Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature
Abstract
:1. Introduction
2. Material and Methods
2.1. Birds, Experimental Design and Husbandry
2.2. Growth Effieciency
2.3. Carcass Traits
2.4. Blood Parameters and Lipid Peroxidation
2.5. Assessments of Antioxidant Status
2.6. Muscle Amino Acids Profile
2.7. Data Analysis
3. Results
3.1. Growth Effeicienc
3.2. Carcass Traits
3.3. Blood Parameters and Lipid Peroxidation
3.4. Muscle Amino Acids Profile
4. Discussion
4.1. Growth Performance
4.2. Carcass Traits
4.3. Blood Parameters and Lipid Peroxidation
4.4. Muscle Amino Acids Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalerao, S.; Hegde, M.; Katyare, S.; Kadam, S. Promotion of omega-3 chicken meat production: An Indian perspective. World’s Poult. Sci. J. 2014, 70, 365–374. [Google Scholar] [CrossRef]
- Macelline, S.P.; Wickramasuriya, S.S.; Cho, H.M.; Kim, E.; Shin, T.K.; Hong, J.S.; Kim, J.C.; Pluske, J.R.; Choi, H.J.; Hong, Y.G.; et al. Broilers fed a low protein diet supplemented with synthetic amino acids maintained growth performance and retained intestinal integrity while reducing nitrogen excretion when raised under poor sanitary conditions. Poult. Sci. 2020, 99, 949–958. [Google Scholar] [CrossRef]
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–86. [Google Scholar] [CrossRef]
- Saleh, A.A.; Eltantawy, M.S.; Gawish, E.M.; Younis, H.H.; Amber, K.A.; El-Moneim, A.E.-M.E.A.; Ebeid, T.A. Impact of Dietary Organic Mineral Supplementation on Reproductive Performance, Egg Quality Characteristics, Lipid Oxidation, Ovarian Follicular Development, and Immune Response in Laying Hens Under High Ambient Temperature. Biol. Trace Element Res. 2019, 195, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Hayashi, K.; Ijiri, D.; Ohtsuka, A. Effect of feedingAspergillus awamoriand canola seed on the growth performance and muscle fatty acid profile in broiler chicken. Anim. Sci. J. 2015, 86, 305–311. [Google Scholar] [CrossRef]
- Corzo, A.; Loar, I.R.E.; Kidd, M.T. Limitations of dietary isoleucine and valine in broiler chick diets. Poult. Sci. 2009, 88, 1934–1938. [Google Scholar] [CrossRef]
- Van Harn, J.; Dijkslag, M.; Van Krimpen, M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Cabel, M.C.; Waldroup, P.W. Effect of Dietary Protein Level and Length of Feeding on Performance and Abdominal Fat Content of Broiler Chickens. Poult. Sci. 1991, 70, 1550–1558. [Google Scholar] [CrossRef]
- Awad, E.; Zulkifli, I.; Soleimani, A.; Law, F.; Ramiah, S.; Mohamed-Yousif, I.; Hussein, E.; Khalil, E. Response of broilers to reduced-protein diets under heat stress conditions. World’s Poult. Sci. J. 2019, 75, 583–598. [Google Scholar] [CrossRef]
- Neto, M.G.; Pesti, G.M.; Bakalli, R.I. Influence of dietary protein level on the broiler chicken’s response to methionine and betaine supplements. Poult. Sci. 2000, 79, 1478–1484. [Google Scholar] [CrossRef]
- Namroud, N.F.; Shivazad, M.; Zaghari, M. Effects of Fortifying Low Crude Protein Diet with Crystalline Amino Acids on Performance, Blood Ammonia Level, and Excreta Characteristics of Broiler Chicks. Poult. Sci. 2008, 87, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Megias, M.D.; Orengo, J.; Martinez, S.; Lopez, M.J.; Madrid, J. Effect of dietary protein level on retention of nutrients, growth performance, litter composition and NH3 emission using a multi-phase feeding programme in broilers. Span. J. Agric. Res. 2013, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Bailey, M. The water requirements of poultry. Recent Adv. Anim. Nutr. 1990, 32, 161–176. [Google Scholar] [CrossRef]
- Martland, M. Ulcerative dermatitis dm broiler chickens: The effects of wet litter. Avian Pathol. 1985, 14, 353–364. [Google Scholar] [CrossRef]
- Firman, J.D.; Boling, S.D. Lysine: Ideal protein in turkeys. Poult. Sci. 1998, 77, 105–110. [Google Scholar] [CrossRef]
- Furlan, R.L.; de Faria Filho, D.E.; Rosa, P.S.; Macari, M. Does Low-Protein Diet Improve Broiler Performance un-der Heat Stress Conditions? Braz. J. Poult. Sci. 2004, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Rezaeipour, V.; Fononi, H.; Irani, M. Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology and immune response of broiler chickens. S. Afr. J. Anim. Sci. 2012, 42, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Lemme, A. Reassessing amino acid levels for Pekin ducks. Poult. Int. 2003, 42, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, P.; Mullenix, G.; Hilton, K.; Caldas, J.; Beitia, A.; Weil, J.; Suesuttajit, N.; Kalinowski, A.; Yacoubi, N.; Naranjo, V.; et al. Effect of digestible amino acids to energy ratios on performance and yield of two broiler lines housed in different grow-out environmental temperatures. Poult. Sci. 2020, 99, 6884–6898. [Google Scholar] [CrossRef]
- Zulkifli, I.; Akmal, A.; Soleimani, A.; Hossain, M.; Awad, E. Effects of low-protein diets on acute phase proteins and heat shock protein 70 responses, and growth performance in broiler chickens under heat stress condition. Poult. Sci. 2018, 97, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.J.; Portal, B.; Meo, J.; Coudray, C.; Hadjian, A.; Favier, A. Malondialdehyde Kit Evaluated for Determining Plasma and Lipoprotein Fractions that React with Thiobarbituric Acid. Clin. Chem. 1992, 38, 704–709. [Google Scholar] [CrossRef]
- Surai, P.; Sparks, N. Tissue-Specific Fatty Acid and α-Tocopherol Profiles in Male Chickens Depending on Dietary Tuna Oil and Vitamin E Provision. Poult. Sci. 2000, 79, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, S.; Aksu, M.İ. Free amino acids profile and quantities of ‘sırt,‘bohca’and ‘sekerpare’pastirma, dry cured meat products. J. Sci. Food Agric. 2011, 91, 956–962. [Google Scholar] [CrossRef]
- Dean, D.W.; Bidner, T.D.; Southern, L.L. Glycine Supplementation to Low Protein, Amino Acid-Supplemented Diets Supports Optimal Performance of Broiler Chicks. Poult. Sci. 2006, 85, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Fadlullah, M.; Zulkifli, I.; Farjam, A.S.; Loh, T.C. Amino Acids Fortification of Low-Protein Diet for Broilers Under Tropical Climate: Ideal Essential Amino Acids Profile. Ital. J. Anim. Sci. 2014, 13, 3166. [Google Scholar] [CrossRef] [Green Version]
- Salah, A. Effect of low-protein in iso-energetic diets on performance, carcass characteristics, digestibilities and plasma lipids of broiler chickens. Egypt. Poult. Sci. J. 2016, 36, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Nakashima, K.; Ishida, A.; Ashihara, A.; Katsumata, M. Effects of low protein diet and low protein diet supplemented with synthetic essential amino acids on meat quality of broiler chickens. Anim. Sci. J. 2012, 84, 489–495. [Google Scholar] [CrossRef]
- Kaldhusdal, M.J. Necrotic enteritis as affected by dietary ingredients. Worlds Poult. Sci. J. 2000, 16, 42–43. [Google Scholar]
- Qaisrani, S.; Van Krimpen, M.; Kwakkel, R.; Verstegen, M.; Hendriks, W. Dietary factors affecting hindgut protein fermentation in broilers: A review. World’s Poult. Sci. J. 2015, 71, 139–160. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Magouz, F.I.; Mansour, M.; Saleh, A.A.; El Asely, A.M.; Fadl, S.E.; Ahmed, H.A.; Al-Ghanim, K.A.; Mahboob, S.; Al-Misned, F. Evaluation of Yeast Fermented Poultry By-Product Meal in Nile Tilapia (Oreochromis niloticus) Feed: Effects on Growth Performance, Digestive Enzymes Activity, Innate Immunity, and Antioxidant Capacity. Front. Veter Sci. 2020, 6, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Eyng, C.; Oliveira, C.A.L.; Janeiro, V. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. Br. Poult. Sci. 2014, 55, 766–773. [Google Scholar] [CrossRef]
- Kamran, Z.; Ahmad Nadeem, M.; Sarwar, M.; Shakil Amjid, S.; Hussain Pasha, R.; Shahid Nazir, M.J. Effect of low crude protein diets with constant metabolizable energy on performance of broiler chickens from one to thir-ty-five days of age. Indian J. Anim. Sci. 2011, 81, 1165. [Google Scholar]
- Lensing, M.; Van Der Klis, J.; Le Bellego, L.; Rovers, M. The threonine requirement of broiler chickens during subclinical intestinal infection. In Proceedings of the 16th European Nutrition Symposium, Strasbourg, France, 26–30 August 2007; pp. 343–346. [Google Scholar]
- Law, F.L.; Zulkifli, I.; Soleimani, A.F.; Liang, J.B.; Awad, E.A. The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australas. J. Anim. Sci. 2018, 31, 1291–1300. [Google Scholar] [CrossRef] [Green Version]
- Badawi, M.E.-S.; Ali, A.H.; El-Razik, W.M.A.; Soliman, M.H. Influence of Low Crude Protein Diets on Broiler Chickens Performance. Adv. Anim. Veter Sci. 2019, 7, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Lemme, A.; Hiller, P.; Klahsen, M.; Taube, V.; Stegemann, J.; Simon, I. Reduction of dietary protein in broiler diets not only reduces n-emissions but is also accompanied by several further benefits. J. Appl. Poult. Res. 2019, 28, 867–880. [Google Scholar] [CrossRef]
- Swennen, Q.; Janssens, G.P.J.; Collin, A.; Le Bihan-Duval, E.; Verbeke, K.; Decuypere, E.; Buyse, J. Diet-Induced Thermogenesis and Glucose Oxidation in Broiler Chickens: Influence of Genotype and Diet Composition. Poult. Sci. 2006, 85, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Rosebrough, R.W.; Steele, N.C. Energy and Protein Relationships in the Broiler. Poult. Sci. 1985, 64, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.A.; Dozier, I.W.A.; Davis, A.J.; Gordon, R.W. Live Performance and Meat Yield Responses of Broilers to Progressive Concentrations of Dietary Energy Maintained at a Constant Metabolizable Energy-to-Crude Protein Ratio. J. Appl. Poult. Res. 2004, 13, 319–327. [Google Scholar] [CrossRef]
- Si, J.; Fritts, C.; Burnham, D.; Waldroup, P. Extent to which crude protein may be reduced in corn-soybean meal broiler diets through amino acid supplementation. Int. J. Poult. Sci. 2004, 3, 46–50. [Google Scholar] [CrossRef]
- Abd El-Moneim, A.E.-M.E.; El-Wardany, I.; Abu-Taleb, A.M.; Wakwak, M.M.; Ebeid, T.A.; Saleh, A.A. Assessment of in ovo administration of Bifidobacterium bifidum and Bifidobacterium longum on performance, ileal histomorphometry, blood hematological, and biochemical parameters of broilers. Probiotics Antimicrob. Proteins 2019, 12, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Dairo, F.A.S.; Adesehinwa, A.O.K.; Oluwasola, T.A.; Oluyemi, J.A. High and low dietary energy andprotein lev-els for broiler chickens. Afr. J. Agricult. Res. 2010, 5, 2030–2038. [Google Scholar]
- Ndazigaruye, G.; Kim, D.-H.; Kang, C.-W.; Kang, K.-R.; Joo, Y.-J.; Lee, S.-R.; Lee, K.-W. Effects of Low-Protein Diets and Exogenous Protease on Growth Performance, Carcass Traits, Intestinal Morphology, Cecal Volatile Fatty Acids and Serum Parameters in Broilers. Animals 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Elize, J.; Rumley, S.; Lai, A.; Hirakawa, T.; Kido, Y.; Shizuka, F.; Kishi, K. Protein deficiency potentiates lipid peroxidation in growing rats exposed to hyperoxia. Nutr. Res. 1992, 12, 1101–1112. [Google Scholar]
- Saleh, A.A.; El-Magd, M.A. Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ. Sci. Pollut. Res. 2018, 25, 27031–27038. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Ijiri, D.; Ohtsuka, A. Effects of summer shield supplementation on growth performance, nutrient utilisation, and plasma lipid profiles in broiler chickens. Veterinární Medicína 2014, 59, 536–542. [Google Scholar] [CrossRef] [Green Version]
Experimental Diets | ||||||
---|---|---|---|---|---|---|
Ingredients, % | Control | LPOA | LPHA | |||
Starter | Grower | Starter | Grower | Starter | Grower | |
Yellow corn | 59.0 | 64.1 | 60.0 | 65.1 | 60.8 | 65.1 |
Soybean meal, (47%) | 28.1 | 22.5 | 28.1 | 22.5 | 27.3 | 22.5 |
Corn gluten meal, 60% | 6.20 | 6.50 | 1.20 | 1.50 | 2.20 | 1.50 |
DL-Methionine, 99% | 0.02 | - | 0.19 | 0.08 | 0.31 | 0.23 |
L-Lysine HCl, 98% | 0.15 | 0.23 | 0.24 | 0.14 | 0.32 | 0.22 |
L-Threonine, 99% | 0.06 | 0.08 | 0.12 | 0.09 | 0.32 | 0.25 |
Full fat soybean | 2.31 | 2.52 | 6.00 | 6.59 | 4.60 | 6.20 |
Dicalcium phosphate | 2.21 | 2.10 | 2.20 | 2.05 | 2.20 | 2.10 |
Calcium carbonate | 1.10 | 1.07 | 1.10 | 1.05 | 1.10 | 1.00 |
Sodium chloride | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Sodium bicarbonate | 0.15 | 0.13 | 0.15 | 0.13 | 0.15 | 0.13 |
Potassium carbonate | 0.05 | 0.12 | 0.05 | 0.12 | 0.05 | 0.12 |
Premix * | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Nutrient Analysis, on DM Basis | ||||||
Crude Protein, % | 23 | 21 | 21 | 19 | 21 | 19 |
AME, kcal/kg | 2974 | 3033 | 2974 | 3034 | 2979 | 3033 |
Calcium, % | 1.00 | 0.95 | 1.01 | 0.94 | 1.00 | 0.93 |
Available P, % | 0.52 | 0.49 | 0.52 | 0.49 | 0.52 | 0.50 |
Fat, % | 3.16 | 3.32 | 3.75 | 3.99 | 3.54 | 3.92 |
Crude fiber, % | 2.88 | 2.77 | 3.03 | 2.49 | 2.95 | 2.91 |
Sodium, % | 0.21 | 0.20 | 0.21 | 0.20 | 0.21 | 0.20 |
Chloride, % | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Potassium, % | 0.79 | 0.73 | 0.77 | 0.72 | 0.76 | 0.72 |
Lys, % | 1.25 | 1.15 | 1.35 | 1.13 | 1.37 | 1.18 |
Met, % | 0.45 | 0.41 | 0.55 | 0.42 | 0.68 | 0.57 |
Met + Cys, % | 0.81 | 0.74 | 0.89 | 0.73 | 1.01 | 0.88 |
Thr, % | 0.69 | 0.64 | 0.74 | 0.64 | 0.93 | 0.80 |
Met + Cys/Lys | 0.65 | 0.65 | 0.65 | 0.65 | 0.74 | 0.74 |
Thr/Lys | 0.56 | 0.55 | 0.55 | 0.56 | 0.68 | 0.67 |
Item | Experimental Diets | p-Duncan | ||
---|---|---|---|---|
Control | LPOA | LPHA | ||
Initial body weight, g | 40.0 ± 0.51 | 40.0 ± 0.64 | 40.0 ± 0.56 | 0.95 |
Final body weight, g/35 d | 1929.0 ± 93.60 ab | 1940.0 ± 47.08 a | 1737.5 ± 34.97 b | 0.05 |
Body weight gain, g/d | 53.97 ± 2.674 ab | 54.29 ± 1.345 a | 48.50 ± 0.999 b | 0.05 |
Feed intake, g/d | 92.97 ± 3.19 ab | 96.77 ± 2.442 a | 87.83 ± 0.731 b | 0.05 |
Feed conversion ratio, g/g | 1.727 ± 0.04 | 1.784 ± 0.04 | 1.813 ± 0.03 | 0.32 |
Mortality *, % | 4.38 b | 4.42.00 a | 3.75 b | - |
Item | Experimental Diets | p-Duncan | ||
---|---|---|---|---|
Control | LPOA | LPHA | ||
Carcass weight, g/100 g BW | 66.5 ± 0.80 | 66.3 ± 0.24 | 67.0 ± 0.43 | 0.61 |
Dressing weight, g/100 g BW | 70.6 ± 0.79 | 70.2 ± 0.29 | 71.5 ± 0.35 | 0.22 |
Breast muscle weight, g/100 g BW | 15.33 ± 0.36 | 15.95 ± 0.44 | 15.77 ± 0.27 | 0.48 |
Thigh muscle weight, g/100 g BW | 15.68 ± 0.27 | 15.63 ± 0.30 | 15.81 ± 0.27 | 0.90 |
Gizzard weight, g/100 g BW | 1.57 ± 0.09 | 1.45 ± 0.09 | 1.67 ± 0.05 | 0.19 |
Heart weight, g/100 g BW | 0.455 ± 0.02 | 0.469 ± 0.02 | 0.462 ± 0.04 | 0.94 |
Liver weight, g/100 g BW | 2.02 ± 0.06 b | 2.03 ± 0.11 b | 2.37 ± 0.11 a | 0.04 |
Giblets weight, g/100 g BW | 4.04 ± 0.11 b | 3.96 ± 0.16 b | 4.50 ± 0.13 a | 0.02 |
Abdominal fat weight, g/100 g BW | 1.010 ± 0.08 b | 0.939 ± 0.08 b | 1.277 ± 0.06 a | 0.02 |
Item | Experimental Diets | p-Duncan | ||
---|---|---|---|---|
Control | LPOA | LPHA | ||
Total protein, mg/dL | 3.41 ± 0.35 | 3.84 ± 0.43 | 3.15 ± 0.17 | 0.37 |
Albumin, mg/dL | 1.00 ± 0.04 | 1.15 ± 0.10 | 1.05 ± 0.07 | 0.38 |
Globulin, mg/dL | 2.50 ± 0.26 | 2.88 ± 0.53 | 2.10 ± 0.10 | 0.32 |
Glucose, mg/dL | 238.3 ± 12.73 | 210.8 ± 18.06 | 209.6 ± 9.65 | 0.29 |
Total cholesterol, mg/dL | 125.9 ± 5.99 | 115.7 ± 1.62 | 131.9 ± 10.51 | 0.27 |
AST, I/U | 288.6 ± 21.29 | 276.4 ± 32.76 | 297.9 ± 33.87 | 0.88 |
ALT, I/U | 5.64 ± 2.27 | 5.59 ± 1.33 | 6.51 ± 1.25 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, A.A.; Amber, K.A.; Soliman, M.M.; Soliman, M.Y.; Morsy, W.A.; Shukry, M.; Alzawqari, M.H. Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature. Agriculture 2021, 11, 185. https://doi.org/10.3390/agriculture11020185
Saleh AA, Amber KA, Soliman MM, Soliman MY, Morsy WA, Shukry M, Alzawqari MH. Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature. Agriculture. 2021; 11(2):185. https://doi.org/10.3390/agriculture11020185
Chicago/Turabian StyleSaleh, Ahmed A., Khairy A. Amber, Mohamed M. Soliman, Mahmoud Y. Soliman, Wael A. Morsy, Mustafa Shukry, and Mohammed H. Alzawqari. 2021. "Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature" Agriculture 11, no. 2: 185. https://doi.org/10.3390/agriculture11020185
APA StyleSaleh, A. A., Amber, K. A., Soliman, M. M., Soliman, M. Y., Morsy, W. A., Shukry, M., & Alzawqari, M. H. (2021). Effect of Low Protein Diets with Amino Acids Supplementation on Growth Performance, Carcass Traits, Blood Parameters and Muscle Amino Acids Profile in Broiler Chickens under High Ambient Temperature. Agriculture, 11(2), 185. https://doi.org/10.3390/agriculture11020185