Dietary Grape (Vitis vinifera) Seed Powder and Zn–Gly Chelate Complex for Mitigating Heat Stress in Broiler Chickens: Growth Parameters, Malondialdehyde, Paraoxonase-1, and Antibody Titer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Bird Management
2.2. Determination of Malondialdehyde (MDA), Paraoxonase (PON1), and HI Titer against ND
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Selvaggi, M.; Laudadio, V.; Tufarelli, V. Effect of ascorbic acid in heat-stressed poultry. World’s Poult. Sci. J. 2012, 68, 477–490. [Google Scholar] [CrossRef]
- Khan, R.; Naz, S.; Dhama, K. Chromium: Pharmacological Applications in Heat-Stressed Poultry. Int. J. Pharmacol. 2014, 10, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Chand, N.; Naz, S.; Rehman, Z.; Khan, R. Blood biochemical profile of four fast-growing broiler strains under high ambient temperature. Appl. Biol. Chem. 2018, 61, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, A.; Akram, W.; Sultan, A.; Konca, Y.; Ayasan, T.; Naz, S.; Shahzada, W.; Khan, R.U. Effect of dietary inclusion of taurine on performance, carcass characteristics and muscle micro-measurement in broilers under cyclic heat stress. Ital. J. Anim. Sci. 2021, 20, 872–877. [Google Scholar] [CrossRef]
- Khan, R.; Naz, S.; Nikousefat, Z.; Tufarelli, V.; Javdani, M.; Rana, N.; Laudadio, V. Effect of vitamin E in heat-stressed poultry. World’s Poult. Sci. J. 2011, 67, 469–478. [Google Scholar] [CrossRef]
- Naz, S.; Idris, M.; Khalique, M.A.; Alhidary, I.A.; Abdelrahman, M.M.; Khan, R.U.; Ahmad, S. The activity and use of zinc in poultry diet. World Poult. Sci. J. 2016, 72, 159–167. [Google Scholar] [CrossRef]
- Chand, N.; Khan, R.U.; Shah, M.; Naz, S.; Tinelli, A. Zinc source modulates zootechnical characteristics, intestinal features, humoral response and paraoxonase (PON1) activity in broilers. Trop. Anim. Health Prod. 2020, 52, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Ali, P.; Alhidary, I.; Abdelrahman, M.; Albadani, H.; Khan, M.; Seidavi, A.; Laudadio, V.; Tufarelli, V.; Khan, R. Protective Effect of Grape (Vitis vinifera) Seed Powder and Zinc-Glycine Complex on Growth Traits and Gut Health of Broilers Following Eimeria tenella Challenge. Antibiotics 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, L.; Marek, A.; Grądzki, Z.; Kwiecień, M.; Żylińska, B.; Kaczmarek, B. Effect of feed supplementation with zinc glycine chelate and zinc sulfate on cytokine and immunoglobulin gene expression profiles in chicken intestinal tissue. Poult. Sci. 2017, 96, 4224–4235. [Google Scholar] [CrossRef]
- Cao, J.; Henry, P.R.; Davis, S.R.; Cousins, R.J.; Miles, R.D.; Littell, R.C.; Ammerman, C.B. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Anim. Feed. Sci. Technol. 2002, 101, 161–170. [Google Scholar] [CrossRef]
- Min, Y.N.; Liu, F.X.; Qi, X.; Ji, S.; Cui, L.; Wang, Z.P.; Gao, Y.P. Effects of organic zinc on tibia quality, mineral deposit, and metallothionein expression level of aged hens. Poult. Sci. 2018, 99, 366–372. [Google Scholar] [CrossRef]
- Jahanian, R.; Rasouli, E. Effects of dietary substitution of zinc-methionine for inorganic zinc sources on growth performance, tissue zinc accumulation and some blood parameters in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2015, 99, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Akhavan-Salamat, H.; Ghasemi, H.A. Effect of different sources and contents of zinc on growth performance, carcass characteristics, humoral immunity and antioxidant status of broiler chickens exposed to high environmental temperatures. Livest. Sci. 2019, 223, 76–83. [Google Scholar] [CrossRef]
- European Commission. Food Waste. Stop Food Waste Initiative, Based on 2012 Data. 2016. Available online: http://ec.europa.eu/food/safety/food_waste/stop/index_en.htm (accessed on 19 September 2021).
- Nudda, A.; Buffa, G.; Atzori, A.; Cappai, M.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed. Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Azizi, M.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Practical applications of agricultural wastes in poultry feeding in Mediterranean and Middle East regions. Part 1: Citrus, grape, pomegranate and apple wastes. World’s Poult. Sci. J. 2018, 74, 489–498. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of Grape Seed Proanthocyanidin Extract in Broiler Chickens: Effect on Chicken Coccidiosis and Antioxidant Status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Nardoia, M.; Arija, I.; Viveros, A.; Rey, A.; Prodanov, M.; Chamorro, S. Feeding Broiler Chickens with Grape Seed and Skin Meals to Enhance α- and γ-Tocopherol Content and Meat Oxidative Stability. Antioxidants 2021, 10, 699. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of grape seed extract and vitamin C feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Ital. J. Anim. Sci. 2015, 14, 3273–3281. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S.; Żukowski, P. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. Arch. Anim. Nutr. 2019, 73, 111–126. [Google Scholar] [CrossRef]
- Hosseini-Vashan, S.J.; Safdari-Rostamabad, M.; Piray, A.H. The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim. Feed. Sci. Technol. 2020, 259, 114343. [Google Scholar] [CrossRef]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Viktoronova, F.M.; Seidavi, A.; Laudadio, V. Effect of dietary flaxseed meal supplemented with dried tomato and grape pomace on performance traits and antioxidant status of laying hens. Anim. Biotechnol. 2021, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Mackness, B.; Durrington, P.N.; Mackness, M.I. Human serum paraoxonase. In General Pharmacology: The Vascular System; Elsevier: Amsterdam, The Netherlands, 1998; Volume 31, pp. 329–336. [Google Scholar]
- Koch, F.; Thom, U.; Albrecht, E.; Weikard, R.; Nolte, W.; Kuhla, B.; Kuehn, C. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc. Natl. Acad. Sci. USA 2019, 116, 10333–10338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuajamieh, M.; Abdelqader, A.; Irshaid, R.; Hayajneh, F.M.F.; Al-Khaza’Leh, J.; Al-Fataftah, A.-R. Effects of organic zinc on the performance and gut integrity of broilers under heat stress conditions. Arch. Anim. Breed. 2020, 63, 125–135. [Google Scholar] [CrossRef]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Torrison, J.L.; Wilson, M.E.; Baumgard, L.H.; Gabler, N.K. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism12. J. Anim. Sci. 2015, 93, 4702–4713. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Ullah, H.; Ullah, Q.; Laudadio, V.; Bozzo, G.; Tufarelli, V. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 2021, 1–10. [Google Scholar] [CrossRef]
- Chamorro, S.; Romero, C.; Brenes, A.; Sánchez-Patán, F.; Bartolomé, B.; Viveros, A.; Arija, I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Zia Ur Rahman, Z.; Chand, N.; Khan, R.U. The effect of vitamin E, L-carnitine and ginger on production traits, immune response and antioxidant status in two broiler strains exposed to chronic heat stress. Environ. Sci. Pollut. Res. 2017, 24, 26851–26857. [Google Scholar] [CrossRef] [PubMed]
- Kpomasse, C.C.; Oke, O.E.; Houndonougbo, F.M.; Tona, K. Broiler production challenges in the tropics: A review. Veter-Med. Sci. 2021, 7, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Chand, N.; Khan, R.U.; Ahmad, N.; Khattak, I.; Naz, S. Dietary supplementation of milk thistle (Silybum marianum): Growth performance, oxidative stress, and immune response in natural summer stressed broilers. Trop. Anim. Health Prod. 2019, 52, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.; Arija, I.; Saura-Calixto, F. Effect of Grape Pomace Concentrate and Vitamin E on Digestibility of Polyphenols and Antioxidant Activity in Chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Karami, S.; Rahimi, M.; Babaei, A. An overview on the antioxidant, anti-inflammatory, antimicrobial and anti-cancer activity of grape extract. Biomed. Res. Clin. Pr. 2018, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.; Pazos, M.; Torres, J.L.; Medina, I. Antioxidant mechanism of grape procyanidins in muscle tissues: Redox interactions with endogenous ascorbic acid and α-tocopherol. Food Chem. 2012, 134, 1767–1774. [Google Scholar] [CrossRef]
- Chand, N.; Muhammad, S.; Khan, R.U.; Alhidary, I.A.; Ziaur, R. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. Environ. Sci. Pollut. Res. 2016, 23, 23930–23935. [Google Scholar] [CrossRef] [PubMed]
- Safiullah; Chand, N.; Khan, R.U.; Naz, S.; Ahmad, M.; Gul, S. Effect of ginger (Zingiber officinale Roscoe) and organic selenium on growth dynamics, blood melanodialdehyde and paraoxonase in broilers exposed to heat stress. J. Appl. Anim. Res. 2019, 47, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.; Qureshi, M.S.; Khan, R. Influence of Dietary Zinc on Semen Traits and Seminal Plasma Antioxidant Enzymes and Trace Minerals of Beetal Bucks. Reprod. Domest. Anim. 2014, 49, 1004–1007. [Google Scholar] [CrossRef]
Ingredients | Starter Phase | Finisher Phase |
---|---|---|
Corn | 55.5 | 56.0 |
Soybean meal | 27.7 | 27.0 |
Canola meal | 6.5 | 6.0 |
Sunflower meal | 3.2 | 3.5 |
Vegetable oil | 1.8 | 1.9 |
Molasses | 1.0 | 1.3 |
Dicalcium phosphate | 1.9 | 1.9 |
Limestone | 1.0 | 1.0 |
Sodium chloride | 1.0 | 1.0 |
Sodium bicarbonate | 0.1 | 0.1 |
Vitamin mineral premix 1 | 0.3 | 0.3 |
Chemical composition | ||
Metabolizable energy, kcal/kg | 3000 | 3150 |
Crude protein, % | 23.50 | 21.30 |
Methionine, % | 0.55 | 0.44 |
Lysine, %Glycine, % | 1.421.7 | 1.231.8 |
Sulfur amino acids, % | 0.96 | 0.80 |
Threonine, % | 0.95 | 0.85 |
Calcium, % | 1.05 | 0.90 |
Phosphorus, % | 0.50 | 0.45 |
Time | Temperature (°C) | Relative Humidity (%) |
---|---|---|
8:00 a.m. | 34.12 | 72.48 |
12:00 p.m. | 36.43 | 94.12 |
4:00 p.m. | 39.63 | 65.51 |
8:00 p.m. | 33.92 | 69.15 |
12:00 a.m. | 34.50 | 76.87 |
4:00 a.m. | 32.96 | 77.13 |
Item | Week 2 | Week 3 | Week 4 | Week 5 | Overall |
---|---|---|---|---|---|
Control | 364.70 b ± 3.57 | 573.95 b ± 7.56 | 691.33 b ± 5.63 | 889.07 c ± 7.35 | 2519.1 c ± 17.73 |
GSP-2.5 + OZ-50 | 370.38 ab ± 7.38 | 600.20 a ± 4.24 | 712.33 a ± 10.73 | 909.08 b ± 11.4 | 2588.3 b ± 16.95 |
GSP-5 + OZ-50 | 376.45 a ± 7.34 | 604.48 a ± 8.54 | 720.55 a ± 6.21 | 927.73 a ± 10.44 | 2629.2 a ± 16.16 |
p-value | 0.001 | <0.001 | 0.001 | 0.001 | <0.001 |
Item | Week 2 | Week 3 | Week 4 | Week 5 | Overall |
---|---|---|---|---|---|
Control | 251.75 b ± 6.65 | 360.50 b ± 9.46 | 411.75 b ± 16.31 | 453.25 c ± 6.34 | 1487.3 b ± 11.32 |
GSP-2.5 + OZ-50 | 253.50 b ± 5.56 | 364.25 ab ± 4.03 | 429.50 b ± 10.40 | 476.00 b ± 4.69 | 1508.3 ab ± 17.66 |
GSP-5 + OZ-50 | 262.75 a ± 4.78 | 370.50 a ± 3.10 | 444.75 a ± 12.03 | 469.50 a ± 4.65 | 1576.0 a ± 21.08 |
p-value | 0.049 | 0.0124 | 0.013 | <0.001 | 0.032 |
Item | Week 2 | Week 3 | Week 4 | Week 5 | Overall |
---|---|---|---|---|---|
Control | 1.44 ± 0.037 | 1.59 ± 0.57 | 1.67 ± 0.066 | 1.95 a ± 0.026 | 1.69 ± 0.074 |
GSP-2.5 + OZ-50 | 1.45 ± 0.040 | 1.64 ± 0.02 | 1.61 ± 0.047 | 1.90 b ± 0.031 | 1.75 ± 0.073 |
GSP-5 + OZ-50 | 1.43 ± 0.037 | 1.62 ± 0.017 | 1.61 ± 0.033 | 1.85 c ± 0.275 | 1.66 ± 0.017 |
p-value | 0.662 | 0.166 | 0.178 | 0.003 | 0.535 |
Groups | ND Titer | MDA (nmol/mL) | PON1 (µ/mL) |
---|---|---|---|
Control | 4.27 c ± 0.039 | 11.09 a ± 0.88 | 8.31 b ± 0.80 |
GSP-2.5 + OZ-50 | 5.74 b ± 0.311 | 6.42 b ± 0.55 | 12.15 a ± 0.78 |
GSP-5 + OZ-50 | 6.78 a ± 0.428 | 6.91 b ± 0.52 | 12.89 a ± 0.77 |
p-value | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Israr, M.; Chand, N.; Khan, R.U.; Alhidary, I.A.; Abdelrahman, M.M.; Al-Baddani, H.H.; Laudadio, V.; Tufarelli, V. Dietary Grape (Vitis vinifera) Seed Powder and Zn–Gly Chelate Complex for Mitigating Heat Stress in Broiler Chickens: Growth Parameters, Malondialdehyde, Paraoxonase-1, and Antibody Titer. Agriculture 2021, 11, 1087. https://doi.org/10.3390/agriculture11111087
Israr M, Chand N, Khan RU, Alhidary IA, Abdelrahman MM, Al-Baddani HH, Laudadio V, Tufarelli V. Dietary Grape (Vitis vinifera) Seed Powder and Zn–Gly Chelate Complex for Mitigating Heat Stress in Broiler Chickens: Growth Parameters, Malondialdehyde, Paraoxonase-1, and Antibody Titer. Agriculture. 2021; 11(11):1087. https://doi.org/10.3390/agriculture11111087
Chicago/Turabian StyleIsrar, Muhammad, Naila Chand, Rifat Ullah Khan, Ibrahim A. Alhidary, Mutassim M. Abdelrahman, Hani Hassan Al-Baddani, Vito Laudadio, and Vincenzo Tufarelli. 2021. "Dietary Grape (Vitis vinifera) Seed Powder and Zn–Gly Chelate Complex for Mitigating Heat Stress in Broiler Chickens: Growth Parameters, Malondialdehyde, Paraoxonase-1, and Antibody Titer" Agriculture 11, no. 11: 1087. https://doi.org/10.3390/agriculture11111087
APA StyleIsrar, M., Chand, N., Khan, R. U., Alhidary, I. A., Abdelrahman, M. M., Al-Baddani, H. H., Laudadio, V., & Tufarelli, V. (2021). Dietary Grape (Vitis vinifera) Seed Powder and Zn–Gly Chelate Complex for Mitigating Heat Stress in Broiler Chickens: Growth Parameters, Malondialdehyde, Paraoxonase-1, and Antibody Titer. Agriculture, 11(11), 1087. https://doi.org/10.3390/agriculture11111087