Evaluation of Phenological and Agronomical Traits of Different Almond Grafting Combinations under Testing in Central Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Trials Site
2.2. Phenological Observations
2.3. Leaf Chlorophyll, Flavonols and Anthocyanins Content and Nitrogen Balance Index
2.4. Fruit Set, Production, Yield Efficiency and Nut Traits
2.5. Statistical Analysis
3. Results
3.1. Blooming and Ripening Phenograms
3.2. Leaf Chlorophyll, Flavonols and Anthocyanins Content and Nitrogen Balance Index
3.3. Fruit Set Incidence
3.4. Yield Per Plant, Trunk Cross-Sectional Area, Yield Efficiency, and Nut Traits
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Los Cobos, F.P.; Martínez-García, P.J.; Romero, A.; Miarnau, X.; Eduardo, I.; Howad, W.; Mnejja, M.; Dicenta, F.; i Company, R.S.; Rubio-Cabetas, M.J.; et al. Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. Hortic. Res. 2021, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nut & Dried Fruit Global Statistical Rewiew. Nutfruit Nut Dried Fruit World; Inc: Reus, Spain, 2019; pp. 67–83. [Google Scholar]
- FAOSTAT, Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/ (accessed on 8 June 2021).
- INC. Nuts & Dried Fruits-Statistical Yearbook 2020/2021; Inc: Reus, Spain, 2020; pp. 487–496. [Google Scholar]
- Salas-Salvadó, J.; Casas-Agustench, P.; Salas-Huetos, A. Cultural and historical aspects of Mediterranean nuts with emphasis on their attributed healthy and nutritional properties. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S1–S6. [Google Scholar] [CrossRef]
- Sottile, F.; Massaglia, S.; Peano, C. Ecological and economic indicators for the evaluation of almond (Prunus dulcis L.) orchard renewal in Sicily. Agriculture 2020, 10, 301. [Google Scholar] [CrossRef]
- Anania, G.; Aiello, F. The nut sector in Italy: Not a success story. Options Mediterr. 1999, 37, 51–70. [Google Scholar]
- ISTAT, Coltivazioni Legnose e Fruttifere. Available online: http://dati.istat.it/Index.aspx?QueryId=33705 (accessed on 10 July 2021).
- Álvarez, S.; Martín, H.; Barajas, E.; Rubio, J.A.; Vivaldi, G.A. Rootstock Effects on Water Relations of Young Almond Trees (cv. Soleta) When Subjected to Water Stress and Rehydration. Water 2020, 12, 3319. [Google Scholar] [CrossRef]
- López-López, M.; Espadador, M.; Testi, L.; Lorite, I.J.; Orgaz, F.; Fereres, E. Water use of irrigated almond trees when subjected to water deficits. Agric. Water Manag. 2018, 195, 84–93. [Google Scholar] [CrossRef]
- Cabetas, M.J.R. Almond Rootstocks: Overview. Options Méditerranéennes 2016, 119, 133–143. [Google Scholar]
- Bielsa, B.; Leida, C.; Rubio-Cabetas, M.J. Physiological characterization of drought stress response and expression of two transcription factors and two LEA genes in three Prunus genotypes. Sci. Hortic. 2016, 213, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Vahdati, K.; Sarikhani, S.; Arab, M.M.; Leslie, C.A.; Dandekar, A.M.; Alet, N.; Bielsa, B.; Gradziel, T.M.; Montesinos, Á.; Sideli, G.M.; et al. Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. Plants 2021, 10, 2234. [Google Scholar] [CrossRef]
- Rezaee, R.; Vahdati, K.; Grigoorian, V.; Valizadeh, M. Walnut grafting success and bleeding rate as affected by different grafting methods and seedling vigour. J. Hortic. Sci. Biotechnol. 2008, 83, 94–99. [Google Scholar] [CrossRef]
- Dirlewanger, E.; Cosson, P.; Howad, W.; Capdeville, G.; Bosselut, N.; Claverie, M.; Voisin, R.; Poizat, C.; Lafargue, B.; Baron, O.; et al. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes. Theor Appl. Genet. 2004, 109, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Cabetas, M.J.R.; Felipe, A.J.; Reighard, G.L. Rootstock Development. In Almonds Botany, Production and Uses; CABI: Wallingford, UK, 2017; pp. 209–227. [Google Scholar]
- Felipe, A.J. El Almendro: El Material Vegetal; Integrum: Lérida, Spain, 2000. [Google Scholar]
- Zarrouk, O.; Gogorcena, Y.; Gómez-Aparisi, J.; Betrán, J.A.; Moreno, M.A. Influence of almond x peach hybrids rootstocks on flower and leaf mineral concentration, yield and vigour of two peach cultivars. Sci. Hortic. 2005, 106, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Pinochet, J. Breeding and Selection for Resistance to Root-knot and Lesion Nematodes in Prunus Rootstocks Adapted to Mediterranean Conditions. Phytoparasitica 1997, 25, 271–274. [Google Scholar] [CrossRef]
- Esmenjaud, D.; Minot, J.C.; Voisin, R.; Pinochet, J.; Simard, M.H.S.G. Differential Response to Root-Knot Nematodes in Prunus Species and Correlative Genetic Implications 1. J. Nematol. 1997, 29, 370–380. [Google Scholar]
- Maldera, F.; Vivaldi, G.A.; Iglesias-Castellarnau, I.; Camposeo, S. Two almond cultivars trained in a super-high density orchard show different growth, yield efficiencies and damages by mechanical harvesting. Agronomy 2021, 11, 1406. [Google Scholar] [CrossRef]
- Pinochet, J. “Replantpac” (Rootpac R), a plum-almond hybrid rootstock for replant situations. HortScience 2010, 45, 299–301. [Google Scholar] [CrossRef] [Green Version]
- Gasic, K.; Preece, J.E.; Karp, D. Register of new fruit and nut cultivars list 50. HortScience 2020, 55, 1164–1201. [Google Scholar] [CrossRef]
- Marchese, A.; Boskovic, R.I.; Martinez-Garcia, P.J.; Tobutt, K.R. Short Communication The origin of the self-compatible almond “Supernova”. Plant Breed. 2008, 127, 105–107. [Google Scholar] [CrossRef]
- Di Stefano, G.; Caruso, M.; La Malfa, S.; Ferrante, T.; Del Signore, B.; Gentile, A.; Sottile, F. Genetic diversity and relationships among Italian and foreign almond germplasm as revealed by microsatellite markers. Sci. Hortic. 2013, 162, 305–312. [Google Scholar] [CrossRef]
- Dicenta, F.; Sánchez-Pérez, R.; Rubio, M.; Egea, J.; Batlle, I.; Miarnau, X.; Palasciano, M.; Lipari, E.; Confolent, C.; Martínez-Gómez, P.; et al. The origin of the self-compatible almond “Guara”. Sci. Hortic. 2015, 197, 1–4. [Google Scholar] [CrossRef]
- Sakar, E.H.; El Yamani, M.; Boussakouran, A.; Rharrabti, Y. Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale. Sci. Hortic. 2019, 247, 224–234. [Google Scholar] [CrossRef]
- Wijewardana, C.; Reddy, K.R.; Shankle, M.W.; Meyers, S.; Gao, W. Low and high-temperature effects on sweetpotato storage root initiation and early transplant establishment. Sci. Hortic. 2018, 240, 38–48. [Google Scholar] [CrossRef]
- Silvestri, C.; Caceres, M.E.; Ceccarelli, M.; Pica, A.L.; Rugini, E.; Cristofori, V. Influence of Continuous Spectrum Light on Morphological Traits and Leaf Anatomy of Hazelnut Plantlets. Front. Plant Sci. 2019, 10, 1318. [Google Scholar] [CrossRef]
- Socias I Company, R.; Alonso, J.M.; Gómez Aparisi, J. Fruit set and productivity in almond as related to self-compatibility, flower morphology and bud density. J. Hortic. Sci. Biotechnol. 2004, 79, 754–758. [Google Scholar] [CrossRef]
- Felipe, A.J.; Socias i Company, R. ‘Aylés’, ‘Guara’, and ‘Moncayo’ almonds. HortSci. 1987, 22, 961–962. [Google Scholar]
- Lordan, J.; Zazurca, L.; Maldonado, M.; Torguet, L.; Alegre, S.; Miarnau, X. Horticultural performance of ‘Marinada’ and ‘Vairo’ almond cultivars grown on a genetically diverse set of rootstocks. Sci. Hortic. 2019, 256, 108558. [Google Scholar] [CrossRef]
- Monet, R.; Bassi, D. Classical Genetics and Breeding. In Almonds: Botany, Production and Uses; CABI: Wallingford, UK, 2017; pp. 111–148. [Google Scholar]
- Romero, A.; Batlle, I.; Miarnau, X. Almond physical traits affected by rootstocks in “Marinada” cultivar. Acta Hortic. 2018, 1219, 31–35. [Google Scholar] [CrossRef]
- Monastra, F.; Crisafulli, A.; Marchese, F.; Ondradu, G.; Pavia, R.; Rivalta, R. Monografia di cultivar di mandorlo. Ann. Dell’istituto Sper. Fruttic. Roma 1982, 13, 1–93. [Google Scholar]
- Danyluk, M.D.; Nozawa-Inoue, M.; Hristova, K.R.; Scow, K.M.; Lampinen, B.; Harris, L.J. Survival and growth of Salmonella Enteritidis PT 30 in almond orchard soils. J. Appl. Microbiol. 2008, 104, 1391–1399. [Google Scholar] [CrossRef]
- Tombesi, S.; Scalia, R.; Connell, J.; Lampinen, B.; Dejong, T.M. Fruit development in almond is influenced by early Spring temperatures in California. J. Hortic. Sci. Biotechnol. 2010, 85, 317–322. [Google Scholar] [CrossRef]
- Duncan, R.; Connell, J.; Jarvis-Shean, K.; Brar, G.; Yaghmour, M. Field Evaluation of Almond Rootstocks. In Proceedings of the Annual Research Report 2019–2020; Almond Board of California: Sacramento, CA, USA, 2019; p. 24. [Google Scholar]
- Overbeck, V.; Schmitz, M.; Tartachnyk, I.; Blanke, M. Identification of light availability in different sweet cherry orchards under cover by using non-destructive measurements with a DualexTM. Eur. J. Agron. 2018, 93, 50–56. [Google Scholar] [CrossRef]
- Scogings, P.F. Foliar flavonol concentration in Sclerocarya birrea saplings responds to nutrient fertilisation according to growth-differentiation balance hypothesis. Phytochem. Lett. 2018, 23, 180–184. [Google Scholar] [CrossRef]
- Carvalho, R.F.; Takaki, M.; Azevedo, R.A. Plant pigments: The many faces of light perception. Acta Physiol. Plant. 2011, 33, 241–248. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Xu, D.; Ye, Q.; Liu, G. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Padilla, F.M.; Teresa Peña-Fleitas, M.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Corina, G.; Madalina, M.; Melania, D.L.; Alexandru, O.; Liliana, M. Productivity of some almond varieties in Dobrogea. Fruit Grow. Res. 2015, 31, 58–64. [Google Scholar]
- Palasciano, M.; Logoluso, V. Evaluation of self-compatible offsprings of almond hybrids. Cah. Options. 1998, 155, 151–155. [Google Scholar]
- Miarnau, X.; Alegre, S.; Vargas, F. Productive potential of six almond cultivars under regulated deficit irrigation. Options Méditerranéennes. Séries A Mediterr. Semin. 2010, 271, 267–271. [Google Scholar]
Month | Year | t | T | Mean T | Rainfall |
---|---|---|---|---|---|
(°C) | (°C) | (°C) | (mm) | ||
February | 2018 | 5.3 | 12.3 | 7.1 | 157.1 |
2019 | 4 | 15.5 | 9.8 | 53.4 | |
2020 | 8.4 | 12.9 | 10.1 | 31.4 | |
2021 | 7.2 | 11.5 | 9.8 | 76.1 | |
March | 2018 | 6.8 | 14.1 | 10.3 | 230.0 |
2019 | 5.9 | 17.8 | 11.9 | 4.2 | |
2020 | 8.8 | 12.9 | 10.5 | 65.7 | |
2021 | 8.6 | 11.2 | 9.5 | 163.3 | |
April | 2018 | 10.9 | 20.1 | 15.9 | 80.1 |
2019 | 7.5 | 18.9 | 13.5 | 72.0 | |
2020 | 10.4 | 16.0 | 13.1 | 72.3 | |
2021 | 11.4 | 15.1 | 12.8 | 156.1 | |
May | 2018 | 16.3 | 21.9 | 20.1 | 83.1 |
2019 | 12.2 | 19.8 | 15.1 | 70.2 | |
2020 | 17.5 | 19.2 | 18.3 | 19.2 | |
2021 | 15.4 | 17.9 | 16.1 | 45.3 | |
June | 2018 | 20.8 | 22.4 | 21.6 | 37.1 |
2019 | 16.6 | 30.1 | 23.7 | 5.5 | |
2020 | 18.9 | 22.9 | 21.1 | 25.1 | |
2021 | 20.9 | 22.7 | 21.8 | 67.2 | |
July | 2018 | 23.4 | 27.1 | 25.3 | 31.0 |
2019 | 18.8 | 30.7 | 25.4 | 19.8 | |
2020 | 23.5 | 26.5 | 24.4 | 25.9 | |
2021 | 22.3 | 25.8 | 24.1 | 29.4 | |
August | 2018 | 23.3 | 27.8 | 25.1 | 59.9 |
2019 | 19.2 | 31.1 | 25.5 | 0.0 | |
2020 | 24.1 | 28.3 | 25.5 | 49.3 | |
2021 | 23.9 | 27.2 | 25.3 | 14.2 | |
September | 2018 | 19.1 | 24.4 | 21.7 | 56.1 |
2019 | 16.9 | 28.1 | 22.3 | 103.3 | |
2020 | 17.4 | 26.1 | 21.2 | 112.5 | |
2021 | 19.7 | 22.9 | 21.5 | 53.5 |
Genco | Rootstock | Year | Chl μg cm−2 | Flav μg cm−2 | Anth μg cm−2 | NBI |
GF677 | 2019 | 26.08 ± 3.62 b | 2.23 ± 0.20 ab | 0.08 ± 0.02 b | 11.76 ± 1.71 bc | |
2020 | 26.86 ± 4.76 b | 2.29 ± 0.10 a | 0.09 ± 0.03 b | 11.91 ± 2.30 bc | ||
2021 | 27.38 ± 3.29 b | 2.23 ± 0.10 ab | 0.08 ± 0.02 b | 12.44 ± 1.66 b | ||
Seedling | 2019 | 21.70 ± 4.69 c | 2.29 ± 0.10 a | 0.12 ± 0.04 a | 9.46 ± 2.40 d | |
2020 | 33.01 ± 6.05 a | 2.21 ± 0.10 b | 0.07 ± 0.03 b | 15.00 ± 2.81 a | ||
2021 | 25.21 ± 3.81 b | 2.28 ± 0.10 a | 0.11 ± 0.03 a | 11.09 ± 1.94 c | ||
GF677 (3-year average) | 26.78 ± 3.97 | 2.25 ± 0.10 | 0.08 ± 0.03 | 12.04 ± 1.92 | ||
Seedling (3-year average) | 26.64 ± 6.83 | 2.26 ± 0.10 | 0.10 ± 0.04 | 11.85 ± 3.33 | ||
Supernova | Rootstock | Year | Chl μg cm−2 | Flav μg cm−2 | Anth μg cm−2 | NBI |
GF677 | 2019 | 26.96 ± 5.45 c | 2.25 ± 0.11 ab | 0.08 ± 0.03 cd | 11.97 ± 2.57 c | |
2020 | 29.12 ± 5.32 b | 2.21 ± 0.15 b | 0.09 ± 0.04 bc | 13.23 ± 2.63 b | ||
2021 | 26.58 ± 3.23 c | 2.24 ± 0.12 ab | 0.10 ± 0.03 b | 11.85 ± 1.68 c | ||
Seedling | 2019 | 19.82 ± 4.65 d | 2.29 ± 0.12 a | 0.15 ± 0.05 a | 8.42 ± 2.09 d | |
2020 | 34.82 ± 5.95 a | 2.20 ± 0.11 b | 0.07 ± 0.03 d | 15.89 ± 2.87 a | ||
2021 | 26.86 ± 4.05 c | 2.23 ± 0.10 b | 0.10 ± 0.03 b | 12.01 ± 1.89 c | ||
GF677 (3-year average) | 27.55 ± 4.89 | 2.23 ± 0.13 | 0.09 ± 0.03 b | 12.35 ± 2.41 | ||
Seedling (3-year average) | 27.16 ± 7.87 | 2.24 ± 0.11 | 0.11 ± 0.05 a | 12.11 ± 2.83 | ||
Tuono | Rootstock | Year | Chl μg cm−2 | Flav μg cm−2 | Anth μg cm−2 | NBI |
GF677 | 2019 | 28.37 ± 3.71 b | 2.15 ± 0.14 | 0.06 ± 0.02 c | 13.22 ± 1.96 b | |
2020 | 32.68 ± 5.47 a | 2.11 ± 0.19 | 0.07 ± 0.03 bc | 13.55 ± 2.67 a | ||
2021 | 27.56 ± 4.53 b | 2.16 ± 0.15 | 0.09 ± 0.03 a | 12.92 ± 2.43 b | ||
Seedling | 2019 | 23.63 ±4.10 c | 2.25 ± 0.12 | 0.09 ± 0.03 a | 10.31 ± 2.01 c | |
2020 | 33.06 ± 7.45 a | 2.17 ± 0.13 | 0.08 ± 0.04 ab | 15.24 ± 3.35 a | ||
2021 | 28.41 ± 3.07 b | 2.22 ± 0.11 | 0.08 ± 0.02 ab | 12.75 ± 1.68 b | ||
GF677 (3-year average) | 29.55 ± 5.14 a | 2.14 ± 0.16 b | 0.07 ± 0.03 b | 13.89 ± 2.64 a | ||
Seedling (3-year average) | 28.36 ± 6.48 b | 2.21 ± 0.13 a | 0.08 ± 0.03 a | 12.77 ± 3.17 b |
Rootstock | Year | Chl μg cm−2 | Flav μg cm−2 | Anth μg cm−2 | NBI |
---|---|---|---|---|---|
GF 677 | 2019 | 29.13 ± 4.36 bc | 2.14 ± 0.14 cde | 0.07 ± 0.03 d | 13.70 ± 2.56 b |
2020 | 28.68 ± 4.35 c | 2.26 ± 0.14 a | 0.09 ± 0.08 c | 12.74 ± 2.05 b | |
2021 | 28.81 ± 4.60 bc | 2.18 ± 0.12 abc | 0.08 ± 0.05 cd | 13.12 ± 2.04 b | |
Rootpac® 20 | 2019 | 27.83 ± 3.46 c | 2.25 ± 0.11 abc | 0.10 ± 0.02 bc | 12.62 ± 1.99 b |
2020 | 30.8 ± 3.80 ab | 2.12 ± 0.12 e | 0.08 ± 0.05 cd | 14.84 ± 2.15 a | |
2021 | 28.83 ± 3.95 abc | 2.13 ± 0.12 bcd | 0.09 ± 0.04 c | 13.73 ± 2.28 ab | |
Rootpac® R | 2019 | 25.05 ± 4.84 d | 2.22 ± 0.13 ab | 0.15 ± 0.03 a | 10.75 ± 2.38 c |
2020 | 31.31 ± 5.91 a | 2.14 ± 0.16 de | 0.08 ± 0.03 cd | 14.85 ± 3.52 a | |
2021 | 27.85 ± 5.96 c | 2.17 ± 0.19 bcd | 0.10 ± 0.04 b | 13.08 ± 3.66 b | |
GF677 (3-year average) | 28.9 ± 4.26 b | 2.21 ± 0.14 a | 0.08 ± 0.03 b | 13.3 ± 2.35 a | |
Rootpac® 20 (3-year average) | 29.33 ± 5.06 a | 2.17 ± 0.15 b | 0.09 ± 0.04 b | 13.81 ± 2.90 a | |
Rootpac® R (3-year average) | 28.18 ± 5.42 b | 2.19 ± 0.15 ab | 0.11 ± 0.06 a | 12.89 ± 3.14 b |
Cultivar | Rootstock | Number of Flowers | Number of Fruits at Full Size | Fruit Set Incidence (%) |
---|---|---|---|---|
Genco | Seedling | 484 | 179 | 36.01 ± 7.96 a |
GF677 | 577 | 169 | 29.21 ± 7.78 b | |
Supernova | Seedling | 585 | 228 | 38.37 ± 8.42 |
GF677 | 579 | 195 | 34.06 ± 7.75 | |
Tuono | Seedling | 577 | 190 | 32.72 ± 5.02 |
GF677 | 552 | 175 | 30.71 ± 7.35 |
Rootstock | Number of Flowers | Number of Fruits at Full Size | Fruit Set Incidence % |
---|---|---|---|
GF677 | 584 | 182 | 31.25 ± 8.91 |
Rootpac® 20 | 550 | 143 | 26.31 ± 6.72 |
Rootpac® R | 579 | 172 | 29.71 ± 7.12 |
Cultivar | Rootstock | Yield Per Plant kg | YE kg/cm2 | Kernel/Nut Ratio % |
---|---|---|---|---|
Genco | GF677 | 1.78 ± 0.30 a | 0.020 ± 0.010 | 31.28 ± 2.07 |
Seedling | 1.04 ± 0.49 b | 0.040 ± 0.010 | 29.62 ± 4.34 | |
Supernova | GF677 | 0.47 ± 0.12 a | 0.006 ± 0.003 | 30.74 ± 3.35 |
Seedling | 0.23 ± 0.17 b | 0.010 ± 0.003 | 30.85 ± 2.64 | |
Tuono | GF677 | 2.10 ± 0.46 | 0.040 ± 0.010 | 30.64 ± 2.83 a |
Seedling | 1.82 ± 0.16 | 0.040 ± 0.002 | 28.14 ± 4.11 b |
Rootstock | Yield Per Plant kg | YE kg/cm2 | Kernel/Nut Ratio % |
---|---|---|---|
GF677 | 1.49 ± 0.62 | 0.04 ± 0.02 | 30.53 ± 2.64 |
Rootpac® 20 | 1.00 ± 0.20 | 0.03 ± 0.01 | 29.30 ± 3.35 |
Rootpac® R | 1.21 ± 0.16 | 0.04 ± 0.01 | 29.07 ± 2.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pica, A.L.; Silvestri, C.; Cristofori, V. Evaluation of Phenological and Agronomical Traits of Different Almond Grafting Combinations under Testing in Central Italy. Agriculture 2021, 11, 1252. https://doi.org/10.3390/agriculture11121252
Pica AL, Silvestri C, Cristofori V. Evaluation of Phenological and Agronomical Traits of Different Almond Grafting Combinations under Testing in Central Italy. Agriculture. 2021; 11(12):1252. https://doi.org/10.3390/agriculture11121252
Chicago/Turabian StylePica, Aniello Luca, Cristian Silvestri, and Valerio Cristofori. 2021. "Evaluation of Phenological and Agronomical Traits of Different Almond Grafting Combinations under Testing in Central Italy" Agriculture 11, no. 12: 1252. https://doi.org/10.3390/agriculture11121252
APA StylePica, A. L., Silvestri, C., & Cristofori, V. (2021). Evaluation of Phenological and Agronomical Traits of Different Almond Grafting Combinations under Testing in Central Italy. Agriculture, 11(12), 1252. https://doi.org/10.3390/agriculture11121252