Application of Individual Digestate Forms for the Improvement of Hemp Production
Abstract
:1. Introduction
1.1. Composition of Digestate
1.2. Hemp (Cannabis sativa L.) Plants
2. Materials and Methods
2.1. Vegetation Experiment Establishment
2.2. Description of the Used Hemp Variety
2.3. Origin of the Digestate and Its Separation into Liquid and Solid Parts
2.4. Layout of Individual Plots and Sowing of Plants
2.5. Amount of Applied Fertilizers in Individual Variants
2.6. Harvesting and Plants Sampling, Soil Sampling
2.7. Determination of pH Value and Content of Soluble Salts in Soil Samples
2.8. Determination of Individual Nitrogen Forms in Soil Samples
2.9. Determination of Acceptable Nutrients from Soil Samples According to Mehlich 3
2.10. Determination of Nitrogen Content in Samples of Plant Material
2.11. Determination of Macronutrients, Micronutrients and Hazardous Substances Using an Absorption Spectrometer
2.12. Statistical Evaluation
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tafdrup, S. Centralized biogas plants combine agricultural and environmental benefits with energy production. Water Sci. Technol. 1994, 30, 133. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y. Economic analysis of large-scale farm biogas power generation system considering environmental benefits based on LCA: A case study in China. J. Clean. Prod. 2020, 258, 120985. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part II: The environmental impact of replacing various reference systems. Biomass Bioenergy 2007, 31, 326–344. [Google Scholar] [CrossRef]
- Raboni, M.; Urbini, G. Production and use of biogas in Europe: A survey of current status and perspectives. Rev. Ambiente Agua 2014, 9, 191–202. [Google Scholar]
- Lošák, T.; Zatloukalová, A.; Szostková, M.; Hlušek, J.; Fryč, J.; Vítěz, T. Comparison of the effectiveness of digestate and mineral fertilisers on yields and quality of kohlrabi (Brassica oleracea, L.). Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Rasi, S.; Veijanen, A.; Rintala, J. Trace compounds of biogas from different biogas production plants. Energy 2007, 32, 1375–1380. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Sahlström, L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 2003, 87, 161–166. [Google Scholar] [CrossRef]
- Sassi, H.P.; Ikner, L.A.; Abd-Elmaksoud, S.; Gerba, C.P.; Pepper, I.L. Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion. Sci. Total Environ. 2018, 615, 15–19. [Google Scholar] [CrossRef]
- Johansen, A.; Nielsen, H.B.; Hansen, C.M.; Andreasen, C.; Carlsgart, J.; Hauggard-Nielsen, H.; Roepstorff, A. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso-and thermophilic conditions. Waste Manag. 2013, 33, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Hülsemann, B.; Merkle, W.; Guo, J.; Dong, R.; Piepho, H.-P.; Gerhards, R.; Müller, J.; Oechsner, H. Influence of Anaerobic Digestion Processes on the Germination of Weed Seeds. Gesunde Pflanz. 2020, 72, 181–194. [Google Scholar] [CrossRef]
- Ditl, P.; Nápravník, J.; Šulc, R. Chemical pre-treatment of fugate from biogas stations. Biomass Bioenergy 2017, 96, 180–182. [Google Scholar] [CrossRef]
- Kreuger, E.; Prade, T.; Escobar, F.; Svensson, S.-E.; Englund, J.-E.; Björnsson, L. Anaerobic digestion of industrial hemp–Effect of harvest time on methane energy yield per hectare. Biomass Bioenergy 2011, 35, 893–900. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.-E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Struik, P.; Amaducci, S.; Bullard, M.; Stutterheim, N.; Venturi, G.; Cromack, H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crop. Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A new nutrient source–review. Biogas 2012, 14, 295–312. [Google Scholar]
- Lukehurst, C.T.; Frost, P.; Al Seadi, T. Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, 2010, 1–36. [Google Scholar]
- Kratzeisen, M.; Starcevic, N.; Martinov, M.; Maurer, C.; Müller, J. Applicability of biogas digestate as solid fuel. Fuel 2010, 89, 2544–2548. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Negri, M.; Fiala, M.; Feijoo, G.; Moreira, M.T. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste Manag. 2015, 41, 50–59. [Google Scholar] [CrossRef]
- Teglia, C.; Tremier, A.; Martel, J.-L. Characterization of solid digestates: Part 1, review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valorization 2011, 2, 43–58. [Google Scholar] [CrossRef]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Tsachidou, B.; Scheuren, M.; Gennen, J.; Debbaut, V.; Toussaint, B.; Hissler, C.; George, I.; Delfosse, P. Biogas residues in substitution for chemical fertilizers: A comparative study on a grassland in the Walloon Region. Sci. Total Environ. 2019, 666, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Risberg, K.; Pell, M. Biogas residues as fertilisers–Effects on wheat growth and soil microbial activities. Appl. Energy 2012, 99, 126–134. [Google Scholar] [CrossRef]
- Kolář, L.; Kužel, S.; Peterka, J.; Borová-Batt, J. Agrochemical value of the liquid phase of wastes from fermentem during biogas production. Plant Soil Environ. 2012, 56, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Schulz, R.; Müller, T. Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr. Cycl. Agroecosyst. 2010, 87, 307–325. [Google Scholar] [CrossRef]
- Makadi, M.; Tomocsik, A.; Eichler-Loebermann, B.; Schiemenz, K. nutrient cycling by using residues of bioenergy production-effects of biogas-digestate on plant and soil parameters. Cereal Res. Commun. 2008, 36, 1807–1810. [Google Scholar]
- Dubský, M.; Chaloupková, Š.; Kaplan, L.; Vondráčková, S.; Tlustoš, P. Use of solid phase of digestate for production of growing horticultural substrates. Hortic. Sci. 2019, 46, 34–42. [Google Scholar] [CrossRef]
- What is the Digestate? Available online: https://air.unimi.it/retrieve/handle/2434/50234/110733/WhatIsTheDigestate.pdf (accessed on 10 October 2021).
- Coelho, J.J.; Prieto, M.L.; Dowling, S.; Hennessy, A.; Casey, I.; Woodcock, T.; Kennedy, N. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018, 78, 8–15. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Godwin, H. The ancient cultivation of hemp. Antiquity 1967, 41, 42–49. [Google Scholar] [CrossRef]
- Lu, X.; Clarke, R.C. The cultivation and use of hemp (Cannabis sativa L.) in ancient China. J. Int. Hemp Assoc. 1995, 2, 26–30. [Google Scholar]
- Bradshaw, R.; Coxon, P.; Greig, J.; Hall, A. New fossil evidence for the past cultivation and processing of hemp (Cannabis sativa L.) in Eastern England. New Phytol. 1981, 89, 503–510. [Google Scholar] [CrossRef]
- Decorte, T. Fibre hemp and marihuana: Assessing the differences between distinct varieties. Work. Pap. Ser. Polic. 2011, 38, 1–16. [Google Scholar]
- Council Regulation (EC) No 1782/2003 of 29 September 2003 Establishing Common Rules for Direct Support Schemes under the Common Agricultural Policy and Establishing Certain Support Schemes for Farmers and Amending Regulations (EEC) No 2019/93, (EC) No 1452/2001, (EC) No 1453/2001, (EC) No 1454/2001, (EC) 1868/94, (EC) No 1251/1999, (EC) No 1254/1999, (EC) No 1673/2000, (EEC) No 2358/71 and (EC) No 2529/2001. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2003R1782:20090101:EN:PDF (accessed on 12 November 2021).
- Commission Regulation, No.796/2004 of 21 April 2004. Laying Down Rules for the Implementation of Cross Compliance, Modulation and Integrated Administration and Control Provided for in Council Regulation (EC). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:141:0018:0058:EN:PDF (accessed on 7 June 2020).
- Prade, T. Industrial Hemp (Cannabis sativa L.)–A High-Yielding Energy Crop. Ph.D. Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2011. [Google Scholar]
- Burczyk, H.; Grabowska, L.; Kołodziej, J.; Strybe, M. Industrial hemp as a raw material for energy production. J. Ind. Hemp 2008, 13, 37–48. [Google Scholar] [CrossRef]
- Finnan, J.; Styles, D. Hemp: A more sustainable annual energy crop for climate and energy policy. Energy Policy 2013, 58, 152–162. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Wijlhuizen, M.; de Schutter, J.A.A. Plant density and self-thinning affect yield and quality of fibre hemp (Cannabis sativa L.). Field Crop. Res. 1995, 40, 153–164. [Google Scholar] [CrossRef]
- Amaducci, S.; Amaducci, M.T.; Benati, R.; Venturi, G. Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind. Crop. Prod. 2000, 11, 179–186. [Google Scholar] [CrossRef]
- Hemp as an Agricultural Commodity. Available online: https://sgp.fas.org/crs/misc/RL32725.pdf (accessed on 15 April 2019).
- Vera, C.; Malhi, S.; Phelps, S.; May, W.; Johnson, E. N, P, and S fertilization effects on industrial hemp in Saskatchewan. Can. J. Plant Sci. 2010, 90, 179–184. [Google Scholar] [CrossRef]
- Finnan, J.; Burke, B. Potassium fertilization of hemp (Cannabis sativa). Ind. Crop. Prod. 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Barron, A.; Coutinho, J.; English, A.; Gergely, S.; Lidouren, E.; Haugaard-Nielsen, H. Integrating hemp in organic farming systems—A Focus on the United Kingdom, France and Denmark. 2003. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.8495&rep=rep1&type=pdf (accessed on 10 November 2021).
- Landi, S. Mineral nutrition of Cannabis sativa L. J. Plant Nutr. 1997, 20, 311–326. [Google Scholar] [CrossRef]
- Ivanyi, I. Relationship between leaf nutrient concentration and the yield of fibre hemp (Cannabis sativa L.). Res. J. Agric. Sci. 2011, 43, 70–76. [Google Scholar] [CrossRef]
- Alaru, M.; Kukk, L.; Astover, A.; Lauk, R.; Shanskiy, M.; Loit, E. An agro-economic analysis of briquette production from fibre hemp and energy sunflower. Ind. Crop. Prod. 2013, 51, 186–193. [Google Scholar] [CrossRef]
- Malceva, M.; Vikmane, M.; Stramkale, V. Changes of photosynthesis-related parameters and productivity of Cannabis sativa under different nitrogen supply. Environ. Exp. Biol. 2011, 9, 61–69. [Google Scholar]
- Ivanyi, I.; Izsaki, Z. Effect of nutrient supplies on the nutrient uptake of fibre hemp (Cannabis sativa L.) during the vegetation period. Novenytermeles 1996, 45, 181–193. [Google Scholar]
- Iványi, I.; Izsáki, Z. Effect of nitrogen, phosphorus, and potassium fertilization on nutrional status of fiber hemp. Commun. Soil Sci. Plant Anal. 2009, 40, 974–986. [Google Scholar] [CrossRef]
- Word Reference Base for Soil Resources-WRB. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Geneva, Switzerland, 2014. [Google Scholar]
- Sausserde, R.; Adamovičs, A. Impact of nitrogen fertilizer rates on industrial hemp growth and development. In Proceedings of the 19th International Scientific Conference on Research for Rural Development, Jeglava, Latvia, 17–19 September 2013; pp. 50–55. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Papastylianou, P.; Kakabouki, I.; Travlos, I. Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Hakala, K.; Keskitalo, M.; Eriksson, C.; Pitkänen, T. Nutrient uptake and biomass accumulation for eleven different field crops. Agric. Food Sci. 2009, 18, 366–387. [Google Scholar] [CrossRef]
- Mengel, K. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil 1994, 165, 275–283. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Kumar, V.; Rani, A.; Jain, R. Cannabis sativa: A plant suitable for phytoremediation and bioenergy production. In Phytoremediation Potential of Bioenergy Plants; Springer: Berlin/Heidelberg, Germany, 2017; pp. 269–285. [Google Scholar]
- Linger, P.; Müssig, J.; Fischer, H.; Kobert, J. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Ind. Crop. Prod. 2002, 16, 33–42. [Google Scholar] [CrossRef]
The Amount of N Supplied (kg/ha) | |||||
---|---|---|---|---|---|
Variant | Basic Fertilization | 1. Additional Fertilization | 2. Additional Fertilization | 3. Additional Fertilization | Total |
NPK | 150 | 0 | 0 | 0 | 150 |
SPD | 150 | 0 | 0 | 0 | 150 |
SPD + LPD | 75 | 25 | 25 | 25 | 150 |
LPD | 75 | 25 | 25 | 25 | 150 |
Dry Matter (%) | pH (H2O) | EC (mS/cm) | Total N (mg/kg) | P (mg/kg) | K (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | S (mg/kg) |
---|---|---|---|---|---|---|---|---|
21.71 ± 0.261 | 8.6 ± 0.141 | 2.749 ± 0.072 | 24,900 ± 452 | 3127 ± 129 | 29,419 ± 632 | 40,358 ± 772 | 4364 ± 518 | 2793 ± 516 |
Fe (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | B (mg/kg) | Mn (mg/kg) | Pb (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | As (mg/kg) |
296 ± 23.3 | 90 ± 9.33 | 5.65 ± 0.919 | 70.1 ± 19.5 | 144 ± 10.8 | 0.065 ± 0.001 | 0.085 ± 0.002 | 1.425 ± 0.13 | 0.07 ± 0.001 |
Dry Matter (%) | pH (H2O) | EC (mS/cm) | Total N (mg/kg) | P (mg/kg) | K (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | S (mg/kg) |
---|---|---|---|---|---|---|---|---|
6.04 ± 0.127 | 8.35 ± 0.353 | >4000 ± 0 | 57,800 ± 1265 | 12,912 ± 562 | 42,988 ± 1214 | 39,996 ± 2586 | 4268 ± 272 | 3228 ± 342 |
Fe (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | B (mg/kg) | Mn (mg/kg) | Pb (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | As (mg/kg) |
267 ± 96 | 251 ± 68 | 6.1 ± 0.52 | 76.5 ± 12.5 | 189 ± 15.7 | 0.9 ± 0.02 | 0.09 ± 0.001 | 1.01 ± 0.02 | 3.79 ± 0.12 |
Total N | P | K |
---|---|---|
(kg/ha) | (kg/ha) | (kg/ha) |
150.0 | 20.0 | 150.0 |
SPD | SPD + LPD | LPD | |
---|---|---|---|
(kg/ha) | |||
Total N | 150.50 | 150.70 | 150.8 |
P | 18.90 | 26.30 | 33.7 |
K | 177.80 | 145.00 | 112.2 |
Ca | 243.90 | 174.20 | 104.4 |
Mg | 26.40 | 18.80 | 11.1 |
S | 16.90 | 12.70 | 8.4 |
Fe | 1.80 | 1.20 | 0.7 |
B | 0.40 | 0.30 | 0.2 |
Mn | 0.90 | 0.70 | 0.5 |
Variant | Nitrate N (mg/kg) | Ammonia N (mg/kg) | Carbon (mg/kg) | Total N (mg/kg) | P (mg/kg) | K (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | S (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
NPK | 21.25 | 29.96 | 287.79 | 57.50 | 534.56 | 502.78 | 8170.00 | 221.89 | 24.44 |
SPD | 17.18 | 25.62 | 291.63 | 50.35 | 542.89 | 545.56 | 8233.33 | 234.44 | 25.56 |
SPD + LPD | 9.31 | 17.83 | 303.57 | 39.62 | 548.89 | 543.33 | 8190.00 | 246.89 | 26.26 |
LPD | 8.97 | 15.35 | 294.41 | 33.24 | 530.50 | 523.63 | 8443.75 | 234.75 | 25.23 |
Variant | Root | Stem | Leaf |
---|---|---|---|
Calcium (%) | |||
NPK | 0.59 a | 0.89 a | 3.40 a |
SPD | 0.60 a | 0.80 a | 2.07 a |
SPD + LPD | 0.61 a | 0.47 a | 2.81 a |
LPD | 0.57 a | 0.68 a | 2.85 a |
Variant | Magnesium (%) | ||
NPK | 0.079 a | 0.100 a | 0.32 a |
SPD | 0.076 a | 0.089 a | 0.30 a |
SPD + LPD | 0.130 b | 0.060 a | 0.23 a |
LPD | 0.083 a | 0.093 a | 0.24 a |
Variant | Sulfur (%) | ||
NPK | 0.047 a | 0.036 a | 0.14 a |
SPD | 0.034 a | 0.034 a | 0.12 a |
SPD + LPD | 0.055 a | 0.030 a | 0.10 a |
LPD | 0.049 a | 0.032 a | 0.12 a |
Variant | Root | Stem | Leaf |
Nitrogen (%) | |||
NPK | 0.57 a | 1.95 a | 3.36 a |
SPD | 0.73 a | 1.98 a | 3.30 a |
SPD + LPD | 0.73 a | 2.15 a | 3.53 a |
LPD | 0.75 a | 2.01 a | 3.22 a |
Variant | Phosphorus (%) | ||
NPK | 0.11 a | 0.11 a | 0.24 a |
SPD | 0.096 a | 0.12 a | 0.25 a |
SPD + LPD | 0.14 a | 0.089 a | 0.21 a |
LPD | 0.11 a | 0.11 a | 0.21 a |
Variant | Potassium (%) | ||
NPK | 1.31 a | 1.27 a | 1.98 a |
SPD | 1.10 a | 1.18 a | 1.95 a |
SPD + LPD | 1.20 a | 1.37 a | 1.75 a |
LPD | 1.28 a | 1.21 a | 1.92 a |
Variant | Root | Stem | Leaf |
---|---|---|---|
Iron (ppm) | |||
NPK | 182 a | 28.84 a | 94.61 a |
SPD | 280 a | 50.72 a | 77.38 a |
SPD + LPD | 236 a | 33.90 a | 67.52 a |
LPD | 125 a | 49.07 a | 73.01 a |
Variant | Manganese (ppm) | ||
NPK | 21.29 a | 26.53 a | 54.14 a |
SPD | 20.96 a | 23.11 a | 36.27 a |
SPD + LPD | 22.76 a | 14.31 a | 26.20 a |
LPD | 17.51 a | 25.30 a | 37.93 a |
Variant | Boron (ppm) | ||
NPK | 11.39 a | 12.50 a | 45.73 a |
SPD | 12.79 a | 15.65 a | 41.82 a |
SPD + LPD | 24.50 a | 8.36 a | 35.77 a |
LPD | 14.54 a | 12.27 a | 35.04 a |
Variant | Root | Stem | Leaf |
Zinc (ppm) | |||
NPK | 7.37 a | 6.49 a | 19.24 a |
SPD | 7.18 a | 6.07 a | 13.62 a |
SPD + LPD | 11.45 a | 5.03 a | 8.91 a |
LPD | 6.54 a | 6.34 a | 15.71 a |
Variant | Copper (ppm) | ||
NPK | 2.68 a | 2.31 a | 4.72 a |
SPD | 2.67 a | 2.68 a | 4.62 a |
SPD + LPD | 3.25 b | 2.28 a | 3.80 a |
LPD | 2.64 a | 2.64 a | 4.45 a |
Variant | Dry Matter (%) | pH (H2O) | EC (mS/cm) | N (mg/kg) | |
---|---|---|---|---|---|
NO3− | NH4+ | ||||
NPK | 90.8 ± 0.07 | 8.71 ± 0.00 | 0.114 ± 0.008 | 21.55 ± 0.49 | 18.35 ± 6.33 |
SPD | 90.3 ± 0.14 | 8.74 ± 0.04 | 0.105 ± 0.001 | 21.12 ± 5.53 | 21.13 ± 6.32 |
SPD + LPD | 89.7 ± 0.07 | 8.76 ± 0.08 | 0.110 ± 0.013 | 18.23 ± 2.60 | 15.54 ± 3.34 |
LPD | 90.3 ± 0.02 | 8.73 ± 0.02 | 0.108 ± 0.003 | 23.09 ± 2.06 | 11.84 ± 5.04 |
Variant | P (mg/kg) | K (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | S (mg/kg) |
---|---|---|---|---|---|
NPK | 614 ± 113 | 460 ± 59 | 7328 ± 1190 | 240 ± 27.6 | 29.0 ± 7.1 |
SPD | 628 ± 122 | 468 ± 108 | 7637 ± 843 | 252 ± 26.2 | 30.5 ± 7.8 |
SPD + LPD | 629 ± 114 | 479 ± 90 | 7367 ± 1163 | 253 ± 10.6 | 32.5 ± 9.2 |
LPD | 613 ± 117 | 476 ± 66 | 7374 ± 1512 | 259 ± 35.4 | 34.5 ± 13.4 |
Sample | Fe (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | B (mg/kg) | Mn (mg/kg) | Mo (mg/kg) |
---|---|---|---|---|---|---|
NPK | 62.6 ± 19.1 | 16.4 ± 3.1 | 9.87 ± 1.59 | 21.9 ± 5.45 | 291 ± 78 | <0.005 |
SPD | 63.9 ± 16.1 | 16.9 ± 3.2 | 8.68 ± 0.40 | 20.6 ± 3.33 | 302 ± 83 | <0.005 |
SPD + LPD | 64.5 ± 15.1 | 17.2 ± 2.4 | 8.82 ± 0.31 | 21.5 ± 4.60 | 299 ± 74 | <0.005 |
LPD | 64.0 ± 21.9 | 17.0 ± 3.6 | 8.59 ± 0.27 | 21.4 ± 4.81 | 290 ± 77 | <0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velechovský, J.; Malík, M.; Kaplan, L.; Tlustoš, P. Application of Individual Digestate Forms for the Improvement of Hemp Production. Agriculture 2021, 11, 1137. https://doi.org/10.3390/agriculture11111137
Velechovský J, Malík M, Kaplan L, Tlustoš P. Application of Individual Digestate Forms for the Improvement of Hemp Production. Agriculture. 2021; 11(11):1137. https://doi.org/10.3390/agriculture11111137
Chicago/Turabian StyleVelechovský, Jiří, Matěj Malík, Lukáš Kaplan, and Pavel Tlustoš. 2021. "Application of Individual Digestate Forms for the Improvement of Hemp Production" Agriculture 11, no. 11: 1137. https://doi.org/10.3390/agriculture11111137
APA StyleVelechovský, J., Malík, M., Kaplan, L., & Tlustoš, P. (2021). Application of Individual Digestate Forms for the Improvement of Hemp Production. Agriculture, 11(11), 1137. https://doi.org/10.3390/agriculture11111137