 105 (Cfu·g−1 of Soil) | Trichoderma × 103 (Cfu·g−1 of Soil) | ||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Irrigation scheduling | ||||||||
50 mm CPE | 13.8 ± 1.1 a | 15.6 ± 1.3 a | 13.3 ± 0.9 a | 16.5 ± 1.0 a | 3.38 ± 1.0 a | 4.71 ± 1.1 a | 7.69 ± 1.2 a | 9.34 ± 0.7 a |
75 mm CPE | 10.4 ± 1.2 b | 12.4 ± 1.0 b | 10.4 ± 1.0 b | 12.5 ± 1.2 b | 2.28 ± 1.3 b | 3.55 ± 0.9 b | 6.75 ± 1.3 b | 8.04 ± 0.8 b |
LSD (p ≤ 0.05) | 1.0 | 1.0 | 0.9 | 1.4 | 0.73 | 0.57 | 0.81 | 0.95 |
Varieties | ||||||||
Swarna | 12.4 ± 0.3 a | 14.4 ± 0.4 a | 12.2 ± 0.3 a | 15.2 ± 1.0 a | 3.18 ± 1.1 a | 4.53 ± 0.2 a | 7.62 ± 1.7 a | 9.09 ± 0.3 a |
Sahbhagi | 11.8 ± 0.2 a | 13.5 ± 0.1 a | 11.5 ± 0.3 a | 13.7 ± 0.9 b | 2.48 ± 0.2 a | 3.74 ± 0.3 a | 6.80 ± 1.5 b | 8.29 ± 0.9 a |
LSD (p ≤ 0.05) | ns | ns | ns | 1.4 | ns | ns | 0.81 | ns |
Nutrient management | ||||||||
T1 | 8.1 ± 1.1 d | 10.0 ± 1.2 d | 3.3 ± 1.0 d | 5.1 ± 0.5 d | 0.94 ± 0.3 de | 1.48 ± 0.9 d | 2.25 ± 0.5 d | 3.50 ± 0.6 d |
T2 | 7.4 ± 0.9 d | 9.3 ± 1.4 d | 2.1 ± 0.4 d | 3.4 ± 0.3 d | 0.80 ± 0.1 e | 0.91 ± 0.3 d | 0.98 ± 0.2 e | 2.02 ± 0.7 e |
T3 | 11.1 ± 1.0 c | 13.0 ± 1.1 c | 10.6 ± 1.1 c | 13.1 ± 0.9 c | 1.51 ± 0.2 d | 3.11 ± 0.4 c | 5.25 ± 1.1 c | 7.25 ± 2.2 c |
T4 | 16.4 ± 0.8 a | 18.8 ± 0.9 a | 13.8 ± 1.3 b | 16.6 ± 1.8 b | 1.92 ± 0.3 cd | 3.11 ± 0.9 c | 7.00 ± 1.2 b | 9.50 ± 1.1 b |
T5 | 13.4 ± 0.7 b | 15.3 ± 0.3 b | 18.8 ± 1.2 a | 22.0 ± 2.3 a | 3.17 ± 1.0 b | 4.61 ± 0.2 b | 8.00 ± 0.7 b | 9.50 ± 2.9 b |
T6 | 12.1 ± 1.1 bc | 14.0 ± 2.1 bc | 13.6 ± 0.9 b | 16.9 ± 1.0 b | 5.86 ± 0.7 a | 7.97 ± 0.8 a | 7.50 ± 0.8 b | 10.0 ± 1.2 b |
T7 | 12.1 ± 1.2 bc | 14.0 ± 0.9 bc | 14.8 ± 0.8 b | 18.4 ± 1.4 b | 2.67 ± 0.7 bc | 4.43 ± 1.0 b | 14.0 ± 0.3 a | 14.3 ± 0.5 a |
T8 | 15.9 ± 0.8 a | 17.5 ± 0.6 a | 17.8 ± 0.9 a | 20.6 ± 1.8 a | 5.77 ± 0.8 a | 7.47 ± 0.8 a | 12.8 ± 0.6 a | 13.5 ± 0.8 a |
LSD (p ≤ 0.05) | 1.4 | 1.4 | 1.3 | 2.0 | 1.03 | 0.81 | 1.16 | 1.34 |
Treatments | WUE (kg·ha−1·mm−1) | |
---|---|---|
2017 | 2018 | |
Irrigation scheduling | ||
50 mm CPE | 4.78 ± 1.0 b | 4.54 ± 0.9 a |
75 mm CPE | 5.12 ± 1.2 a | 4.49 ± 1.1 b |
LSD (p ≤ 0.05) | 0.02 | 0.02 |
Varieties | ||
Swarna | 5.11 ± 1.1 a | 4.72 ± 1.0 a |
Sahbhagi | 4.79 ± 1.2 b | 4.31 ± 1.1 b |
LSD (p ≤ 0.05) | 0.02 | 0.02 |
Nutrient management | ||
T1 | 4.74 ± 0.9 e | 4.44 ± 0.8 f |
T2 | 4.01 ± 0.7 f | 3.61 ± 0.7 h |
T3 | 4.72 ± 0.8 e | 4.31 ± 0.6 g |
T4 | 5.15 ± 0.9 c | 4.74 ± 0.9 c |
T5 | 5.13 ± 1.1 c | 4.65 ± 0.3 d |
T6 | 5.03 ± 1.0 d | 4.51 ± 0.7 e |
T7 | 5.35 ± 1.1 b | 4.87 ± 1.8 b |
T8 | 5.48 ± 0.6 a | 5.01 ± 0.6 a |
LSD (p ≤ 0.05) | 0.06 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharminder; Singh, R.K.; Kumar, V.; Pramanick, B.; Alsanie, W.F.; Gaber, A.; Hossain, A. The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice. Agriculture 2021, 11, 941. https://doi.org/10.3390/agriculture11100941
Dharminder, Singh RK, Kumar V, Pramanick B, Alsanie WF, Gaber A, Hossain A. The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice. Agriculture. 2021; 11(10):941. https://doi.org/10.3390/agriculture11100941
Chicago/Turabian StyleDharminder, Ram Kumar Singh, Vishal Kumar, Biswajit Pramanick, Walaa F. Alsanie, Ahmed Gaber, and Akbar Hossain. 2021. "The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice" Agriculture 11, no. 10: 941. https://doi.org/10.3390/agriculture11100941
APA StyleDharminder, Singh, R. K., Kumar, V., Pramanick, B., Alsanie, W. F., Gaber, A., & Hossain, A. (2021). The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice. Agriculture, 11(10), 941. https://doi.org/10.3390/agriculture11100941