Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Image Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blando, F.; Oomah, B.D. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci. Technol. 2019, 86, 517–529. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A Review of the Health Benefits of Cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, P.S.; Moscetti, R.; Massantini, R.; Light, D.; Haff, R.P. Detection of pits and pit fragments in fresh cherries using near infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 196–202. [Google Scholar] [CrossRef]
- Mousa, A.M.; Ghanem, H.G. Mechanical Behavior of Apricot and Cherry Pits under Compression Loading. J. Soil Sci. Agric. Eng. 2019, 10, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, F.M.; Görgüç, A.; Karaaslan, M.; Vardin, H.; Ersus Bilek, S.; Uygun, Ö.; Bircan, C. Sour Cherry By-products: Compositions, Functional Properties and Recovery Potentials—A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3549–3563. [Google Scholar] [CrossRef] [PubMed]
- Savova, D.; Apak, E.; Ekinci, E.; Yardim, F.; Petrov, N.; Budinova, T.; Razvigorova, M.; Minkova, V. Biomass conversion to carbon adsorbents and gas. Biomass Bioenergy 2001, 21, 133–142. [Google Scholar] [CrossRef]
- Yangali, P.; Celaya, A.M.; Goldfarb, J.L. Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends. J. Anal. Appl. Pyrolysis 2014, 108, 203–211. [Google Scholar] [CrossRef]
- Barber, S.T.; Yin, J.; Draper, K.; Trabold, T.A. Closing nutrient cycles with biochar-from filtration to fertilizer. J. Clean. Prod. 2018, 197, 1597–1606. [Google Scholar] [CrossRef]
- Hernández-Rentero, C.; Córdoba, R.; Moreno, N.; Caballero, A.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Res. 2018, 11, 89–100. [Google Scholar] [CrossRef]
- Li, X.; Tie, K.; Li, Z.; Guo, Y.; Liu, Z.; Liu, X.; Liu, X.; Feng, H.; Zhao, X.S. Nitrogen-doped hierarchically porous carbon derived from cherry stone as a catalyst support for purification of terephthalic acid. Appl. Surf. Sci. 2018, 447, 57–62. [Google Scholar] [CrossRef]
- Pollard, Z.A.; Goldfarb, J.L. Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality. Environ. Pollut. 2021, 270, 116073. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 2013, 49, 130–135. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Raczyk, M.; Mišina, I.; Soliven, A.; Seglina, D. Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Ind. Crops Prod. 2016, 82, 44–50. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, R.; Jindal, N. Machine Learning and Deep Learning Applications—A Vision. Glob. Transit. Proc. 2021, 2, 24–28. [Google Scholar] [CrossRef]
- Asongo, A.I.; Barma, M.; Muazu, H.G. Machine Learning Techniques, methods and Algorithms: Conceptual and Practical Insights. Int. J. Eng. Res. Appl. 2021, 11, 55–64. [Google Scholar]
- Nosratabadi, S.; Ardabili, S.; Lakner, Z.; Mako, C.; Mosavi, A. Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS. Agriculture 2021, 11, 408. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Ajaz, R.H.; Hussain, L. Seed Classification using Machine Learning Techniques. J. Multidiscip. Eng. Sci. Technol. (JMEST) 2015, 2, 1098–1102. [Google Scholar]
- de Medeiros, A.D.; da Silva, L.J.; Ribeiro, J.P.O.; Ferreira, K.C.; Rosas, J.T.F.; Santos, A.A.; da Silva, C.B. Machine learning for seed quality classification: An advanced approach using merger data from FT-NIR spectroscopy and X-ray imaging. Sensors 2020, 20, 4319. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, 13694. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [Google Scholar] [CrossRef]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2021, 20, 52–57. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Milatović, D.; Ðurović, D.; Milivojević, J. Stone and kernel characteristics as elements in identification of apricot cultivars. Voćarstvo 2006, 40, 311–319. [Google Scholar]
- Depypere, L.; Chaerle, P.; Mijnsbrugge, K.V.; Goetghebeur, P. Stony endocarp dimension and shape variation in Prunus section Prunus. Ann. Bot. 2007, 100, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Sarigu, M.; Grillo, O.; Lo Bianco, M.; Ucchesu, M.; d’Hallewin, G.; Loi, M.C.; Venora, G.; Bacchetta, G. Phenotypic identification of plum varieties (Prunus domestica L.) by endocarps morpho-colorimetric and textural descriptors. Comput. Electron. Agric. 2017, 136, 25–30. [Google Scholar] [CrossRef]
- Frigau, L.; Antoch, J.; Bacchetta, G.; Sarigu, M.; Ucchesu, M.; Zaratin Alves, C.; Mola, F. Statistical Approach to the Morphological Classification of Prunus sp. Seeds. Plant Biosyst. 2020, 154, 877–886. [Google Scholar] [CrossRef]
- Beyaz, A.; Öztürk, R. Identification of olive cultivars using image processing techniques. Turk. J. Agric. For. 2016, 40, 671–683. [Google Scholar] [CrossRef]
- Kim, S.H.; Nam, J.I.; Kim, C.W. Analysis of Qualitative and Quantitative Traits to Identify Different Chinese Jujube Cultivars. Plant Breed. Biotechnol. 2019, 7, 175–185. [Google Scholar] [CrossRef]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
Parameter | Cultivar | |||
---|---|---|---|---|
‘Debreceni Botermo’ | ‘Łutówka’ | ‘Nefris’ | ‘Kelleris’ | |
L (mm) | 11.33 a | 11.54 b | 11.80 c | 12.14 d |
S (mm) | 10.09 c | 9.87 b | 10.49 d | 9.49 a |
Lsz (mm) | 141.68 b | 150.88 c | 174.71 d | 125.55 a |
FE (mm2) | 116.98 a | 114.59 a | 119.62 b | 121.63 b |
LmaxE (mm) | 12.42 a | 12.23 b | 12.42 a | 12.68 c |
LminE (mm) | 11.96 a | 11.90 a | 12.23 b | 12.18 b |
Fd2 (mm2) | 120.41 a | 117.07 b | 121.14 a | 125.20 c |
D2 (mm) | 6.18 a | 6.10 b | 6.20 a | 6.30 c |
Ul (mm) | 100.37 a | 101.16 a | 105.06 b | 100.83 a |
Mmax (mm) | 6.27 a | 6.21 b | 6.31 a | 6.39 c |
Mmin (mm) | 4.67 c | 4.58 b | 4.92 d | 4.45 a |
Fv (mm) | 10.69 bc | 10.44 a | 10.86 c | 10.59 ab |
Uw (mm) | 34.44 a | 34.19 a | 35.60 b | 34.52 a |
Ug (mm) | 100.45 a | 101.54 a | 105.19 b | 101.50 a |
Spol (mm) | 10.70 a | 10.62 a | 11.12 b | 10.67 a |
Ft (mm2) | 90.20 a | 88.74 a | 97.31 b | 89.57 a |
Fh (mm) | 11.09 a | 11.13 a | 11.59 b | 11.23 a |
Fmax (mm) | 12.34 a | 12.15 b | 12.35 a | 12.58 c |
Fmin (mm) | 9.78 c | 9.63 b | 10.29 d | 9.32 a |
Maver (mm) | 5.36 a | 5.32 a | 5.56 b | 5.35 a |
Parameter | Cultivar | |||
---|---|---|---|---|
‘Debreceni Botermo’ | ‘Łutówka’ | ‘Nefris’ | ‘Kelleris’ | |
W1 (-) | 1.04 a | 1.03 b | 1.02 c | 1.05 a |
W2 (-) | 0.11 c | 0.11 b | 0.11 a | 0.11 a |
W3 (-) | 111.91 b | 115.58 c | 113.67 a | 113.83 a |
W4 (-) | 2.91 a | 2.96 b | 2.95 b | 2.92 a |
W5 (-) | 0.67 c | 0.61 b | 0.57 a | 0.75 d |
W6 (-) | 0.09 b | 0.09 d | 0.09 a | 0.09 c |
W7 (-) | 1.30 a | 1.30 a | 1.24 b | 1.38 c |
W8 (-) | 0.89 a | 0.86 c | 0.89 a | 0.78 b |
W9 (-) | 1.27 a | 1.28 c | 1.27 b | 1.29 d |
W10 (-) | 0.75 a | 0.74 a | 0.78 c | 0.70 b |
W11 (-) | 2.57 a | 2.52 a | 2.52 b | 3.27 c |
W12 (-) | 2.37 b | 2.41 c | 2.55 d | 2.26 a |
W13 (-) | 0.14 a | 0.14 a | 0.13 b | 0.14 c |
W14 (-) | 0.05 b | 0.05 c | 0.05 d | 0.04 a |
W15 (-) | 0.95 b | 0.96 c | 0.97 a | 0.97 a |
SigR (-) | 204.90 a | 198.94 a | 133.71 b | 322.29 c |
RH (-) | 1.00 a | 1.00 a | 1.00 c | 0.99 b |
RB (-) | 9.35 b | 9.28 ab | 9.77 c | 9.24 a |
RM (-) | 10.94 a | 11.17 d | 11.04 b | 11.11 c |
RF (-) | 1.05 a | 1.08 a | 1.08 a | 1.08 a |
RFf (-) | 0.79 a | 0.79 a | 0.83 c | 0.74 b |
Rc (-) | 0.33 d | 0.33 a | 0.33 c | 0.33 b |
Rc1 (-) | 10.70 a | 10.62 a | 11.12 b | 10.67 a |
Rc2 (-) | 31.97 a | 32.32 a | 33.48 b | 32.31 a |
Pair Comparison | Predicted Class (%) | Actual Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area | |
---|---|---|---|---|---|---|---|---|---|
‘Debreceni botermo’ vs. ‘Łutówka’ | ‘Debreceni botermo’ | ‘Łutówka’ | |||||||
85 | 15 | ‘Debreceni botermo’ | 84 | 0.85 | 0.86 | 0.86 | 0.91 | 0.92 | |
16 | 84 | ‘Łutówka’ | 0.84 | 0.82 | 0.83 | 0.91 | 0.87 | ||
‘Debreceni botermo’ vs. ‘Nefris’ | ‘Debreceni botermo’ | ‘Nefris’ | |||||||
87 | 13 | ‘Debreceni botermo’ | 87 | 0.87 | 0.90 | 0.88 | 0.93 | 0.94 | |
13 | 87 | ‘Nefris’ | 0.87 | 0.84 | 0.85 | 0.93 | 0.92 | ||
‘Debreceni botermo’ vs. ‘Kelleris’ | ‘Debreceni botermo’ | ‘Kelleris’ | |||||||
92 | 8 | ‘Debreceni botermo’ | 90 | 0.92 | 0.91 | 0.91 | 0.95 | 0.93 | |
11 | 89 | ‘Kelleris’ | 0.89 | 0.90 | 0.89 | 0.95 | 0.93 | ||
‘Łutówka’ vs. ‘Nefris’ | ‘Łutówka’ | ‘Nefris’ | |||||||
78 | 22 | ‘Łutówka’ | 78 | 0.78 | 0.79 | 0.78 | 0.85 | 0.85 | |
22 | 78 | ‘Nefris’ | 0.78 | 0.76 | 0.77 | 0.85 | 0.82 | ||
‘Łutówka’ vs. ‘Kelleris’ | ‘Łutówka’ | ‘Kelleris’ | |||||||
87 | 13 | ‘Łutówka’ | 87 | 0.87 | 0.86 | 0.87 | 0.92 | 0.91 | |
13 | 87 | ‘Kelleris’ | 0.87 | 0.87 | 0.87 | 0.92 | 0.92 | ||
‘Nefris’ vs. ‘Kelleris’ | ‘Nefris’ | ‘Kelleris’ | |||||||
95 | 5 | ‘Nefris’ | 95 | 0.95 | 0.94 | 0.94 | 0.97 | 0.95 | |
6 | 94 | ‘Kelleris’ | 0.94 | 0.96 | 0.95 | 0.97 | 0.95 |
Pair Comparison | Predicted Class (%) | Actual Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area | |
---|---|---|---|---|---|---|---|---|---|
‘Debreceni botermo’ vs. ‘Łutówka’ | ‘Debreceni botermo’ | ‘Łutówka’ | |||||||
87 | 13 | ‘Debreceni botermo’ | 85 | 0.87 | 0.86 | 0.86 | 0.91 | 0.93 | |
18 | 82 | ‘Łutówka’ | 0.82 | 0.84 | 0.83 | 0.91 | 0.87 | ||
‘Debreceni botermo’ vs. ‘Nefris’ | ‘Debreceni botermo’ | ‘Nefris’ | |||||||
89 | 11 | ‘Debreceni botermo’ | 88 | 0.89 | 0.90 | 0.90 | 0.94 | 0.93 | |
13 | 87 | ‘Nefris’ | 0.87 | 0.86 | 0.86 | 0.94 | 0.88 | ||
‘Debreceni botermo’ vs. ‘Kelleris’ | ‘Debreceni botermo’ | ‘Kelleris’ | |||||||
92 | 8 | ‘Debreceni botermo’ | 92 | 0.92 | 0.93 | 0.92 | 0.96 | 0.96 | |
8 | 92 | ‘Kelleris’ | 0.92 | 0.90 | 0.91 | 0.96 | 0.92 | ||
‘Łutówka’ vs. ‘Nefris’ | ‘Łutówka’ | ‘Nefris’ | |||||||
77 | 23 | ‘Łutówka’ | 78 | 0.77 | 0.79 | 0.78 | 0.86 | 0.86 | |
21 | 79 | ‘Nefris’ | 0.79 | 0.76 | 0.77 | 0.86 | 0.80 | ||
‘Łutówka’ vs. ‘Kelleris’ | ‘Łutówka’ | ‘Kelleris’ | |||||||
87 | 13 | ‘Łutówka’ | 87 | 0.87 | 0.86 | 0.87 | 0.94 | 0.94 | |
13 | 87 | ‘Kelleris’ | 0.87 | 0.87 | 0.87 | 0.94 | 0.93 | ||
‘Nefris’ vs. ‘Kelleris’ | ‘Nefris’ | ‘Kelleris’ | |||||||
95 | 5 | ‘Nefris’ | 95 | 0.95 | 0.95 | 0.95 | 0.98 | 0.96 | |
5 | 95 | ‘Kelleris’ | 0.95 | 0.96 | 0.95 | 0.98 | 0.97 |
Pair Comparison | Predicted Class (%) | Actual Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area | |
---|---|---|---|---|---|---|---|---|---|
‘Debreceni botermo’ vs. ‘Łutówka’ | ‘Debreceni botermo’ | ‘Łutówka’ | |||||||
87 | 13 | ‘Debreceni botermo’ | 86 | 0.87 | 0.88 | 0.87 | 0.92 | 0.92 | |
15 | 85 | ‘Łutówka’ | 0.85 | 0.84 | 0.85 | 0.92 | 0.89 | ||
‘Debreceni botermo’ vs. ‘Nefris’ | ‘Debreceni botermo’ | ‘Nefris’ | |||||||
89 | 11 | ‘Debreceni botermo’ | 89 | 0.89 | 0.91 | 0.90 | 0.94 | 0.95 | |
12 | 88 | ‘Nefris’ | 0.88 | 0.85 | 0.87 | 0.94 | 0.90 | ||
‘Debreceni botermo’ vs. ‘Kelleris’ | ‘Debreceni botermo’ | ‘Kelleris’ | |||||||
92 | 8 | ‘Debreceni botermo’ | 93 | 0.92 | 0.94 | 0.93 | 0.97 | 0.97 | |
7 | 93 | ‘Kelleris’ | 0.93 | 0.91 | 0.92 | 0.97 | 0.96 | ||
‘Łutówka’ vs. ‘Nefris’ | ‘Łutówka’ | ‘Nefris’ | |||||||
79 | 21 | ‘Łutówka’ | 79 | 0.79 | 0.80 | 0.80 | 0.85 | 0.86 | |
21 | 79 | ‘Nefris’ | 0.79 | 0.77 | 0.78 | 0.85 | 0.79 | ||
‘Łutówka’ vs. ‘Kelleris’ | ‘Łutówka’ | ‘Kelleris’ | |||||||
90 | 10 | ‘Łutówka’ | 90 | 0.90 | 0.89 | 0.90 | 0.94 | 0.92 | |
10 | 90 | ‘Kelleris’ | 0.90 | 0.90 | 0.90 | 0.94 | 0.91 | ||
‘Nefris’ vs. ‘Kelleris’ | ‘Nefris’ | ‘Kelleris’ | |||||||
96 | 4 | ‘Nefris’ | 96 | 0.96 | 0.96 | 0.96 | 0.99 | 0.99 | |
4 | 96 | ‘Kelleris’ | 0.96 | 0.96 | 0.96 | 0.98 | 0.98 |
Predicted Class (%) | Actual Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area | |||
---|---|---|---|---|---|---|---|---|---|---|
Linear dimensions | ||||||||||
‘Debreceni botermo’ | ‘Łutówka’ | ‘Nefris’ | ‘Kelleris’ | |||||||
76 | 9 | 7 | 8 | ‘Debreceni botermo’ | 72 | 0.76 | 0.76 | 0.76 | 0.91 | 0.81 |
13 | 55 | 19 | 13 | ‘Łutówka’ | 0.55 | 0.60 | 0.57 | 0.82 | 0.58 | |
11 | 17 | 71 | 1 | ‘Nefris’ | 0.71 | 0.70 | 0.70 | 0.91 | 0.75 | |
5 | 10 | 1 | 84 | ‘Kelleris’ | 0.84 | 0.79 | 0.82 | 0.95 | 0.87 | |
Shape factors | ||||||||||
‘Debreceni botermo’ | ‘Łutówka’ | ‘Nefris’ | ‘Kelleris’ | |||||||
79 | 9 | 7 | 5 | ‘Debreceni botermo’ | 73 | 0.79 | 0.78 | 0.78 | 0.92 | 0.85 |
13 | 54 | 20 | 13 | ‘Łutówka’ | 0.54 | 0.59 | 0.56 | 0.83 | 0.60 | |
8 | 18 | 73 | 1 | ‘Nefris’ | 0.73 | 0.69 | 0.71 | 0.93 | 0.77 | |
6 | 10 | 0 | 84 | ‘Kelleris’ | 0.84 | 0.82 | 0.83 | 0.96 | 0.88 | |
Linear dimensions + shape factors | ||||||||||
‘Debreceni botermo’ | ‘Łutówka’ | ‘Nefris’ | ‘Kelleris’ | |||||||
82 | 6 | 7 | 5 | ‘Debreceni botermo’ | 75 | 0.82 | 0.82 | 0.82 | 0.93 | 0.84 |
9 | 59 | 20 | 12 | ‘Łutówka’ | 0.59 | 0.64 | 0.61 | 0.82 | 0.59 | |
7 | 16 | 76 | 1 | ‘Nefris’ | 0.76 | 0.70 | 0.73 | 0.93 | 0.77 | |
7 | 10 | 1 | 82 | ‘Kelleris’ | 0.82 | 0.81 | 0.81 | 0.95 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture 2021, 11, 1212. https://doi.org/10.3390/agriculture11121212
Ropelewska E, Sabanci K, Aslan MF. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture. 2021; 11(12):1212. https://doi.org/10.3390/agriculture11121212
Chicago/Turabian StyleRopelewska, Ewa, Kadir Sabanci, and Muhammet Fatih Aslan. 2021. "Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning" Agriculture 11, no. 12: 1212. https://doi.org/10.3390/agriculture11121212
APA StyleRopelewska, E., Sabanci, K., & Aslan, M. F. (2021). Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture, 11(12), 1212. https://doi.org/10.3390/agriculture11121212