The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data Acquisition
2.2. Artificial Neural Networks
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedrera-Parrilla, A.; Brevik, E.C.; Giraldez, J.V.; Vanderlinden, K. Temporal stability of electrical conductivity in a sandy soil. Int. Agrophys. 2016, 30, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Moral, F.J.; Terron, J.M.; da Silva, J.R.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil. Till. Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordan, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Dalchiavon, F.C.; Carvalho, M.D.E.; Montanari, R.; Andreotti, M. Strategy of specification of management areas: Rice grain yield as related to soil fertility. Rev. Bras. Cienc. Solo 2013, 37, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Fleming, K.L.; Heermann, D.F.; Westfall, D.G. Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agron. J. 2004, 96, 1581–1587. [Google Scholar] [CrossRef]
- Valente, D.S.M.; De Queiroz, D.M.; Pinto, F.D.D.; Santos, F.L.; Santos, N.T. Spatial variability of apparent electrical conductivity and soil properties in a coffee production field. Eng. Agric. 2014, 34, 1224–1233. [Google Scholar] [CrossRef] [Green Version]
- Bertermann, D.; Schwarz, H. Laboratory device to analyse the impact of soil properties on electrical and thermal conductivity. Int. Agrophys. 2017, 31, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.; Brenning, A.; Wehrhan, M.; Koszinski, S.; Sommer, M. Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precis. Agric. 2009, 10, 490–507. [Google Scholar] [CrossRef]
- Martinez, G.; Vanderlinden, K.; Ordonez, R.; Muriel, J.L. Can Apparent Electrical Conductivity Improve the Spatial Characterization of Soil Organic Carbon? Vadose Zone J. 2009, 8, 586–593. [Google Scholar] [CrossRef]
- Ayoubi, S.; Adman, V.; Yousefifard, M. Use of magnetic susceptibility to assess metals concentration in soils developed on a range of parent materials. Ecotox. Environ. Safe. 2019, 168, 138–145. [Google Scholar] [CrossRef]
- Grimley, D.A.; Arruda, N.K.; Bramstedt, M.W. Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA. Catena 2004, 58, 183–213. [Google Scholar] [CrossRef]
- Siqueira, D.S.; Marques, J.; Matias, S.S.R.; Barron, V.; Torrent, J.; Baffa, O.; Oliveira, L.C. Correlation of properties of Brazilian Haplustalfs with magnetic susceptibility measurements. Soil Use Manag. 2010, 26, 425–431. [Google Scholar] [CrossRef]
- Maher, B.A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeocl. 1998, 137, 25–54. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.G.; Yang, M.; Mao, R.Z.; Byrne, J.M. Impact of Long-Term Irrigation with Treated Sewage on Soil Magnetic Susceptibility and Organic Matter Content in North China. Bull. Environ. Contam. Tox. 2015, 95, 102–107. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L.; Balzarini, M.; Angelini, H. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil. Sci. 2013, 93, 205–218. [Google Scholar] [CrossRef]
- Molin, J.P.; de Castro, C.N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Sci. Agric. 2008, 65, 567–573. [Google Scholar] [CrossRef] [Green Version]
- De Caires, S.A.; Wuddivira, M.N.; Bekele, I. Spatial analysis for management zone delineation in a humid tropic cocoa plantation. Precis. Agric. 2015, 16, 129–147. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Li, F. Delineation of site-specific management zones based on temporal and spatial variability of soil electrical conductivity. Pedosphere 2007, 17, 156–164. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Spatial and Temporal Patterns of Apparent Electrical Conductivity: DUALEM vs. Veris Sensors for Monitoring Soil Properties. Sensors 2014, 14, 10024–10041. [Google Scholar] [CrossRef] [Green Version]
- De Souza Bahia, A.S.R.; Marques, J.; La Scala, N.; Cerri, C.E.P.; Camargo, L.A. Prediction and Mapping of Soil Attributes using Diffuse Reflectance Spectroscopy and Magnetic Susceptibility. Soil Sci. Soc. Am. J. 2017, 81, 1450–1462. [Google Scholar] [CrossRef]
- Wang, X.S. Magnetic properties and heavy metal pollution of soils in the vicinity of a cement plant, Xuzhou (China). J. Appl. Geophys. 2013, 98, 73–78. [Google Scholar] [CrossRef]
- Sarris, A.; Kokinou, E.; Aidona, E.; Kallithrakas-Kontos, N.; Koulouridakis, P.; Kakoulaki, G.; Droulia, K.; Damianovits, O. Environmental study for pollution in the area of Megalopolis power plant (Peloponnesos, Greece). Environ. Geol. 2009, 58, 1769–1783. [Google Scholar] [CrossRef]
- Tan, X.; Chang, S.X.; Kabzems, R. Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fert. Soils 2008, 44, 471–479. [Google Scholar] [CrossRef]
- Kristoffersen, A.O.; Riley, H. Effects of soil compaction and moisture regime on the root and shoot growth and phosphorus uptake of barley plants growing on soils with varying phosphorus status. Nutr. Cycl. Agroecosys. 2005, 72, 135–146. [Google Scholar] [CrossRef]
- Niedbała, G.; Nowakowski, K.; Rudowicz-Nawrocka, J.; Piekutowska, M.; Weres, J.; Tomczak, R.J.; Tyksiński, T.; Álvarez, P.A. Multicriteria Prediction and Simulation of Winter Wheat Yield Using Extended Qualitative and Quantitative Data Based on Artificial Neural Networks. Appl. Sci. 2019, 9, 2773. [Google Scholar] [CrossRef] [Green Version]
- Niedbała, G.; Piekutowska, M.; Weres, J.; Korzeniewicz, R.; Witaszek, K.; Adamski, M.; Pilarski, K.; Czechowska-Kosacka, A.; Krysztofiak-Kaniewska, A. Application of Artificial Neural Networks for Yield Modeling of Winter Rapeseed Based on Combined Quantitative and Qualitative Data. Agronomy 2019, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, P.X.; Liang, S.L.; Zhu, Y.C.; Khan, J.; Fang, S.B. Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Comput. Electron. Agric. 2020, 170. [Google Scholar] [CrossRef]
- Distribution, P.S. Particle size distribution and textural classes of soils and mineral materials-classification of Polish Society of Soil Science (2009) Annals of. Soil Sci. 2009, 60, 5–16. [Google Scholar]
- Faris, H.; Aljarah, I.; Mirjalili, S. Evolving radial basis function networks using moth-flame optimizer. In Handbook of Neural Computation; Academic Press: Cambridge, MA, USA, 2017; pp. 537–550. [Google Scholar] [CrossRef]
- Ahmadian, A.S. Numerical Modeling and Simulation. In Numerical Models for Submerged Breakwaters; Ahmadian, A.S., Ed.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 109–126. [Google Scholar]
- Hadzima-Nyarko, M.; Nyarko, E.K.; Moric, D. A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert Syst. Appl. 2011, 38, 13405–13413. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrie, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, S.; Maslakowski, M.; Tucholka, P. Determination of the correlation between the electrical resistivity of non-cohesive soils and the degree of compaction. J. Appl. Geophys. 2014, 110, 43–50. [Google Scholar] [CrossRef]
- Al-Gaadi, K. Employing Electromagnetic Induction Technique for the Assessment of Soil Compaction. Americ. J. Agric. Biol. Sci. 2012, 7, 425–434. [Google Scholar]
- Keskin, S.; Khalilian, A.; Han, Y.J.; Dodd, R. Variable-depth Tillage based on Geo-referenced Soil Compaction Data in Coastal Plain Soils. Int. J. Appl. Sci. Tech. 2011, 1, 22–32. [Google Scholar]
- Guo, Y.; Zhou, Y.; Zhou, L.Q.; Liu, T.; Wang, L.G.; Cheng, Y.Z.; He, J.; Zheng, G.Q. Using proximal sensor data for soil salinity management and mapping. J. Integr. Agric. 2019, 18, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.C.; Montanari, R.; Shiratsuchi, L.S.; Lovera, L.H.; Lima, E.D. Spatial dependence of electrical conductivity and chemical properties of the soil by electromagnetic induction. Rev. Bras. Cienc. Solo 2015, 39, 1112–1120. [Google Scholar] [CrossRef] [Green Version]
- Soderstrom, M.; Eriksson, J.; Isendahl, C.; Araujo, S.R.; Rebellato, L.; Schaan, D.P.; Stenborg, P. Using proximal soil sensors and fuzzy classification for mapping Amazonian Dark Earths. Agric. Food Sci. 2013, 22, 380–389. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Werban, U. Environmental significance of magnetic properties of Gley soils near Rosslau (Germany). Environ. Earth Sci. 2013, 69, 1719–1732. [Google Scholar] [CrossRef]
- Pentos, K.; Pieczarka, K.; Lejman, K. Application of Soft Computing Techniques for the Analysis of Tractive Properties of a Low-Power Agricultural Tractor under Various Soil Conditions. Complexity 2020, 2020. [Google Scholar] [CrossRef]
- Cieniawska, B.; Pentos, K.; Luczycka, D. Neural modeling and optimization of the coverage of the sprayed surface. Bull. Pol. Acad. Sci. Tech. 2020, 68, 601–608. [Google Scholar] [CrossRef]
- Khanbabakhani, E.; Torkashvand, A.M.; Mahmoodi, M.A. The possibility of preparing soil texture class map by artificial neural networks, inverse distance weighting, and geostatistical methods in Gavoshan dam basin, Kurdistan Province, Iran. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Donnelly, D.; Sutherland, L.; Miller, D.G.; Coull, M.C.; Black, H.I.J. Predicting Scottish topsoil organic matter content from colour and environmental factors. Eur. J. Soil Sci. 2015, 66, 112–120. [Google Scholar] [CrossRef]
- Tasan, S.; Demir, Y. Comparative Analysis of MLR, ANN, and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soils. Commun. Soil Sci. Plan. 2020, 51, 604–621. [Google Scholar] [CrossRef]
Texture | Diameter [mm] | Percentage |
---|---|---|
skeletans | >2 | 1.2 |
sand | 2–0.05 | 57.3 |
silt | 0.05–0.002 | 18.4 |
clay | <0.002 | 24.3 |
soil texture | Sandy clay loam (SCL) |
Measured quantities | 1: Apparent conductivity in millisiemens per meter (mS∙m−1) 2: In-phase ratio of the secondary to primary magnetic field in parts per thousand (ppt) |
Intercoil spacing | 1 and 0.5 m |
Operating frequency | 14.5 kHz |
Measuring range | Conductivity: 1000 mS∙m−1 In-phase: ± 28 ppt for 1 m separation In-phase: ± 7 ppt for 0.5 m separation |
Measurement resolution | ±0.1% of full scale |
Measurement accuracy | ±5% at 30 mS∙m−1 |
Noise levels | Conductivity: 0.5 mS∙m−1; in-phase: 0.02 ppt |
The Parameter | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
apparent soil electrical conductivity 0.5 m [mS∙m−1] | 0.39 | 15.23 | 5.10 | 3.05 |
magnetic susceptibility 0.5 m [-] | −0.11 | −0.01 | −0.09 | 0.02 |
apparent soil electrical conductivity 1 m [mS∙m−1] | 0.00 | 36.95 | 8.18 | 6.77 |
magnetic susceptibility 1 m [-] | −4.18 | 0.16 | −2.09 | 0.70 |
soil compaction (depth 0–0.1 m) [MPa] | 0.17 | 1.03 | 0.40 | 0.17 |
soil compaction (depth 0–0.2 m) [MPa] | 0.36 | 1.60 | 0.86 | 0.24 |
soil compaction (depth 0–0.3 m) [MPa] | 0.42 | 2.04 | 1.15 | 0.28 |
soil compaction (depth 0–0.4 m) [MPa] | 0.57 | 2.20 | 1.39 | 0.28 |
soil compaction (depth 0–0.5 m) [MPa] | 0.65 | 2.20 | 1.41 | 0.28 |
soil compaction (depth 0.1–0.2 m) [MPa] | 0.48 | 2.20 | 1.28 | 0.37 |
soil compaction (depth 0.2–0.3 m) [MPa] | 0.42 | 3.41 | 1.71 | 0.51 |
soil compaction (depth 0.3–0.4 m) [MPa] | 0.89 | 3.28 | 2.04 | 0.51 |
soil compaction (depth 0.4–0.5 m) [MPa] | 0.17 | 3.39 | 1.14 | 0.58 |
Input Parameters | Output Parameter | ANN Type | ANN Structure | R |
---|---|---|---|---|
ECa 0.5; MS 0.5; ECa 1; MS 1 | soil compaction (0–0.5 m) | MLP | 4-17-1 | 0.769 |
ECa 0.5; MS 0.5; ECa 1; MS 1 | soil compaction (0.4–0.5 m) | RBF | 4-14-1 | 0.826 |
ECa 0.5; MS 0.5 | soil compaction (0–0.5 m) | MLP | 2-20-1 | 0.877 |
ECa 0.5; MS 0.5 | soil compaction (0.4–0.5 m) | MLP | 2-19-1 | 0.846 |
ECa 0.5; MS 0.5 | soil compaction (0–0.4 m) | RBF | 2-17-1 | 0.700 |
ECa 0.5; MS 0.5 | soil compaction (0–0.3 m) | RBF | 2-24-1 | 0.446 |
ECa 0.5; MS 0.5 | soil compaction (0–0.2 m) | RBF | 2-10-1 | 0.521 |
ECa 0.5; MS 0.5 | soil compaction (0–0.1 m) | RBF | 2-20-1 | 0.615 |
ECa 0.5; MS 0.5 | soil compaction (0.3–0.4 m) | RBF | 2-33-1 | 0.662 |
ECa 0.5; MS 0.5 | soil compaction (0.2–0.3 m) | MLP | 2-12-1 | 0.594 |
ECa 0.5; MS 0.5 | soil compaction (0.1–0.2 m) | RBF | 2-36-1 | 0.476 |
ECa 0.5; EC 1 | soil compaction (0–0.5 m) | RBF | 2-27-1 | 0.759 |
ECa 0.5; EC 1 | soil compaction (0.4–0.5 m) | RBF | 2-11-1 | 0.732 |
ECa 0.5; EC 1 | soil compaction (0–0.4 m) | RBF | 2-28-1 | 0.656 |
ECa 0.5; EC 1 | soil compaction (0–0.3 m) | RBF | 2-21-1 | 0.517 |
ECa 0.5; EC 1 | soil compaction (0–0.2 m) | RBF | 2-15-1 | 0.433 |
ECa 0.5; EC 1 | soil compaction (0–0.1 m) | MLP | 2-16-1 | 0.501 |
ECa 0.5; EC 1 | soil compaction (0.3–0.4 m) | RBF | 2-21-1 | 0.648 |
ECa 0.5; EC 1 | soil compaction (0.2–0.3 m) | RBF | 2-27-1 | 0.470 |
ECa 0.5; EC 1 | soil compaction (0.1–0.2 m) | RBF | 2-12-1 | 0.471 |
MS 0.5; MS 1 | soil compaction (0–0.5 m) | RBF | 2-10-1 | 0.725 |
MS 0.5; MS 1 | soil compaction (0.4–0.5 m) | MLP | 2-39-1 | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pentoś, K.; Pieczarka, K.; Serwata, K. The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil. Agriculture 2021, 11, 114. https://doi.org/10.3390/agriculture11020114
Pentoś K, Pieczarka K, Serwata K. The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil. Agriculture. 2021; 11(2):114. https://doi.org/10.3390/agriculture11020114
Chicago/Turabian StylePentoś, Katarzyna, Krzysztof Pieczarka, and Kamil Serwata. 2021. "The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil" Agriculture 11, no. 2: 114. https://doi.org/10.3390/agriculture11020114
APA StylePentoś, K., Pieczarka, K., & Serwata, K. (2021). The Relationship between Soil Electrical Parameters and Compaction of Sandy Clay Loam Soil. Agriculture, 11(2), 114. https://doi.org/10.3390/agriculture11020114