Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Preparation
2.2. Biochar Collection and Characterization
2.3. Experimental Treatment and Design
2.4. Incubation Experiment
2.5. Soil and Biochar Analysis
2.6. Percent Relative Data
2.7. Determination of Lime Requirement
2.8. CO2 Gas Emission Measurement
2.9. Statistical Analysis
3. Results
3.1. SEM Visualization of the Biochars
3.2. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil pH
3.3. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Total Carbon
3.4. Effect of RHB, EFBB, and Dolomitic Limestone treatments on Soil Total Nitrogen
3.5. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Available P
3.6. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Exchangeable K
3.7. Effect of RHB, EFBB and Dolomitic Limestone Treatments on Soil Exchangeable Ca
3.8. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Exchangeable Mg
3.9. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Exchangeable Al
3.10. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Extractable Fe
3.11. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil Extractable Mn
3.12. Effect of RHB, EFBB, and Dolomitic Limestone Treatments on Soil CO2 Emission
4. Discussion
4.1. Effect of the Amendments on Soil Nutrients
4.2. Carbon Dioxide Emission from the Amended Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaaban, M.; Wu, Y.; Peng, Q.-A.; Lin, S.; Mo, Y.; Wu, L.; Hu, R.; Zhou, W. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil. Environ. Sci. Pollut. Res. 2015, 23, 6334–6342. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidifi-cation-a critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R.; et al. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total. Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef]
- Anda, M.; Shamshuddin, J.; Fauziah, C.; Omar, S.S. Mineralogy and factors controlling charge development of three Oxisols developed from different parent materials. Geoderma 2008, 143, 153–167. [Google Scholar] [CrossRef]
- Ryan, P.R. Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils. Crop Pasture Sci. 2018, 69, 242–264. [Google Scholar] [CrossRef]
- Kalkhoran, S.S.; Pannell, D.J.; Thamo, T.; White, B.; Polyakov, M. Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management. Agric. Syst. 2019, 176, 102684. [Google Scholar] [CrossRef]
- Cho, S.R.; Jeong, S.T.; Kim, G.Y.; Lee, J.G.; Kim, G.W. Evaluation of the carbon dioxide (CO2) emission factor from lime ap-plied in temperate upland soil. Geoderma 2019, 337, 742–748. [Google Scholar] [CrossRef]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.; Xu, Y.; Mandal, S.; Gleeson, D.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 2016, 139, 1–71. [Google Scholar] [CrossRef]
- Yagi, R.; Fidalski, J.; Tormena, C.A. The incorporation of limestone in consolidated no-tillage system reduces carbon stock in soil macroaggregates. Ciência Rural 2014, 44, 1962–1965. [Google Scholar] [CrossRef] [Green Version]
- Jafer, D.G.; Hailu, G. Application of lime for acid soil amelioration and better soybean performance in South Western Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 95–100. [Google Scholar]
- Gonzaga, M.I.S.; Mackowiak, C.; De Almeida, A.Q.; Junior, J.I.T.D.C.; Andrade, K.R. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 2018, 162, 414–420. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. BioTechnology 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Bhutto, A.W.; Qureshi, K.; Abro, R.; Harijan, K.; Zhao, Z.; Bazmi, A.A.; Abbas, T.; Yu, G. Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector—Prospects and challenges. RSC Adv. 2016, 6, 32140–32170. [Google Scholar] [CrossRef]
- Uslu, O.S.; Babur, E.; Alma, M.H.; Solaiman, Z.M. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture 2020, 10, 427. [Google Scholar] [CrossRef]
- Sistani, K.R.; Simmons, J.R.; Jn-Baptiste, M.; Novak, J.M. Poultry litter, biochar, and fertilizer effect on corn yield, nutrient uptake, N2O and CO2 emissions. Environment 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Mosharrof, M.; Uddin, M.K.; Shamshuddin, J.; Sulaiman, M.F.; Shamsuzzaman, S.M.; Haque, A.N.A. Integrated use of bio-char and lime as a tool to improve maize yield and mitigate CO2 emission: A review. Chil. J. Agric. Res. 2021, 81, 1. [Google Scholar] [CrossRef]
- Joseph, S.; Pow, D.; Dawson, K.; Rust, J.; Munroe, P.; Taherymoosavi, S.; Mitchell, D.R.; Robb, S.; Solaiman, Z.M. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total. Environ. 2020, 724, 138153. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, O.J.; Shittu, O.S. Fertilizer, lime and manure amendments for ultisols formed on coastal plain sands of Southern Nigeria. Agric. For. Fish. 2014, 3, 481–488. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y.; Xiang, H.; Zhang, J.; Li, S.; Yang, J. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability 2019, 12, 280. [Google Scholar] [CrossRef] [Green Version]
- Nweke, I.A. Influence of different leguminous crop on the ultisol that had been continuously cropped to cassava/maize for over six years. J. Soil Sci. Environ. Manag. 2016, 7, 222–229. [Google Scholar] [CrossRef]
- Syuhada, A.; Shamshuddin, J.; Fauziah, C.; Rosenani, A.; Arifin, A. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Can. J. Soil Sci. 2016, 96, 400–412. [Google Scholar] [CrossRef]
- Akingbola, O.O.; Adeyemo, A.J.; Oladele, S.O.; Ojeniyi, S.O. Physical status and infiltration dynamics of tropical alfisol of South- Western Nigeria as affected by poultry manure. Appl. Trop. Agric. 2016, 21, 102–111. [Google Scholar]
- Schofield, H.K.; Pettitt, T.R.; Tappin, A.D.; Rollinson, G.K.; Fitzsimons, M.F. Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Sci. Total. Environ. 2019, 690, 1228–1236. [Google Scholar] [CrossRef]
- Hossain, Z.; Bahar, M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Rabileh, M.A.; Shamshuddin, J.; Panhwar, Q.A.; Rosenani, A.B.; Anuar, A.R. Effects of biochar and/or dolomitic limestone application on the properties of Ultisol cropped to maize under glasshouse conditions. Can. J. Soil Sci. 2015, 95, 37–47. [Google Scholar] [CrossRef]
- Ch’Ng, H.Y.; Haruna, A.O.; Majid, N.M.N.A.; Jalloh, M.B. Improving soil phosphorus availability and yield of Zea mays L. using biochar and compost derived from agro-industrial wastes. Ital. J. Agron. 2019, 14, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Solaiman, Z.M.; Shafi, M.I.; Beamont, E.; Anawar, H.M. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture 2020, 10, 480. [Google Scholar] [CrossRef]
- Carvalho, M.L.; De Moraes, M.T.; Cerri, C.E.P.; Cherubin, M.R. Biochar amendment enhances water retention in a tropical sandy soil. Agriculture 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2016, 9, 743–755. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. GCB Bioenergy 2015, 8, 392–406. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Scheer, C.; Rowlings, D.W.; Grace, P.R. Rice husk biochar and crop residue amendment in subtropical cropping soils: Effect on biomass production, nitrogen use efficiency and greenhouse gas emissions. Biol. Fertil. Soils 2015, 52, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Pedram, K. Genetic Potential of Selected Sweet Corn Inbred Lines and Analysis of Their Combining Ability Assisted by mi-Crosatellite DNA Markers. Ph.D. Thesis, Universiti Putra Malaysia, Selangor, Malaysia, 2012. [Google Scholar]
- Benton, J.J. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780429132117. [Google Scholar]
- Douglas, L.A.; Bremner, J.M. Extraction and colorimetric determination of urea in soils. Soil Sci. Soc. Am. J. 1970, 34, 859–862. [Google Scholar] [CrossRef]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil—Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Rimmer, D.L.; Rodwell, D.L. Soil Science: Methods and Application. J. Ecol. 1995, 83, 352. [Google Scholar] [CrossRef]
- Tan, K.H. Soil and plant test. In Soil Sampling, Preparation, and Analysis, 2nd ed.; Tan, K.H., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 98–134. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Ahmedna, M.; Marshall, W.E.; Rao, R.M. Production of granular activated carbon from select agricultural by-products and evaluation of their physical, chemical, and adsorption properties. Bioresour. Technol. 1998, 71, 113–123. [Google Scholar] [CrossRef]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation. FAO Soil Bull. 1980, 38, 70–73. [Google Scholar]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrol. 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Ashraf, M.; Waheed, A. Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 1990, 128, 167–176. [Google Scholar] [CrossRef]
- Hardy, F.; Lewis, A.H. A rapid electrometric method for measuring “lime requirements” of soils. J. Agric. Sci. 1929, 19, 17–25. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, L.; Cheng, H.; Yue, S.; Li, S. Effects of biochar application on CO2 emissions from a cultivated soil under sem-iarid climate conditions in Northwest China. Sustainability 2017, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.N.A.; Uddin, K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Zaibon, S.; Mosharrof, M. Assessing the increase in soil moisture storage capacity and nutrient enhancement of different organic amendments in paddy soil. Agriculture 2021, 11, 44. [Google Scholar] [CrossRef]
- Masud, M.; Baquy, M.A.-A.; Akhter, S.; Sen, R.; Barman, A.; Khatun, M. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 2020, 202, 110865. [Google Scholar] [CrossRef]
- Norazlina, A.B.; Fauziah, C.I.; Rosenani, A.B. Characterization of oil palm empty fruit bunch and rice husk biochar and their potential to adsorb arsenic and cadmium. Am. J. Agric. Biol. Sci. 2014, 9, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, L.; Li, Y.; Brookes, P.C.; Xu, J.; Luo, Y. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils 2016, 53, 77–87. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-H.; Xu, R.-K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2010, 27, 110–115. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2013. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2011, 351, 263–275. [Google Scholar] [CrossRef]
- Sukartono, U.W.H.; Utomo, W.H.; Kusuma, Z.; Nugroho, W.H. Soil fertility status, nutrient uptake, and maize (Zea mays L.) yield following biochar and cattle manure application on sandy soils of Lombok, Indonesia. J. Trop. Agric. 2011, 49, 47–52. [Google Scholar]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int. J. Agron. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of two consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y.; Liu, G.; Liu, Q.; Zhu, J.; Tu, C.; Amonette, J.E.; Cadisch, G.; Yong, J.W.H.; Hu, S. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 2013, 370, 527–540. [Google Scholar] [CrossRef]
- Knicker, M. Optimization of water using carbon-based adsorbents. Aust. J. Soil Res. 2007, 183, 249–255. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Koutcheiko, S.; Monreal, C.; Kodama, H.; McCracken, T.; Kotlyar, L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour. Technol. 2007, 98, 2459–2464. [Google Scholar] [CrossRef]
- Ch’Ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Madiba, O.F.; Solaiman, Z.M.; Carson, J.K.; Murphy, D.V. Biochar increases availability and uptake of phosphorus to wheat under leaching con-ditions. Biol. Fertil. Soils 2016, 52, 439–446. [Google Scholar] [CrossRef]
- Marsi, M.; Sabaruddin, S. Phosphate adsorption capacity and organic matter effect on dynamics of P availability in upland ultisol and lowland inceptisol. J. Trop. Soils 2011, 16, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Panhwar, Q.A.; Naher, U.A.; Shamshuddin, J.; Ismail, M.R. Effects of biochar and ground magnesium limestone application, with or without bio-fertilizer addition, on biochemical properties of an acid sulfate soil and rice yield. Agronomy 2020, 10, 1100. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Char-acterization of slow pyrolysis biochars: Effects of feed stocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int. J. Agron. 2018, 6837404. [Google Scholar] [CrossRef] [Green Version]
- Zaidun, S.W.; Jalloh, M.B.; Awang, A.; Sam, L.M.; Besar, N.A.; Musta, B.; Ahmed, O.H.; Omar, L. Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Euras. J. Soil Sci. EJSS 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Gautam, D.K.; Bajracharya, R.M.; Sitaula, B.K. Effects of biochar and farm yard manure on soil properties and crop growth in an agroforestry system in the Himalaya. Sustain. Agric. Res. 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, A.; Kissi, E.; Misaganaw, M.; Ambaw, G. Effects of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in polluted soils. Am. Euras. J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xue, C.; Nie, X.; Liu, Y.; Chen, F. Effects of biochar application on soil potassium dynamics and crop uptake. J. Plant Nutr. Soil Sci. 2018, 181, 635–643. [Google Scholar] [CrossRef]
- Abewa, A.; Yitaferu, B.; Selassie, Y.G.; Amare, T.T. The role of biochar on acid soil reclamation and yield of teff (Eragrostis tef [Zucc] Trotter) in Northwestern Ethiopia. J. Agric. Sci. 2013, 6, 1. [Google Scholar] [CrossRef]
- Zhu, Q.-H.; Peng, X.-H.; Huang, T.-Q.; Xie, Z.-B.; Holden, N. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere 2014, 24, 699–708. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B.; Hu, D. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ. Sci. Technol. 2013, 47, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Sasmita, K.D.; Iswandi, A.; Syaiful, A.; Sudirman, Y.; Gunawan, D. Application of biochar and organic fertilizer on acid soil as growing medium for Cacao (Theobroma cacao L.) seedlings. Int. J. Sci. Basic Appl. Res. 2017, 36, 261–273. [Google Scholar]
- Masulili, A.; Sudarso, J.K.Y.; Utomo, W.H.; Veteran, J.; Syechfani, M.S. Rice husk biochar for rice-based cropping system in acid soil. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agric. Sci. 2010, 2, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2011, 41, 1033–1043. [Google Scholar] [CrossRef]
- Devika, O.S.; Prasad, P.R.; Rani, P.P.; Pathy, R.L. Nutrient status of soils influenced by the interaction of Biochar and FYM with chemical Fertiizers. J. Pharm. Innov. 2018, 7, 174–177. [Google Scholar]
- Ullah, Z.; Jamali, A.Z.; Ali, M.; Khan, B.; Yousaf, S.; Ziad, T. Effects of biochar on soil chemical properties in relation at different intervals. J. Bio. Environ. Sci. 2018, 12, 272–277. [Google Scholar]
- Amonette, J.E.; Joseph, S. Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management: Science and Technology, 1st ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 33–52. [Google Scholar]
- Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Biochar production and applications in soil fertility and carbon sequestration—A sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, J.P.; Bezdicek, D.F.; Flury, M.; Albrecht, S.; Smith, J.L. Microbial activity affected by lime in a long-term no-till soil. Soil Tillage Res. 2006, 88, 123–131. [Google Scholar] [CrossRef]
- Sarfaraz, Q.; Silva, L.; Drescher, G.; Zafar, M.; Severo, F.; Kokkonen, A.; Molin, G.; Shafi, M.I.; Shafique, Q.; Solaiman, Z. Characterization and carbon mineralization of biochars produced from different animal manures and plant residues. Sci. Rep. 2020, 10, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Bramble, D.S.E.; Gouveia, G.A.; Ramnarine, R. Organic residues and ammonium effects on CO2 emissions and soil quality indicators in limed acid tropical soils. Soil Syst. 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Fidel, R.B.; Laird, D.A.; Parkin, T.B. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Oo, A.Z.; Sudo, S.; Akiyama, H.; Win, K.T.; Shibata, A.; Yamamoto, A.; Sano, T.; Hirono, Y. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil. PLoS ONE 2018, 13, e0192235. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Cornejo, J.; Zornoza, R.; Faz, A. Carbon and nitrogen mineralization during decomposition of crop residues in a calcareous soil. Geoderma 2014, 230–231, 58–63. [Google Scholar] [CrossRef]
- El-Naggar, A.H.; Usman, A.R.; Al-Omran, A.; Ok, Y.S.; Ahmad, M.; Al-Wabel, M.I. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 2015, 138, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Bruun, E.W.; Hauggaard-Nielsen, H.; Ibrahim, N.; Egsgaard, H.; Ambus, P.; Jensen, P.A.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N. In situ mineralization of dairy cattle manure as de-termined using soil-surface carbon dioxide fluxes. Soil Sci. Soc. Am. J. 2006, 70, 744–752. [Google Scholar] [CrossRef]
- Kong, Y.; Watanabe, M.; Nagano, H.; Watanabe, K.; Yashima, M.; Inubushi, K. Effects of land-use type and nitrogen addition on nitrous oxide and carbon dioxide production potentials in Japanese Andosols. Soil Sci. Plant Nutr. 2013, 59, 790–799. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of bio-char-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Chenfei, L.; Li, S.; Liang, C.; Xu, Q.; Li, Y.; Qin, H.; Fuhrmann, J.J. Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Sci. Total. Environ. 2017, 574, 24–33. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Zhang, R. Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes. Soil Tillage Res. 2019, 186, 322–332. [Google Scholar] [CrossRef]
- Sui, Y.; Gao, J.; Liu, C.; Zhang, W.; Lan, Y.; Li, S.; Meng, J.; Xu, Z.; Tang, L. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Sci. Total Environ. 2016, 544, 203–210. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef]
Properties | Soil |
---|---|
Textural class | Sandy clay loam |
% Sand | 69.27 |
% Silt | 2.28 |
% Clay | 28.44 |
pH | 4.61 |
CEC (cmolc kg−1) | 5.77 |
Total C (%) | 1.41 |
Total N (%) | 0.07 |
Total S (%) | 0.05 |
Exchangeable K (cmolc kg−1) | 0.22 |
Exchangeable Ca (cmolc kg−1) | 1.46 |
Exchangeable Mg (cmolc kg−1) | 0.42 |
Exchangeable Al (cmolc kg−1) | 2.49 |
Available P (mg kg−1) | 5.21 |
Extractable Fe (mg kg−1) | 99.44 |
Extractable Mn (mg kg−1) | 4.64 |
NH4-N (mg kg−1) | 16.41 |
NO3-N (mg kg−1) | 11.37 |
Properties | RHB | EFBB | Lime | NPK Fertilizer |
---|---|---|---|---|
Moisture Content (%) | 6 | 5 | - | - |
Ash Content (%) | 32.40 | 19.72 | - | - |
pH | 8.15 | 8.53 | 8.5 | - |
CEC (cmolc kg−1) | 48.12 | 57.30 | - | - |
Total C (%) | 24.86 | 52.11 | - | |
Total N (%) | 1.13 | 0.38 | - | 46 (%) |
Total S (%) | 0.15 | 0.15 | - | - |
Exchangeable K (cmolc kg−1) | 17.45 | 14.86 | - | 60 (%) (K2O) |
Exchangeable Ca (cmolc kg−1) | 19.46 | 5.08 | 20.00 (%) | - |
Exchangeable Mg (cmolc kg−1) | 13.96 | 34.15 | 11.00(%) | - |
Total P (mg kg−1) | 3098.40 | 1898.40 | - | 46 (%) (P2O5) |
Extractable Fe (mg kg−1) | 43.06 | 24.51 | - | - |
Extractable Mn (mg kg−1) | 23.51 | 10.74 | - | - |
Factor | Treatment | Day | Treatment*Day | |||
---|---|---|---|---|---|---|
p Values | Significant Level | p Values | Significant Level | p Values | Significant Level | |
pH | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
TC | <0.0001 | *** | <0.0001 | *** | 0.0012 | ** |
TN | 0.0316 | * | 0.0316 | * | 0.4678 | ns |
P | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
K | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Ca | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Mg | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Al | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Fe | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Mn | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
CO2 | <0.0001 | *** | <0.0001 | *** | <0.0001 | *** |
Treatment | Soil pH | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 4.52e ± 0.023 | 4.44g ± 0.020 | 4.63e ± 0.02 | 4.51h ± 0.011 |
T2 | 4.94d ± 0.050 | 4.77f ± 0.020 | 4.69e ± 0.012 | 4.58g ± 0.005 |
T3 | 6.28abc ± 0.18 | 5.80e ± 0.020 | 5.48d ± 0.008 | 5.40f ± 0.008 |
T4 | 6.46ab ± 0.015 | 6.24c ± 0.17 | 6.16b ± 0.015 | 6.09bcd ± 0.011 |
T5 | 6.53a ± 0.172 | 6.32a ± 0.020 | 6.27a ± 0.020 | 6.21a ± 0.003 |
T6 | 6.09c ± 0.020 | 5.92d ± 0.018 | 5.87c ± 0.023 | 5.81e ± 0.01 |
T7 | 6.51a ± 0.020 | 6.31ab ± 0.015 | 6.21ab ± 0.034 | 6.12b ± 0.008 |
T8 | 6.41ab ± 0.019 | 6.20c ± 0.014 | 6.14b ± 0.012 | 6.05d ± 0.013 |
T9 | 6.45ab ± 0.020 | 6.26abc ± 0.015 | 6.20ab ± 0.015 | 6.08cd ± 0.005 |
T10 | 6.22bc ± 0.026 | 5.89d ± 0.14 | 5.87c ± 0.011 | 5.76e ± 0.008 |
T11 | 6.42ab ± 0.012 | 6.24bc ± 0.037 | 6.23ab ± 0.020 | 6.12bc ± 0.003 |
Treatment | Total Carbon (%) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 1.38e ± 0.017 | 1.36g ± 0.018 | 1.40h ± 0.018 | 1.42g ± 0.034 |
T2 | 1.66d ± 0.026 | 1.54f ± 0.029 | 1.61g ± 0.03 | 1.59f ± 0.017 |
T3 | 1.69fg ± 0.033 | 1.69e ± 0.012 | 1.71fg ± 0.032 | 1.61ef ± 0.023 |
T4 | 1.88c ± 0.03 | 1.71e ± 0.02 | 1.81ef ± 0.033 | 1.74d ± 0.027 |
T5 | 1.97bc ± 0.015 | 1.73de ± 0.012 | 1.86ed ± 0.019 | 1.78cd ± 0.036 |
T6 | 1.99bbc ± 0.029 | 1.85cd ± 0.032 | 1.93cd ± 0.014 | 1.78cd ± 0.032 |
T7 | 2.01ab ± 0.02 | 1.91bc ± 0.027 | 1.96cd ± 0.015 | 1.86cd ± 0.033 |
T8 | 2.05ab ± 0.026 | 1.93bc ± 0.035 | 2.01abc ± 0.026 | 1.91abc ± 0.012 |
T9 | 2.06ab ± 0.0176 | 1.95bc ± 0.02 | 2.06ab ± 0.023 | 1.94ab ± 0.026 |
T10 | 2.09ab ± 0.0145 | 2.05ab ± 0.049 | 2.07ab ± 0.023 | 1.95ab ± 0.027 |
T11 | 2.13a ± 0.026 | 2.09a ± 0.034 | 2.08a ± 0.023 | 2.02a ± 0.015 |
Treatment | Total Nitrogen (%) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 0.093b ± 0.003 | 0.096a ± 0.013 | 0.09a ± 0.005 | 0.100a ± 0.005 |
T2 | 0.106ab ± 0.003 | 0.100a ± 0.00 | 0.09a ± 0.00 | 0.103a ± 0.003 |
T3 | 0.100ab ± 0.00 | 0.096a ± 0.008 | 0.08a ± 0.006 | 0.106a ± 0.003 |
T4 | 0.103ab ± 0.006 | 0.096a ± 0.003 | 0.096a ± 0.008 | 0.100a ± 0.005 |
T5 | 0.100ab ± 0.01 | 0.100a ± 0.005 | 0.103a ± 0.008 | 0.11a ± 0.005 |
T6 | 0.103ab ± 0.006 | 0.103a ± 0.008 | 0.11a ± 0.005 | 0.103a ± 0.003 |
T7 | 0.113a ± 0.006 | 0.110a ± 0.00 | 0.11a ± 0.003 | 0.11a ± 0.005 |
T8 | 0.103ab ± 0.008 | 0.103a ± 0.006 | 0.103a ± 0.003 | 0.103a ± 0.006 |
T9 | 0.103ab ± 0.006 | 0.113a ± 0.006 | 0.11a ± 0.005 | 0.11a ± 0.006 |
T10 | 0.103ab ± 0.006 | 0.103a ± 0.006 | 0.096a ± 0.003 | 0.11a ± 0.005 |
T11 | 0.113a ± 0.006 | 0.103a ± 0.006 | 0.100a ± 0.005 | 0.096a ± 0.003 |
Treatment | Available P (mg kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 5.24e ± 0.23 | 5.35e ± 0.22 | 5.34h ± 0.15 | 5.28g ± 0.1 |
T2 | 5.48e ± 0.28 | 6.38e ± 0.25 | 6.21g ± 0.20 | 5.51g ± 0.19 |
T3 | 6.44e ± 0.25 | 7.27e ± 0.33 | 6.90g ± 0.12 | 5.98g ± 0.05 |
T4 | 15.98b ± 0.62 | 20.82b ± 0.55 | 14.34b ± 0.19 | 11.35bc ± 0.17 |
T5 | 18.67a ± 0.75 | 24.81a ± 0.76 | 16.43a ± 0.21 | 13.83a ± 0.21 |
T6 | 13.40c ± 0.76 | 17.61c ± 0.86 | 12.08c ± 0.26 | 10.51cd ± 0.25 |
T7 | 16.66ab ± 0.73 | 22.44ab ± 0.81 | 14.53b ± 0.26 | 11.70b ± 0.25 |
T8 | 10.92d ± 0.51 | 15.46c ± 0.70 | 9.35e ± 0.14 | 8.22f ± 0.15 |
T9 | 11.76cd ± 0.64 | 16.61c ± 0.71 | 10.68d ± 0.21 | 9.77de ± 0.09 |
T10 | 9.86d ± 0.47 | 11.63d ± 0.69 | 8.34f ± 0.18 | 7.67f ± 0.08 |
T11 | 11.63cd ± 0.70 | 16.76c ± 1.2 | 9.65e ± 0.14 | 9.41e ± 0.16 |
Treatment | Exchangeable K (cmolc kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 0.18c ± 0.017 | 0.25c ± 0.023 | 0.24d ± 0.023 | 0.29d ± 0.015 |
T2 | 0.25c ± 0.015 | 0.27c ± 0.015 | 0.29d ± 0.020 | 0.33d ± 0.018 |
T3 | 0.30c ± 0.02 | 0.32c ± 0.017 | 0.34d ± 0.027 | 0.35d ± 0.018 |
T4 | 0.89b ± 0.02 | 1.22a ± 0.017 | 1.29bc ± 0.027 | 1.31c ± 0.017 |
T5 | 0.97ab ± 0.011 | 1.28a ± 0.022 | 1.45a ± 0.029 | 1.49a ± 0.011 |
T6 | 0.90b ± 0.047 | 1.04b ± 0.027 | 1.28bc ± 0.040 | 1.30c ± 0.02 |
T7 | 0.99ab ± 0.012 | 1.35a ± 0.032 | 1.41ab ± 0.003 | 1.53a ± 0.017 |
T8 | 0.97ab ± 0.038 | 1.24a ± 0.037 | 1.29bc ± 0.013 | 1.29c ± 0.008 |
T9 | 0.98ab ± 0.029 | 1.29a ± 0.037 | 1.31bc ± 0.026 | 1.40b ± 0.017 |
T10 | 0.93ab ± 0.012 | 1.03b ± 0.028 | 1.22c ± 0.029 | 1.29c ± 0.017 |
T11 | 1.05a ± 0.02 | 1.29a ± 0.042 | 1.40ab ± 0.039 | 1.48a ± 0.024 |
Treatment | Exchangeable Ca (cmolc kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 1.39h ± 0.032 | 1.33h ± 0.029 | 1.37f ± 0.067 | 1.33h ± 0.03 |
T2 | 1.40h ± 0.015 | 1.36h ± 0.058 | 1.40f ± 0.008 | 1.37h ± 0.02 |
T3 | 3.19d ± 0.024 | 3.14ef ± 0.023 | 3.15d ± 0.018 | 3.13f ± 0.01 |
T4 | 3.11de ± 0.015 | 3.51d ± 0.01 | 3.50c ± 0.029 | 3.56d ± 0.005 |
T5 | 3.88a ± 0.024 | 4.22a ± 0.029 | 4.20a ± 0.024 | 4.28a ± 0.01 |
T6 | 2.74f ± 0.017 | 3.05f ± 0.018 | 3.06de ± 0.008 | 3.08f ± 0.10 |
T7 | 2.99e ± 0.014 | 3.73c ± 0.015 | 3.88b ± 0.038 | 3.91c ± 0.02 |
T8 | 3.33c ± 0.032 | 3.20e ± 0.031 | 3.40c ± 0.025 | 3.44e ± 0.005 |
T9 | 3.78ab ± 0.028 | 4.01b ± 0.024 | 4.05a ± 0.02 | 4.06b ± 0.012 |
T10 | 2.32g ± 0.023 | 2.79g ± 0.028 | 2.96e ± 0.015 | 2.98g ± 0.01 |
T11 | 3.72b ± 0.028 | 3.71c ± 0.044 | 3.82b ± 0.028 | 3.88c ± 0.01 |
Treatment | Exchangeable Mg (cmolc kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 0.39h ± 0.008 | 0.37d ± 0.019 | 0.34f ± 0.019 | 0.37g ± 0.026 |
T2 | 0.40h ± 0.02 | 0.39d ± 0.015 | 0.37f ± 0.02 | 0.40g ± 0.017 |
T3 | 1.39a ± 0.012 | 1.10c ± 0.021 | 1.03e ± 0.015 | 0.97f ± 0.011 |
T4 | 0.96f ± 0.012 | 1.17c ± 0.021 | 1.33b ± 0.025 | 1.34d ± 0.02 |
T5 | 1.03e ± 0.012 | 1.39a ± 0.015 | 1.43a ± 0.024 | 1.52ab ± 0.017 |
T6 | 0.89g ± 0.012 | 1.11c ± 0.008 | 1.17d ± 0.025 | 1.20e ± 0.014 |
T7 | 1.23d ± 0.008 | 1.29b ± 0.015 | 1.30bc ± 0.015 | 1.43c ± 0.008 |
T8 | 1.18cd ± 0.022 | 1.32ab ± 0.008 | 1.31b ± 0.019 | 1.34d ± 0.02 |
T9 | 1.22c ± 0.006 | 1.29b ± 0.021 | 1.40ab ± 0.015 | 1.53a ± 0.019 |
T10 | 0.98ef ± 0.006 | 1.14c ± 0.015 | 1.21cd ± 0.017 | 1.23e ± 0.008 |
T11 | 1.31b ± 0.008 | 1.36ab ± 0.021 | 1.37ab ± 0.018 | 1.45bc ± 0.014 |
Treatment | Exchangeable Al (cmolc kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 2.41a ± 0.01 | 2.42a ± 0.01 | 2.40a ± 0.01 | 2.38a ± 0.01 |
T2 | 2.05b ± 0.02 | 1.69b ± 0.02 | 1.57b ± 0.01 | 1.21b ± 0.01 |
T3 | 0.79c ± 0.01 | 0.64c ± 0.01 | 0.35c ± 0.02 | 0.03d ± 0.01 |
T4 | 0.06e ± 0.01 | 0.04e ± 0.01 | 0.04e ± 0.01 | 0.01d ± 0.00 |
T5 | 0.03e ± 0.02 | 0.02e ± 0.01 | 0.00e ± 0.00 | 0.00d ± 0.00 |
T6 | 0.39d ± 0.01 | 0.32d ± 0.01 | 0.29d ± 0.01 | 0.13c ± 0.02 |
T7 | 0.03e ± 0.01 | 0.02e ± 0.01 | 0.01e ± 0.00 | 0.00d ± 0.00 |
T8 | 0.07e ± 0.01 | 0.05e ± 0.01 | 0.02e ± 0.01 | 0.02d ± 0.01 |
T9 | 0.06e ± 0.01 | 0.03e ± 0.01 | 0.01e ± 0.00 | 0.02d ± 0.00 |
T10 | 0.42d ± 0.01 | 0.33d ± 0.01 | 0.28d ± 0.01 | 0.17c ± 0.02 |
T11 | 0.03e ± 0.01 | 0.03e ± 0.01 | 0.02e ± 0.01 | 0.00d ± 0.00 |
Treatment | Extractable Fe (mg kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 90.89a ± 2.01 | 84.63a ± 0.38 | 82.41a ± 1.74 | 83.08a ± 0.96 |
T2 | 78.23b ± 1.82 | 75.64b ± 0.34 | 77.41b ± 0.78 | 78.75b ± 1.11 |
T3 | 54.72c ± 1.59 | 67.45c ± 0.88 | 71.08c ± 0.66 | 71.75c ± 1.11 |
T4 | 47.97cd ± 0.99 | 53.33ef ± 0.45 | 59.02d ± 0.62 | 61.34e ± 0.84 |
T5 | 44.83d ± 1.59 | 42.33h ± 0.86 | 42.56f ± 0.79 | 48.90g ± 0.90 |
T6 | 54.48c ± 1.33 | 61.55d ± 0.72 | 67.13c ± 1.22 | 66.63d ± 0.96 |
T7 | 44.13d ± 1.97 | 41.48h ± 0.33 | 43.36f ± 0.68 | 47.70g ± 0.92 |
T8 | 49.02cd ± 2.02 | 54.68e ± 0.59 | 54.71ed ± 0.62 | 55.71f ± 0.62 |
T9 | 46.01d ± 0.83 | 49.68fg ± 1.52 | 53.36e ± 0.74 | 54.70f ± 0.79 |
T10 | 55.75c ± 1.21 | 61.69d ± 0.82 | 68.85c ± 0.81 | 67.52d ± 0.56 |
T11 | 46.07d ± 1.03 | 48.73g ± 1.37 | 55.67de ± 1.52 | 56.00f ± 0.93 |
Treatment | Extractable Mn (mg kg−1) | |||
---|---|---|---|---|
Day 15 | Day 30 | Day 45 | Day 60 | |
T1 | 4.44f ± 0.01 | 4.39j ± 0.01 | 4.58h ± 0.01 | 4.41h ± 0.01 |
T2 | 4.31g ± 0.02 | 4.48i ± 0.01 | 4.68g ± 0.01 | 4.58g ± 0.01 |
T3 | 5.13e ± 0.01 | 5.16h ± 0.01 | 5.11e ± 0.01 | 4.92f ± 0.01 |
T4 | 7.07ab ± 0.01 | 5.55d ± 0.01 | 5.19d ± 0.01 | 5.17d ± 0.01 |
T5 | 7.12a ± 0.01 | 5.62ab ± 0.01 | 5.39b ± 0.01 | 5.37b ± 0.01 |
T6 | 7.03b ± 0.01 | 5.29g ± 0.01 | 5.31c ± 0.01 | 5.33bc ± 0.02 |
T7 | 7.13a ± 0.02 | 5.66a ± 0.02 | 5.60a ± 0.01 | 5.48a ± 0.02 |
T8 | 6.11d ± 0.02 | 5.49e ± 0.01 | 5.15d ± 0.01 | 5.13d ± 0.01 |
T9 | 6.26c ± 0.01 | 5.56cd ± 0.01 | 5.17d ± 0.01 | 5.16d ± 0.01 |
T10 | 6.04d ± 0.02 | 5.39f ± 0.02 | 5.06f ± 0.01 | 5.02e ± 0.01 |
T11 | 6.21c ± 0.03 | 5.60bc ± 0.01 | 5.34c ± 0.01 | 5.27c ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosharrof, M.; Uddin, M.K.; Jusop, S.; Sulaiman, M.F.; Shamsuzzaman, S.M.; Haque, A.N.A. Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture 2021, 11, 219. https://doi.org/10.3390/agriculture11030219
Mosharrof M, Uddin MK, Jusop S, Sulaiman MF, Shamsuzzaman SM, Haque ANA. Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture. 2021; 11(3):219. https://doi.org/10.3390/agriculture11030219
Chicago/Turabian StyleMosharrof, Mehnaz, Md. Kamal Uddin, Shamshuddin Jusop, Muhammad Firdaus Sulaiman, S. M. Shamsuzzaman, and Ahmad Numery Ashfaqul Haque. 2021. "Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments" Agriculture 11, no. 3: 219. https://doi.org/10.3390/agriculture11030219
APA StyleMosharrof, M., Uddin, M. K., Jusop, S., Sulaiman, M. F., Shamsuzzaman, S. M., & Haque, A. N. A. (2021). Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture, 11(3), 219. https://doi.org/10.3390/agriculture11030219