Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. Experimental Device and Nutrient Media
2.3. Experimental Design
2.4. Plant and Medium Measurements
2.5. Data Analyses
3. Results
3.1. Plant P Response to Enriched Biological Assemblages in Low-P Sorbing Medium
3.2. Plant P Response to Enriched Biological Assemblages in High-P Sorbing Medium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Becquer, A.; Trap, J.; Irshad, U.; Ali, M.A.; Claude, P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front. Plant Sci. 2014, 5, 548. [Google Scholar] [CrossRef] [PubMed]
- Plassard, C.; Dell, B. Phosphorus nutrition of mycorrhizal trees. Tree Physiol. 2010, 30, 1129–1139. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Grønlund, M.; Smith, F.A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef]
- Plassard, C.; Louche, J.; Ali, M.A.; Duchemin, M.; Legname, E.; Cloutier-Hurteau, B. Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann. For. Sci. 2011, 68, 33–43. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Jilani, G.; Akhtar, M.S.; Naqvi, S.M.S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Gyaneshwar, P.; Kumar, G.N.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef]
- Clarholm, M. Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol. Biochem. 1985, 17, 181–187. [Google Scholar] [CrossRef]
- Trap, J.; Bonkowski, M.; Plassard, C.; Villenave, C.; Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 2016, 398, 1–24. [Google Scholar] [CrossRef]
- Irshad, U.; Villenave, C.; Brauman, A.; Plassard, C. Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings. Soil Biol. Biochem. 2011, 43, 2121–2126. [Google Scholar] [CrossRef]
- Ranoarisoa, M.P.; Trap, J.; Pablo, A.L.; Dezette, D.; Plassard, C. Micro-food web interactions involving bacteria, nematodes, and mycorrhiza enhance tree P nutrition in a high P-sorbing soil amended with phytate. Soil Biol. Biochem. 2020, 143, 107728. [Google Scholar] [CrossRef]
- Irshad, U.; Brauman, A.; Villenave, C.; Plassard, C. Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster. Plant Soil 2012, 358, 148–161. [Google Scholar] [CrossRef]
- Mezeli, M.M.; Page, S.; George, T.S.; Neilson, R.; Mead, A.; Blackwell, M.S.; Haygarth, P.M. Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biol. Biochem. 2020, 142, 107695. [Google Scholar] [CrossRef]
- Johnson, N.C. Can fertilization of soil select less mutualistic mycorrhizae? Bull. Ecol. Soc. Am. 1993, 3, 749–757. [Google Scholar] [CrossRef]
- Marmeisse, R.; Guidot, A.; Gay, G.; Lambilliotte, R.; Sentenac, H.; Combier, J.P.; Melayah, D.; Fraissinet-Tachet, L.; Debaud, J.C. Hebeloma cylindrosporum-a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol. 2004, 163, 481–498. [Google Scholar] [CrossRef]
- Becquer, A.; Torres-Aquino, M.; Le Guernevé, C.; Amenc, L.K.; Trives-Segura, C.; Staunton, S.; Quiquampoix, H.; Plassard, C. Establishing a symbiotic interface between cultured ectomycorrhizal fungi and plants to follow fungal phosphate metabolism. Bio-Protocol 2017, 7, e2577. [Google Scholar] [CrossRef]
- Morizet, J.; Mingeau, M. Influence des facteurs de milieu sur l’absorption hydrique. Etude effectuee sur tomate decapitee en exsudation. i. facteurs nutritionnels. Ann. Agron. 1976, 27, 183–205. [Google Scholar]
- Casarin, V.; Plassard, C.; Souche, G.; Arvieu, J.C. Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 2003, 23, 461–469. [Google Scholar] [CrossRef][Green Version]
- Aquino, M.; Plassard, C. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol. Ecol. 2004, 48, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Zibilske, L.M. Determination of low concentration of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 1991, 55, 892–895. [Google Scholar] [CrossRef]
- Team, R.C. RStudio: Integrated Development for R. 2016. Available online: https://rstudio.com/products/rstudio (accessed on 20 November 2015).
- Velásquez, E.; Lavelle, P.; Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 2007, 39, 3066–3080. [Google Scholar] [CrossRef]
- Naeem, S.; Loreau, M.; Inchausti, P. Biodiversity and ecosytsem functioning: The emergence of a synthetic ecological framework. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Loreau, S.M., Naeem, P., Eds.; Inchausti. Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Louche, J.; Ali, M.A.; Cloutier-Hurteau, B.; Sauvage, F.X.; Quiquampoix, H.; Plassard, C. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol. 2010, 73, 323–335. [Google Scholar] [CrossRef]
- Devau, N.; Le Cadre, E.; Hinsinger, P.; Jaillard, B.; Gérard, F. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Appl. Geochem. 2009, 24, 2163–2174. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Raffaelli, D.; Schmid, B.; Tilman, D.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed]
Experiments * | A | B | C | D | E | F |
---|---|---|---|---|---|---|
Medium | ||||||
Type | Agarose | Agarose | Agarose | Soil # | Soil # | Soil # |
Volume | 70 mL | 70 mL | 70 mL | 30 g | 30 g | 30 g |
Phosphorus | ||||||
Source | Absent | NaH2PO4 | Phytate | Absent | NaH2PO4 | Phytate |
Rate (per dish) | / | 6.5 mg-P | 9.3 mg-P | / | 6.5 mg-P | 9.3 mg-P |
Duration (d) | 45 | 45 | 45 | 100 | 100 | 100 |
Sample size | 6 | 5 | 5 | 6 | 6 | 6 |
Terms | Coefficients | |||
---|---|---|---|---|
Estimate | Std. Error | t-Value | Pr(>|t|) | |
Experiment B | −0.03 | 0.174 | −0.16 | 0.871 |
Experiment C | −0.12 | 0.102 | −1.17 | 0.243 |
Experiment D | −0.07 | 0.097 | −0.67 | 0.504 |
Experiment E | −0.18 | 0.098 | −1.80 | 0.074 |
Experiment F | −0.33 | 0.097 | −3.37 | 0.001 |
Mycorhiza (M) | 0.11 | 0.069 | 1.56 | 0.120 |
Nematode (N) | 0.02 | 0.084 | 0.25 | 0.807 |
Bacteria (Ba) | 0.01 | 0.084 | 0.13 | 0.900 |
Experiment B:M | −0.20 | 0.110 | −1.79 | 0.076 |
Experiment C:M | −0.18 | 0.102 | −1.80 | 0.074 |
Experiment D:M | 0.04 | 0.097 | 0.43 | 0.669 |
Experiment E:M | −0.28 | 0.099 | −2.81 | 0.005 |
Experiment F:M | 0.12 | 0.096 | 1.23 | 0.219 |
Experiment B:N | 0.03 | 0.147 | 0.23 | 0.816 |
Experiment C:N | 0.31 | 0.125 | 2.45 | 0.015 |
Experiment D:N | 0.03 | 0.119 | 0.29 | 0.776 |
Experiment E:N | 0.38 | 0.122 | 3.13 | 0.002 |
Experiment F:N | 0.31 | 0.117 | 2.68 | 0.008 |
Experiment B:Ba | 0.09 | 0.120 | 0.75 | 0.452 |
Experiment C:Ba | −0.01 | 0.125 | −0.09 | 0.930 |
Experiment D:Ba | 0.05 | 0.119 | 0.39 | 0.699 |
Experiment E:Ba | 0.01 | 0.119 | 0.07 | 0.945 |
Experiment F:Ba | 0.14 | 0.119 | 1.15 | 0.252 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trap, J.; Ranoarisoa, P.M.; Irshad, U.; Plassard, C. Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility. Agriculture 2021, 11, 157. https://doi.org/10.3390/agriculture11020157
Trap J, Ranoarisoa PM, Irshad U, Plassard C. Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility. Agriculture. 2021; 11(2):157. https://doi.org/10.3390/agriculture11020157
Chicago/Turabian StyleTrap, Jean, Patricia Mahafaka Ranoarisoa, Usman Irshad, and Claude Plassard. 2021. "Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility" Agriculture 11, no. 2: 157. https://doi.org/10.3390/agriculture11020157
APA StyleTrap, J., Ranoarisoa, P. M., Irshad, U., & Plassard, C. (2021). Richness of Rhizosphere Organisms Affects Plant P Nutrition According to P Source and Mobility. Agriculture, 11(2), 157. https://doi.org/10.3390/agriculture11020157