Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background, Period, and Location
2.2. Selection of Original Fine Merino Genetic Nucleus’ Animals
2.3. Fine Merino Genetic Nucleus: Genetic Selection
2.4. Fine Merino Genetic Nucleus: Nutrition and Animal Management
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Effects of Sex of Individual on Wool and Growth Traits
3.2. Effects of Birth-Rearing Rank on Wool and Growth Traits
3.3. Effects of Age of Dam on Wool and Growth Traits
3.4. Wool and Growth Traits Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardellino, R.C.; Salgado, C.; Azzarini, M. La producción ovina y lanera en Uruguay. In Proceedings of the IV Congreso Mundial del Merino, Montevideo, Uruguay, 20–22 April 1994; Azzarini, M., Cardellino, R.C., Eds.; Talleres gráficos de El Pais S.A. pp. 37–52. [Google Scholar]
- Cardellino, R.C.; Salgado, C. Wool production and marketing in South America. Wool Technol. Sheep Breed. 1990, 38, 13–20. [Google Scholar]
- Champion, S.C.; Fearne, A.P. Alternative marketing systems for the apparel wool textile supply chain: Filling the communication vacuum. Int. Food Agribus. Manag. Rev. 2001, 4, 237–256. [Google Scholar] [CrossRef]
- Trewin, D. Year Book Australia, 84th ed.; Australian Bureau of Statistics Canberra ABS: Belconnen, Australia, 2002; pp. 477–479.
- Banks, R.; Brown, D. Genetic improvement in the Australasian Merino: Management of a diverse gene pool for changing markets. Anim. Genet. Resour. Inf. 2009, 45, 29–36. [Google Scholar] [CrossRef]
- Wool Industry–National RD and E Strategy 2018–2022; Australian Wool Innovation Ltd.: London, UK, 2018; pp. 1–70. Available online: https://www.wool.com (accessed on 15 May 2020).
- Pattinson, R.; Wilcox, C.H.; Williams, S.; Curtis, K. Wool Industry and Future Opportunities; Department of Primary Industry: Perth, Australia, 2015; pp. 1–69. Available online: https://www.dpi.nsw.gov.au/ (accessed on 20 May 2020).
- Economic Analysis of Sheep Production Systems; Hassall and Associates Pty Ltd. (Ed.) Meat and Livestock Australia Limited: Sydney, Australia, 2004; pp. 1–28. Available online: https://www.mla.com.au (accessed on 20 May 2020).
- Nolan, E.; Farrell, T.; Ryan, M.; Gibbon, C.; Ahmadi-Esfahani, F.Z. Valuing quality attributes of Australian Merino wool. Aust. J. Agric. Res. Econ. 2013, 58, 314–335. [Google Scholar] [CrossRef] [Green Version]
- Cardellino, R.; Wilcox, C.; Trifoglio, J.L. El Mercado de la Lana y su Efecto en la Producción Ovina Uruguaya. 2018, pp. 22–24. Available online: http://actualidadagropecuaria.com.uy (accessed on 20 May 2020).
- Montossi, F.; De Barbieri, I.; Ciappesoni, G.; de Mattos, D.; Mederos, A.; Luzardo, S.; Soares de Lima, J.M.; de los Campos, G.; Nolla, M.; Julián, R.S.; et al. Los Productos Logrados en los Primeros 8 Años (1998–2006) de Existencia del Proyecto Merino Fino del Uruguay: Una Visión con Perspectiva Histórica. In Proyecto Merino Fino del Uruguay: Una Visión con Perspectiva Histórica; Boletín de Divulgación INIA 90; Montossi, F., De Barbieri, I., Eds.; Unidad de Comunicación y Transferencia de Tecnología: Montevideo, Uruguay, 2007; pp. 17–36. [Google Scholar]
- Montossi, F.; De Barbieri, I.; Ciappesoni, G.; Ravagnolo, O.; De Mattos, D.; Pérez Jones, J.; Soares de Lima, M. Núcleo fundacional de Merino fino y superfino de la unidad experimental Glenoce–INIA Uruguay: Una experiencia innovadora de mejoramiento genético asociativo y participativo. Agrociencia 2005, 9, 609–616. [Google Scholar]
- Montossi, F.; De Barbieri, I.; Ciappesoni, G.; Ramos, Z.; Donagaray, F.; Silva, J.; Fros, A.; Perez, J.; Dutra, F.; Soares de Lima, M.J.; et al. Avances y productos obtenidos. In Alternativas Tecnológicas Para Sistemas Ganaderos del Basalto; Serie Técnica INIA, 217; Berretta, E., Montossi, F., Brito, G., Eds.; Unidad de Comunicación y Transferencia de Tecnología: Montevideo, Uruguay, 2014; pp. 385–404. [Google Scholar]
- Berretta, E. Principales características climáticas y edáficas de la región de basalto en Uruguay. In Seminario de Actualización en Tecnologías para Basalto; Serie Técnica INIA, 102; Berretta, E., Ed.; Unidad de Comunicación y Transferencia de Tecnología: Montevideo, Uruguay, 1998; pp. 3–10. [Google Scholar]
- Berretta, E.; Risso, D.; Montossi, F.; Pigurina, G. Campos in Uruguay. Grassland Ecophysiol. Grazing Ecol. 2000, 377–394. [Google Scholar] [CrossRef]
- Visual Sheep Scores; Australian Wool Innovation Ltd.: Sydney, Australia, 2013; pp. 1–57. Available online: https://www.wool.com (accessed on 21 April 2020).
- Consideraciones y Aspectos Prácticos a Tener en Cuenta al Definir los Vientres de Reposición. Manual Práctico de Producción Ovina; Secretariado Uruguayo de la Lana (SUL): Montevideo, Uruguay, 2018; pp. 220–222.
- Ciappesoni, G.; Goldberg, V.; Gimeno, D. Estimates of genetic parameters for worm resistance, wool, and growth traits in Merino sheep of Uruguay. Livest. Sci. 2013, 157, 65–74. [Google Scholar] [CrossRef]
- Ciappesoni, G. ¿Cómo elegir un carnero? Entendiendo la información genética disponible. Revista INIA 2014, 39, 23–27. [Google Scholar]
- Ciappesoni, G.; Gimeno, D.; Coronel, F. Nuevos Índices de selección Merino: La genética en dólares. Revista SUL 2012, 161, 24. [Google Scholar]
- Ramos, Z.; Montossi, F. Alternativas tecnológicas para aumentar la supervivencia de corderos: Control Integrado de Parición en Ovinos. Revista INIA 2014, 38, 11–15. [Google Scholar]
- Sheep Standards and Guidelines Writing Group. Sheep Standards and Guidelines–Tail Docking. 2013, pp. 1–17. Available online: http://www.animalwelfarestandards.net.au/ (accessed on 20 April 2020).
- Langlands, P.; Wheeler, L. The dyebanding and tattooed parch procedures for estimating wool production and obtaining samples for the measurements of fibre diameter. Anim. Prod. Sci. 1968, 8, 265–269. [Google Scholar] [CrossRef]
- Ramos, Z.; De Barbieri, I.; Van Lier, E.; Montossi, F. Body and wool growth of lambs grazing on native pastures can be improved with energy and protein supplementation. Small. Rumin. Res. 2019, 171, 92–98. [Google Scholar] [CrossRef]
- Abella, I.; Cardellino, R.C.; Mueller, J.; Cardellino, R.A.; Benítez, D.; Lira, R. South American Sheep and Wool Industries. In International Sheep and Wool Handbook; Cottle, D.J., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 85–94. [Google Scholar]
- Swan, A.A.; Purvis, I.W. Genetic progress in the T13 Merino breeding program. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Noosa, Australia, 25–28 September 2005; pp. 165–168. [Google Scholar]
- Greeff, J.C.; Cox, G. Genetic changes generated within the Katanning Merino Resource flocks. Aust. J. Exp. Agric. 2006, 46, 803–808. [Google Scholar] [CrossRef]
- Taylor, P.; Bird-Gardiner, T.; Mortimer, S.; Atkins, K. Selection Indexes Work for All Merino Strains and Breeding Objectives; Department of Primary Industry: Perth, Australia, 2007. Available online: https://www.dpi.nsw.gov.au (accessed on 1 October 2020).
- Taylor, P.; Mortimer, S.; Bird-Gardiner, T.; Atkins, K. Merino Breeding Objectives and Selection Indexes to Increase Wool Profit; Department of Primary Industry: Perth, Australia, 2007. Available online: https://www.dpi.nsw.gov.au (accessed on 1 October 2020).
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. Sensitivity of response of multi-trait index selection to changes in genetic correlations between production traits in sheep. Aust. J. Exp. Agric. 2006, 46, 283–290. [Google Scholar] [CrossRef]
- Buffa, I.; Soares de Lima, J.M.; Carrquiry, E. Mejora en la Competitividad en la Región de Basalto; Octava Jornada de Distribución de Reproductores CRILU: Tacuarembó, Uruguay, 2017; Available online: http://www.inia.uy (accessed on 20 September 2020).
- Hazel, L.N.; Dickerson, G.E.; Freeman, A.E. The selection index then, now, and for the future. J. Dairy. Sci. 1994, 77, 3236–3251. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Van der Werf, J.H.J. Multiple Trait Selection. 2009. Available online: https://www.woolwise.com (accessed on 10 October 2020).
- Masters, D.G.; Ferguson, M.B. A review of the physiological changes associated with genetic improvement in clean fleece production. Small Rumin. Res. 2019, 170, 62–73. [Google Scholar] [CrossRef]
- Fogarty, N.M.; Safari, E.; Gilmour, A.R.; Ingham, V.M.; Atkins, K.D.; Mortimer, S.I.; Swan, A.A.; Brien, F.D.; Greeff, J.C.; van der Werf, J.H.J. Wool and meat genetics–The joint possibilities. Int. J. Sheep Wool Sci. 2006, 54, 22–27. [Google Scholar]
- Mortimer, S.I.; Hatcher, S.; Fogarty, N.M.; Van Der Werf, J.H.J.; Brown, D.J.; Swan, A.A.; Greeff, J.C.; Refshauge, G.; Edwards, J.H.; Gaunt, G.M. Genetic parameters for wool traits, live weight, and ultrasound carcass traits in Merino sheep. J. Anim. Sci. 2017, 95, 1879–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greeff, J.; Kinghorn, B.P.; Brown, D. Breeding and selection. In International Sheep and Wool Handbook; Cottle, D.J., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 165–188. [Google Scholar]
- McGregor, B.A.; Butler, K.L. Coarser wool is not a necessary consequence of sheep aging: Allometric relationship between fibre diameter and fleece-free liveweight of Saxon Merino sheep. Animal 2016, 10, 2051–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, B.A. Influence of stocking rate and mixed grazing of Angora goats and Merino sheep on animal and pasture production in southern Australia. 3. Mohair and wool production and quality. Anim. Prod. Sci. 2010, 50, 168–176. [Google Scholar] [CrossRef]
- Khan, M.J.; Abbas, A.; Ayaz, M.; Naeem, M.; Akhter, M.S.; Soomro, M.H. Factors affecting wool quality and quantity in sheep. Afr. J. Biotechnol. 2012, 11, 13761–13766. [Google Scholar] [CrossRef]
- Rather, M.A.; Shanaz, S.; Ganai, N.A.; Bukhari, S.; Hamadani, A.; Khan, N.N.; Yousuf, S.; Baba, A.; Raja, T.A.; Khan, H.M. Genetic evaluation of wool traits of Kashmir Merino sheep in organized farms. Small Rumin. Res. 2019, 177, 14–17. [Google Scholar] [CrossRef]
- Nazari-Zonouz, F.; Moghaddam, G.; Rafat, S.A.; Abdi, Z.; Etemad Gorgan, K.; Nabavi, R. The effect of prepubertal castration on wool diameter and blood testosterone in ghezel breed. Iran. J. Appl. Anim. Sci. 2018, 8, 635–639. [Google Scholar]
- Kenyon, P.R.; Blair, H.T. Foetal programming in sheep–effects on production. Small Rumin. Res. 2014, 118, 16–30. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R.; Atkins, K.D.; Mortimer, S.I.; Swan, A.A.; Brien, F.D.; Greeff, J.C.; Van der Werf, J.H.J. Across population genetic parameters for wool, growth, and reproduction traits in Australian Merino sheep. 1. Data structure and non-genetic effects. Aust. J. Agric. Res. 2007, 58, 169–175. [Google Scholar] [CrossRef]
- Ciappesoni, G.; Gimeno, D.; Coronel, F. Progreso genético logrado en las evaluaciones ovinas del Uruguay. Arch. Latinoam. Prod. Anim. 2014, 22, 73–80. [Google Scholar]
- Eltawil, E.A. Genetic and Environmental Factors of Sheep Under Arid Conditions. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1965. [Google Scholar]
- Thompson, A.N.; Ferguson, M.B.; Gordon, D.J.; Kearney, G.A.; Oldham, C.M.; Paganoni, B.L. Improving the nutrition of Merino ewes during pregnancy increases the fleece weight and reduces the fibre diameter of their progeny’s wool during their lifetime and these effects can be predicted from the ewe’s liveweight profile. Anim. Prod. Sci. 2011, 51, 794–804. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.W.; Greeff, J.C.; Macleod, I. Lifetime changes in wool production of Merino sheep following differential feeding in fetal and early life. Aust. J. Agric. Res. 2006, 57, 867–876. [Google Scholar] [CrossRef]
- Wuliji, T.; Dodds, K.G.; Land, J.T.J.; Andrews, R.N.; Turner, P.R. Response to selection for ultrafine Merino sheep in New Zealand: Wool production and wool characteristics of ultrafine fibre diameter selected and control Merino yearlings. Livest. Prod. Sci. 1999, 58, 33–44. [Google Scholar] [CrossRef]
- Thompson, A.; Young, J. Improving the Reproductive Performance of Ewe Lambs–Management Guidelines, Economic Analysis, and Decision Support Tools; Meat and Livestock Australia Limited: Sydne, Australia, 2018; pp. 1–42. Available online: https://www.mla.com.au (accessed on 10 July 2020).
- McGregor, B.A.; De Graaf, S.P.; Hatcher, S. On-farm factors affecting physical quality of Merino wool. 1. Nutrition, reproduction, health and management. Small. Rumin. Res. 2016, 137, 138–150. [Google Scholar] [CrossRef]
- Lewis, R.M.; Beatson, P.R. Choosing maternal-effect models to estimate (co) variances for live and fleece weight in New Zealand Coopworth sheep. Livest. Prod. Sci. 1999, 58, 137–150. [Google Scholar] [CrossRef]
- Di, J.; Zhang, Y.; Tian, K.C.; Liu, J.F.; Xu, X.M.; Zhang, Y.J.; Zhang, T.H. Estimation of (co) variance components and genetic parameters for growth and wool traits of Chinese superfine merino sheep with the use of a multi-trait animal model. Livest. Sci. 2011, 138, 278–288. [Google Scholar] [CrossRef]
- Geenty, K.G. Lactation and lamb growth. In International Sheep and Wool Handbook; Cottle, D.J., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 259–276. [Google Scholar]
- Schanbacher, B.D.; Crouse, J.D.; Ferrell, C.L. Testosterone influences on growth, performance, carcass characteristics and composition of young market lambs. J. Anim. Sci. 1980, 51, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.B.; Al-Obaidi, A.S.; Omar, C.A. Some carcass traits and meat chemical characteristics of karadi lambs injected with testosterone enanthate. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 1–8. [Google Scholar] [CrossRef]
- Rowe, J.B. The Australian sheep industry–undergoing transformation. Anim. Prod. Sci. 2010, 50, 991–997. [Google Scholar] [CrossRef]
- Greeff, J.C.; Safari, E.; Fogarty, N.M.; Hopkins, D.L.; Brien, F.D.; Atkins, K.D.; Mortimer, S.I.; Van Der Werf, J.H.J. Genetic parameters for carcass and meat quality traits and their relationships to liveweight and wool production in hogget Merino rams. J. Anim. Breed. Genet. 2008, 125, 205–215. [Google Scholar] [CrossRef]
- Romdhani, S.B.; Djemali, M. Estimation of sheep carcass traits by ultrasound technology. Livest. Sci. 2006, 101, 294–299. [Google Scholar] [CrossRef]
- Daniel, Z.C.T.R.; Brameld, J.M.; Craigon, J.; Scollan, N.D.; Buttery, P.J. Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition. J. Anim. Sci. 2007, 85, 1565–1576. [Google Scholar] [CrossRef]
- Moffatt, C. Can lambs compensate for less milk by grazing more often. In Proceedings of the New Zealand Grassland Association Conference, West Coast, New Zealand, 1 June 2002; pp. 103–106. [Google Scholar] [CrossRef]
- McCoard, S.A.; Koolaard, J.; Charteris, A.; Luo, D. Effect of Twinning and Sex on Carcass Weight and Composition in Lambs; New Zealand Society of Animal Production: Palmerton North, New Zealand, 2010; pp. 133–136. [Google Scholar]
- Symonds, M.E.; Pearce, S.; Bispham, J.; Gardner, D.S.; Stephenson, T. Timing of nutrient restriction and programming of fetal adipose tissue and development. Proc. Nutr. Soc. 2004, 63, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, M.F.P.; Paten, A.M.; Asmad, K.; Pain, S.J.; Kenyon, P.R.; Pomroy, W.E.; Scott, I.; Blair, H.T. Brief Communication: The effect of dam age and lamb birth rank on the growth rate, faecal egg count and onset of puberty of single and twin female offspring to 12 months of age. In Proceedings of the New Zealand Society of Animal Production, Invercargill, New Zealand, 29 June–1 July 2011; pp. 83–85. [Google Scholar]
Phase | Year | N° of Ewes 1 | Replacement Ewe Hoggets (%) 2 | No of Sires 3 | ||
---|---|---|---|---|---|---|
Imp. 4 | Nucleus 5 | Nat. 6 | ||||
Establishment | 1999 | 456 | - | 6 | - | 3 |
2000 | 434 | - | 6 | - | 2 | |
2001 | 488 | 28 | 6 | 2 | - | |
FMP | 2002 | 484 | 18 | 8 | 5 | - |
2003 | 465 | 20 | 8 | 5 | - | |
2004 | 460 | 18 | 4 | 6 | - | |
2005 | 478 | 25 | 3 | 6 | - | |
2006 | 394 | 31 | 6 | 7 | - | |
2007 | 392 | 31 | 2 | 7 | - | |
2008 | 362 | 35 | 3 | 7 | - | |
2009 | 409 | 29 | 3 | 5 | - | |
2010 | 477 | 27 | 1 | 6 | - | |
CRILU | 2011 | 403 | 21 | 1 | 6 | - |
2012 | 398 | 27 | 1 | 6 | - | |
2013 | 382 | 29 | 2 | 6 | - | |
2014 | 327 | 27 | 2 | 9 | - | |
2015 | 358 | 25 | 4 | 5 | - | |
2016 | 349 | 17 | - | 6 | - | |
2017 | 319 | 20 | 2 | 8 | - | |
2018 | 369 | 33 | 3 | 9 | - |
Traits | Age (Months) | Time |
---|---|---|
Wool traits | ||
Fiber diameter (FD, µm) | 12 | Shearing (Sept–Oct) |
Greasy fleece weight (GFW, kg) | ||
Coefficient of variation of FD (CVfd, %) | ||
Staple length (SL, cm) | ||
Scoured yield (SY, %) | ||
Growth traits | ||
Live weight (LW, kg) | 13 | Post-shearing (Sept–Oct) |
Eye muscle area (EMA, cm2) | ||
Fat thickness (FAT, mm) |
Traits | Mean | Min 1 | Max 2 | SD 3 | n 4 |
---|---|---|---|---|---|
Wool traits | |||||
Fiber diameter (FD, µm) | 15.8 | 12.4 | 21.2 | 1.5 | 5361 |
Greasy fleece weight (GFW, kg) | 3.1 | 1.2 | 6.2 | 0.9 | 5367 |
Coef. of variation of FD (CVfd, %) | 17.6 | 11.3 | 24.6 | 2.2 | 5052 |
Staple length (SL, cm) | 8.4 | 3.5 | 14.0 | 1.8 | 5405 |
Scoured yield (SY, %) | 75.5 | 61.7 | 88.7 | 4.5 | 5390 |
Growth traits | |||||
Live weight post-shearing (LW, kg) | 45.0 | 18.5 | 75.5 | 10.5 | 5402 |
Eye muscle area (EMA, cm2) | 10.0 | 3.7 | 17.2 | 2.6 | 2042 |
Fat thickness (FAT, mm) | 2.8 | 1.0 | 6.0 | 0.9 | 2019 |
Phase | Year | Fibre Diameter (µm) | Greasy Fleece Weight (kg) | Live Weight (kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | S.D 1 | N 2 | Mean | S.D 1 | n 2 | Mean | S.D 1 | n 2 | ||
Establishment | 1999 | 17.9 | 1.2 | 328 | 3.1 | 0.5 | 327 | 40.1 | 6.7 | 332 |
2000 | 17.4 | 1.2 | 242 | 2.3 | 0.4 | 247 | 40.9 | 8.4 | 248 | |
2001 | 18.2 | 1.2 | 207 | 2.8 | 0.6 | 219 | 47.3 | 10.3 | 219 | |
FMP | 2002 | 18.9 | 1.1 | 160 | 3.4 | 0.7 | 178 | 53.3 | 10.2 | 186 |
2003 | 16.6 | 1.1 | 334 | 2.2 | 0.4 | 334 | 48.3 | 9.5 | 329 | |
2004 | 15.9 | 1.2 | 286 | 1.9 | 0.3 | 290 | 43.1 | 6.2 | 292 | |
2005 | 16.0 | 1.2 | 344 | 2.6 | 0.5 | 345 | 42.6 | 7.2 | 345 | |
2006 | 15.4 | 1.1 | 309 | 2.8 | 0.6 | 309 | 41.1 | 7.8 | 298 | |
2007 | 15.5 | 1.0 | 256 | 3.0 | 0.5 | 256 | 44.0 | 10.1 | 254 | |
2008 | 15.3 | 1.1 | 306 | 3.2 | 0.7 | 300 | 42.2 | 7.9 | 309 | |
2009 | 14.4 | 0.9 | 269 | 2.5 | 0.5 | 270 | 40.1 | 8.2 | 269 | |
2010 | 15.6 | 1.0 | 303 | 3.9 | 0.7 | 295 | 51.0 | 10.8 | 304 | |
CRILU | 2011 | 15.1 | 1.0 | 364 | 3.6 | 0.9 | 344 | 46.0 | 13.2 | 368 |
2012 | 15.6 | 1.0 | 268 | 4.1 | 0.8 | 266 | 48.8 | 10.3 | 268 | |
2013 | 14.8 | 1.0 | 279 | 3.2 | 0.7 | 281 | 41.3 | 11.7 | 282 | |
2014 | 15.0 | 0.8 | 151 | 3.1 | 0.5 | 150 | 43.9 | 7.7 | 151 | |
2015 | 14.6 | 0.8 | 196 | 3.2 | 0.6 | 197 | 45.2 | 12.6 | 196 | |
2016 | 15.1 | 1.0 | 243 | 3.7 | 0.8 | 246 | 49.6 | 12.9 | 243 | |
2017 | 15.3 | 0.9 | 231 | 3.7 | 0.8 | 230 | 46.2 | 11.6 | 229 | |
2018 | 15.0 | 0.9 | 285 | 4.2 | 0.7 | 283 | 48.4 | 10.4 | 280 |
Traits | Sex of the Lamb | SEM | Birth-Rearing Rank 1 | SEM | Dam Age (Years) | SEM | Interactions | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | S/S | M/S | M/M | 2 | 3 to 6 | ≥7 | Y/S 2 | BRR/S 3 | |||||
Fibre diameter (FD, µm) | 16.1 a | 15.6 b | 0.05 | 15.9 | 15.8 | 15.9 | 0.06 | 15.6 c | 15.9 b | 16.1 a | 0.05 | * | NS | |
Greasy fleece weight (GFW, kg) | 3.3 a | 2.6 b | 0.02 | 3.2 a | 2.9 b | 2.8 c | 0.03 | 2.9 b | 3.0 a | 3.0 ab | 0.02 | * | * | |
Coef. of variation of FD (CVfd, %) | 17.8 a | 17.5 b | 0.08 | 17.4 b | 17.6 b | 17.9 a | 0.10 | 17.5 b | 17.6 b | 17.9 a | 0.09 | * | NS | |
Staple length (SL, cm) | 8.5 a | 8.3 b | 0.05 | 8.4 | 8.5 | 8.4 | 0.06 | 8.7 a | 8.3 b | 8.3 b | 0.06 | * | NS | |
Scoured yield (SY, %) | 74.3 b | 75.8 a | 0.17 | 75.5 a | 75.0 b | 74.6 b | 0.20 | 75.3 a | 75.4 a | 74.4 b | 0.19 | * | NS | |
Live weight post shearing (LW, kg) | 52.5 a | 36.4 b | 0.22 | 46.0 a | 44.5 b | 43.0 c | 0.27 | 43.4 b | 44.8 a | 45.3 a | 0.26 | NS | * | |
Eye muscle area (EMA, cm2) | 11.9 a | 8.1 b | 0.09 | 10.1 a | 10.2 a | 9.9 b | 0.10 | 9.9 b | 10.0 b | 10.3 a | 0.10 | NS | * | |
Eye muscle area (EMA, cm2)LW | 10.7 a | 9.6 b | 0.13 | 10.0 b | 10.1 b | 10.2 a | 0.10 | 10.1 ab | 10.1 b | 10.3 a | 0.09 | * | NS | |
Fat thickness (FAT, mm) | 3.2 a | 2.2 b | 0.05 | 2.8 a | 2.7 b | 2.7 b | 0.05 | 2.6 | 2.7 | 2.7 | 0.05 | * | * | |
Fat thickness (FAT, mm)LW | 2.7 | 2.8 | 0.07 | 2.7 | 2.7 | 2.8 | 0.05 | 2.7 | 2.7 | 2.8 | 0.05 | * | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, Z.; Blair, H.T.; De Barbieri, I.; Ciappesoni, G.; Montossi, F.; Kenyon, P.R. Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs. Agriculture 2021, 11, 179. https://doi.org/10.3390/agriculture11020179
Ramos Z, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs. Agriculture. 2021; 11(2):179. https://doi.org/10.3390/agriculture11020179
Chicago/Turabian StyleRamos, Zully, Hugh Thomas Blair, Ignacio De Barbieri, Gabriel Ciappesoni, Fabio Montossi, and Paul Richard Kenyon. 2021. "Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs" Agriculture 11, no. 2: 179. https://doi.org/10.3390/agriculture11020179
APA StyleRamos, Z., Blair, H. T., De Barbieri, I., Ciappesoni, G., Montossi, F., & Kenyon, P. R. (2021). Phenotypic Responses to Selection for Ultrafine Wool in Uruguayan Yearling Lambs. Agriculture, 11(2), 179. https://doi.org/10.3390/agriculture11020179