Agro-Morphological, Biochemical and Antioxidant Characterization of a Tunisian Chili Pepper Germplasm Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Agro-Morphological Characterization
2.3. Biochemical Analysis
2.3.1. Nutraceutical Determination
2.3.2. Antioxidant Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Agro-Morphological Characterization
3.2. Biochemical Characterization
3.2.1. Capsaicin Content
3.2.2. Total Phenol Content
3.2.3. Total Flavonoid Content
3.2.4. Antioxidant Activity
3.3. Analysis of Variance and Interaction
3.4. Chemometrics Analysis
3.5. Correlations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damatta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.V.; Ramalho, J.C. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. J. Agric. Food Chem. 2018, 66, 5264–5274. [Google Scholar] [CrossRef]
- Erickson, A.N.; Markhart, A.H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002, 25, 123–130. [Google Scholar] [CrossRef]
- Fan, X.; Cao, X.; Zhou, H.; Hao, L.; Dong, W.; He, C.; Xu, M.; Wu, H.; Wang, L.; Chang, Z.; et al. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ. Exp. Bot. 2020, 179, 104203. [Google Scholar] [CrossRef]
- Rivera, A.; Monteagudo, A.B.; Igartua, E.; Taboada, A.; Garcia-Ulloa, A.; Pomar, F.; Silvar, C. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hortic. 2016, 203, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, S.I.C.; Ragassi, C.F.; Bianchetti, L.B.; Reifschneider, F.J.B.; Buso, G.S.C.; Faleiro, F.G. Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin). Genet. Mol. Res. 2014, 13, 7447–7464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuah, A.M.; Lee, Y.C.; Yamaguchi, T.; Takamura, H.; Yin, L.J.; Matoba, T. Effect of cooking on the antioxidant properties of coloured peppers. Food Chem. 2008, 111, 20–28. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MS. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- FAOstat. Food and Agricultural Organisation Statistics. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 30 November 2018).
- Lahbib, K.; Dabbou, S.; Bok, S.E.; Pandino, G.; Lombardo, S.; Gazzah, M.E. Variation of biochemical and antioxidant activity with respect to the part of Capsicum annuum fruit from Tunisian autochthonous cultivars. Ind. Crops Prod. 2017, 104, 164–170. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Bashyal, U.; Lee, Y.S. Variations in proximate nutrients, phytochemicals, and antioxidant activity of field-Cultivated red pepper fruits at different harvest times. Hortic. Environ. Biotechnol. 2016, 57, 493–503. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Antoniadis, V.; Ntatsi, G.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of pre-Harvest factors on the quality of globe artichoke. Sci. Hortic. 2018, 233, 479–490. [Google Scholar] [CrossRef]
- IPGRI. Descriptors for Capsicum (Capsicum spp.); International Plant Genetic Resources Institute: Rome, Italy, 1995. [Google Scholar]
- Neves, L.C.; de Campos, A.J.; Colombo, R.C.; Roberto, S.R.; Cisneros-Zevallos, L. Days after anthesis and postharvest behavior define maturity, harvesting time and nutraceutical content of camu–camu fruit. Sci. Hortic. 2017, 224, 37–47. [Google Scholar] [CrossRef]
- Sadasivam, S.; Manikkam, A. Capsaicin. Biochem. Methods Agric. Sci. 1992, 8, 193–194. [Google Scholar]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-Phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Um, H.-J.; Kim, G.-H. Studies on the flavonoid compositions of Elsholtzia spp. Korean J. Food Nutr. 2007, 20, 103–107. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Mazzucato, A.; Papa, R.; Bitocchi, E.; Mosconi, P.; Nanni, L.; Negri, V.; Veronesi, F. Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor. Appl. Genet. 2008, 116, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Mercati, F.; Longo, C.; Poma, D.; Araniti, F.; Lupini, A.; Mammano, M.M.; Sunseri, F. Genetic variation of an Italian long shelf-Life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genet. Resour. Crop Evol. 2014, 62, 721–732. [Google Scholar] [CrossRef]
- Yumnam, J.S.; Tyagi, W.; Pandey, A.; Meetei, N.T.; Rai, M. Evaluation of Genetic Diversity of Chilli Landraces from North Eastern India Based on Morphology, SSR Markers and the Pun1 Locus. Plant Mol. Biol. Report. 2012, 30, 1470–1479. [Google Scholar] [CrossRef]
- Bozokalfa, M.K.; Esiyok, D.; Turhan, K. Patterns of phenotypic variation in a germplasm collection of pepper (Capsicum annuum L.) from Turkey. Span. J. Agric. Res. 2009, 7, 83–95. [Google Scholar] [CrossRef]
- Anjum, S.A.; Farooq, M.; Xie, X.Y.; Liu, X.J.; Ijaz, M.F. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic. 2012, 140, 66–73. [Google Scholar] [CrossRef]
- Fayos, O.; De Aguiar, A.C.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Garcés-Claver, A.; Martínez, J.; Mallor, C.; Rodríguez, A.R.; Palma, M.; Barroso, C.G.; et al. Ontogenetic variation of individual and total capsaicinoids in Malagueta peppers (Capsicum frutescens) during fruit maturation. Molecules 2017, 22, 736. [Google Scholar] [CrossRef]
- Barbero, G.F.; Ruiz, A.G.; Liazid, A.; Palma, M.; Vera, J.C.; Barroso, C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem. 2014, 153, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lau, N.; Medina-Lara, F.; Minero-García, Y.; Zamudio-Moreno, E.; Guzmán-Antonio, A.; Echevarría-Machado, I.; Martínez-Estévez, M. Water Deficit Affects the Accumulation of Capsaicinoids in Fruits of Capsicum chinense Jacq. Hortic. Sci. 2011, 46, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of hot air-Drying and freeze-Drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Steyn, W.J.; Wand, S.J.E.; Jacobs, G.; Rosecrance, R.C.; Roberts, S.C. Evidence for a photoprotective function of low-Temperature-induced anthocyanin accumulation in apple and pear peel. Physiol. Plant. 2009, 136, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Pandino, G.; Lombardo, S.; Lo Monaco, A.; Mauromicale, G. Choice of time of harvest influences the polyphenol profile of globe artichoke. J. Funct. Foods 2013, 5, 1822–1828. [Google Scholar] [CrossRef]
- Mitic, V.D.; Cvetkovic, J.S.; Stankov-Jovanovic, V.P.; Dimitrijevic, M.V.; Stojanovic, G.S. Characterization of Pepper Genotypes from Serbia as a Function of Maturity by Antioxidant Activity with Chemometric Analysis. Anal. Lett. 2016, 49, 2234–2245. [Google Scholar] [CrossRef]
- Silva, R.; Silva, C.; Francisco, C.; Isabel, S.; Carvalho, C.; De Rodrigues, I.; Da Silva Filho, J.G.; Trevisan Braz, L.; Beckercd, F.J.; Reifschneider, B. New Brazilian lines of Habanero pepper Capsicum chinense: Morpho-Agronomic and biochemical characterization in different environments. Sci. Hortic. 2019, 261, 108941. [Google Scholar] [CrossRef]
- Meckelmann, S.W.; Riegel, D.W.; van Zonneveld, M.; Ríos, L.; Peña, K.; Mueller-Seitz, E.; Petz, M. Capsaicinoids, flavonoids, tocopherols, antioxidant capacity and color attributes in 23 native Peruvian chili peppers (Capsicum spp.) grown in three different locations. Eur. Food Res. Technol. 2014, 240, 273–283. [Google Scholar] [CrossRef]
- Gurung, T.; Techawongstien, S.; Suriharn, B.; Techawongstien, S. Impact of environments on the accumulation of capsaicinoids in Capsicum spp. Hortic. Sci. 2011, 46, 1576–1581. [Google Scholar] [CrossRef]
- Butcher, J.D.; Crosby, K.M.; Yoo, K.S.; Patil, B.S.; Leskovar, D.I.; Jifon, J.L. Environmental and Genotypic Variation of Capsaicinoid and Flavonoid Concentrations in Habanero (Capsicum chinense) Peppers. HortScience 2012, 47, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Gurung, T.; Techawongstien, S.; Suriharn, B.; Techawongstien, S. Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica 2012, 187, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, P.; Cardi, T.; Bianchi, G.; Migliori, C.A.; Schiavi, M.; Rotino, G.L.; Lo Scalzo, R. Genetic and environmental factors underlying variation in yield performance and bioactive compound content of hot pepper varieties (Capsicum annuum) cultivated in two contrasting Italian locations. Eur. Food Res. Technol. 2018, 244, 1555–1567. [Google Scholar] [CrossRef]
- Reddy, U.K.; Almeida, A.; Abburi, V.L.; Alaparthi, S.B.; Unselt, D.; Hankins, G.; Park, M.; Choi, D.; Nimmakayala, P. Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections. PLoS ONE 2014, 9, e86393. [Google Scholar] [CrossRef]
- Zewdie, Y.; Bosland, P.W. Evaluation of genotype, environment, and genotype-By-Environment interaction for capsaicinoids in Capsicum annuum L. Euphytica 2000, 111, 185–190. [Google Scholar] [CrossRef]
- Kishore, G.; Ranjan, S.; Pandey, A.; Gupta, S. Influence of altitudinal variation on the antioxidant potential of tartar buckwheat of Western Himalaya. Food Sci. Biotechnol. 2010, 19, 1355–1363. [Google Scholar] [CrossRef]
- Kumari, D.; Madhujith, T.; Chandrasekara, A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci. Nutr. 2016, 5, 474–485. [Google Scholar] [CrossRef]
- Chen, M.L.; Yang, D.J.; Liu, S.C. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. Int. J. Food Sci. Technol. 2011, 46, 1179–1185. [Google Scholar] [CrossRef]
- Bozokalfa, M.K.; Kilic, M. Mathematic medeling in the estimation of pepper (Capsicum annuum L.) fruit volume. Chil. J. Agric. Res. 2010, 70, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Wubs, A.M.; Heuvelink, E.; Marcelis, L.F.M. Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): A review. J. Hortic. Sci. Biotechnol. 2016, 84, 467–475. [Google Scholar] [CrossRef]
- Zewdie, Y.; Bosland, P.W. Pungency of Chile (Capsicum annuum L.) Fruit Is Affected by Node Position. Hortic. Sci. 2000, 35, 1174. [Google Scholar] [CrossRef]
- Anyaoha, C.O.; Ademoyegun, O.T.; Solomon, O.; Anyaoha, C.O. Agro-Morphological and nutritional variability among elite Nsukka yellow spice pepper breeding lines Agro-Morphological and nutritional variability among elite. Int. J. Veg. Sci. 2019, 516–531. [Google Scholar] [CrossRef]
- Pandino, G.; Meneghini, M.; Tavazza, R.; Lombardo, S.; Mauromicale, G. Phytochemicals accumulation and antioxidant activity in callus and suspension cultures of Cynara scolymus L. Plant Cell Tissue Organ. Cult. 2017, 128, 223–230. [Google Scholar] [CrossRef]
- Dabbou, S.; Lahbib, K.; Pandino, G.; Dabbou, S.; Lombardo, S. Evaluation of pigments, phenolic and volatile compounds, and antioxidant activity of a spontaneous population of Portulaca oleracea L. grown in Tunisia. Agriculture 2020, 10, 353. [Google Scholar] [CrossRef]
Harvest Time (Days after Anthesis, DAA) | Air Temperature at Harvest (°C) | Horticultural Maturity | Fruit Color |
---|---|---|---|
10 | 25.2 | Unripe | fully green |
25 | 28.8 | Half ripe | fully green |
40 | 31.4 | Ripe | fully green |
55 | 34.1 | Ripe | orange |
70 | 36.2 | Ripe | red |
85 | 37.5 | Over ripe | red |
100 | 38.4 | Over ripe | dark red |
Trait (Acronym) | Description (Acronym) | Frequency Distribution | |||||
---|---|---|---|---|---|---|---|
Growth habit (GH) | prostrate (GHp), compact (GHc), erect (GHe) | GHp 85.6 | GHc 4.2 | GHe 10.2 | |||
Leaf density (LD) | sparse (LDs), intermediate (LDi), dense (LDd) | LDs 82.4 | LDi 15.0 | LDd 2.6 | |||
Leaf pubescence (LP) | sparse (LPs), intermediate (LFi), dense (LFd) | LPs 100 | LPi 0 | LPd 0 | |||
Nodal anthocyanin (NA) | green (NAg), light purple (NAl), purple (NAp), dark purple (NAd) | NAg 17.0 | NAlp 21.0 | NAp 30.0 | NAdp 32.0 | ||
Corolla color (CC) | white (CCw), green white (CCgw), (CCl), blue (CCb), violet (CCv) | CCw 100 | CCg 0 | CCl 0 | CCb 0 | CCv 0 | |
Flower position (FP) | pendant (FPp), intermediate (FPi), shoot (FPs) | FPe 76.0 | FPi 15.0 | FPs 9.0 | |||
Filament color (FC) | blue (FCb), white (FCw) | FCw 0 | FCb 100 | ||||
Calyx shape margin (CSM) | smooth (CSMs), intermediate (CSMi), dentate (CSMd) | CSMs 20.9 | CSMi 56.9 | CSMd 22.2 | |||
Calyx annular constriction (CAC) | absent (CACa), present (CACp) | CACa 30.5 | CACp 69.5 | ||||
Fruit position (FrP) | declining n (FrPd), intermediate (FrPi), erect (FrPe) | FrPd 53.1 | FrPi 40.1 | FrPe 6.8 | |||
Fruit color in immature stage (FCI) | green (FCIg), yellow (FCIy), orange (FCIo), red (FCIr), purple (FCIp), brown (FCIb) | FCIg 100 | FCIy 0 | FCIo 0 | FCIr 0 | FCIp 0 | FCIb 0 |
Fruit color in mature stage (FCM) | green (FCMg), yellow (FCMy), orange (FCMo), red (FCMr), purple (FCMp), brown (FCMb) | FCMg 0 | FCMy 0 | FCMo 0 | FCMr 100 | FCMp 0 | FCMb 0 |
Fruit shape at pedicel attachment (FSP) | acute ((FSPa), obtuse (FSPo), truncate (FSPt), cordate (FSPc), lobate (FSPl) | FSPa 38.9 | FSPo 34.7 | FSPt 26.4 | FSPc 0 | FSPl | |
Fruit shape at blossom end (FSB) | pointed (FSBp), blunt (FSPb), sunken (FSPs) | FSBp 24.5 | FSBb 58.7 | FSBs 16.8 | |||
Fruit cross sectional corrugation (FCC) | slight (FCCs), intermediate (FCCi), high (FCCh) | FCCs 21.0 | FCCi 40.7 | FCCh 38.3 |
Accession | Acronym | FL/FD | FFW (g) | NF/Pl |
---|---|---|---|---|
Corne de Gazelle | CGaz | 4.2 bc | 10.8 bd | 35.0 cd |
BakloutiChébika | BaklC | 2.6 de | 10.5 cd | 38.0 bc |
SissebChébika | SisC | 5.0 bc | 11.2 ac | 32.6 cd |
Beldi | Bel | 3.0 d | 8.6 e | 73.3 a |
SissebSbikha | SisS | 5.3 b | 12.0 ab | 27.1 e |
BakloutiSbikha | BaklS | 2.9 d | 10.0 d | 33.0 cd |
Knaiss | Kna | 2.8 d | 9.8 d | 44.9 b |
Bkalti | Bka | 2.4 de | 9.7 d | 44.9 b |
Chaabani | Chba | 2.0 e | 11.6 ac | 33.1 cd |
Fort de korba | FKbK | 8.6 a | 12.8 a | 15.8 f |
Fort Menzeltemim | FKbM | 8.5 a | 12.1 a | 18.8 f |
Principal Component | Eigenvalue | Accumulated % | Traits Correlated | Accessions Correlated |
---|---|---|---|---|
PC1 | 15.8 | 41.7 | CSM (calyx shape margin); CAC (calyx annular constriction); FSP (fruit shape at pedicel attachment); FSB (fruit shape at blossom end); NAg (nodal anthocyanin); FW (fruit weight); NF/Pl (number of fruits per plant) | FKbK, FKbM, Kna, Bka CGaz, SisS |
PC2 | 8.1 | 62.9 | FP (flower position); NA (nodal anthocyanin); GHp (growth habit); LD (leaf density); FL/FD (fruit length/fruit diameter ratio) | BaklC, BaklS, Chba, |
PC3 | 4.6 | 75.0 | FrP (fruit position); FCC (fruit cross-sectional corrugation) | Bel, SisC |
Main Factor | CAP (mg g−1 DW) | TPC (mg GAE g−1 DW) | TFC (mg NAE g−1 DW) | AADPPH (%) | AAFRAP (mmol g−1 DW) |
---|---|---|---|---|---|
Accession | |||||
CGaz | 0.32 f | 2.28 h | 0.20 f | 14.1 g | 47.3 h |
BaklC | 0.49 b | 4.76 a | 0.41 a | 28.8 a | 95.4 a |
SisC | 0.32 f | 2.57 fg | 0.23 e | 14.6 g | 50.6 g |
Bel | 0.38 e | 2.73 ef | 0.29 d | 15.9 f | 56.5 f |
SisS | 0.48 bc | 2.81 e | 0.35 c | 16.9 e | 55.6 f |
BaklS | 0.48 bc | 4.46 b | 0.41 a | 26.8 b | 86.0 c |
Kna | 0.38 e | 3.26 d | 0.29 d | 18.6 c | 63.9 e |
Bka | 0.31 f | 2.45 gh | 0.29 d | 15.5 f | 51.7 g |
Chba | 0.55 a | 4.58 b | 0.39 ab | 26.5 b | 88.1 b |
FKbK | 0.42 d | 3.96 c | 0.37 bc | 23.2 c | 79.3 d |
FKbM | 0.46 c | 3.86 c | 0.40 a | 23.6 c | 79.8 d |
Harvest time (DAA) | |||||
10 | 0.26 f | 2.82 e | 0.36 a | 16.2 f | 53.2 f |
25 | 0.59 b | 2.84 e | 0.36 a | 16.8 ef | 53.8 f |
40 | 0.63 a | 2.90 e | 0.34 b | 17.4 e | 59.3 e |
55 | 0.34 d | 3.07 d | 0.34 b | 18.7 d | 64.7 d |
70 | 0.29 e | 3.69 c | 0.32 c | 22.1 c | 75.2 c |
85 | 0.26 f | 3.87 b | 0.30 d | 23.4 b | 77.6 b |
100 | 0.45 c | 4.80 a | 0.28 e | 28.3 a | 96.1 a |
Source of variation a | |||||
Accession (A) | 0.15 (14.4) *** | 17.90 (46.9) *** | 0.12 (61.0) *** | 629.79 (46.8) *** | 6374.46 (43.7) *** |
Harvest time (H) | 0.82 (79.9) *** | 18.12 (47.5) *** | 0.03 (16.4) *** | 642.56 (47.8) *** | 7907.81 (54.2) *** |
A × H interaction | 0.02 (1.6) *** | 0.42 (1.1) *** | 0.001 (0.6) NS | 12.18 (0.9) *** | 190.98 (1.3) *** |
Total mean square | 1.03 | 38.16 | 0.19 | 1344.57 | 14,593.41 |
Variables | FL/FD | FFW | NF/Pl | CAP | TPC | TFC | AADPPH | AAFRAP |
---|---|---|---|---|---|---|---|---|
FL/FD | - | |||||||
FFW | 0.79 *** | - | ||||||
NF/Pl | −0.71 ** | −0.87 *** | - | |||||
CAP | −0.09 ns | −0.12 ns | 0.04 ns | - | ||||
TPC | 0.24 ns | 0.25 ns | −0.42 * | 0.73 ** | - | |||
TFC | 0.13 ns | 0.26 ns | −0.32 * | 0.67 ** | 0.81 *** | - | ||
AADPPH | 0.23 ns | 0.23 ns | −0.42 * | 0.73 ** | 0.95 *** | 0.81 *** | - | |
AAFRAP | 0.19 ns | 0.15 ns | −0.33 * | 0.80 *** | 0.94 *** | 0.76 ** | 0.94 *** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahbib, K.; Dabbou, S.; Bnejdi, F.; Pandino, G.; Lombardo, S.; El Gazzah, M.; El Bok, S. Agro-Morphological, Biochemical and Antioxidant Characterization of a Tunisian Chili Pepper Germplasm Collection. Agriculture 2021, 11, 1236. https://doi.org/10.3390/agriculture11121236
Lahbib K, Dabbou S, Bnejdi F, Pandino G, Lombardo S, El Gazzah M, El Bok S. Agro-Morphological, Biochemical and Antioxidant Characterization of a Tunisian Chili Pepper Germplasm Collection. Agriculture. 2021; 11(12):1236. https://doi.org/10.3390/agriculture11121236
Chicago/Turabian StyleLahbib, Karima, Samia Dabbou, Fethi Bnejdi, Gaetano Pandino, Sara Lombardo, Mohamed El Gazzah, and Safia El Bok. 2021. "Agro-Morphological, Biochemical and Antioxidant Characterization of a Tunisian Chili Pepper Germplasm Collection" Agriculture 11, no. 12: 1236. https://doi.org/10.3390/agriculture11121236
APA StyleLahbib, K., Dabbou, S., Bnejdi, F., Pandino, G., Lombardo, S., El Gazzah, M., & El Bok, S. (2021). Agro-Morphological, Biochemical and Antioxidant Characterization of a Tunisian Chili Pepper Germplasm Collection. Agriculture, 11(12), 1236. https://doi.org/10.3390/agriculture11121236