Quality Assessment of Raw Honey Issued from Eastern Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water-Insoluble Solids
2.2. Color
2.3. Refractive Index, Moisture and Solid Substances
2.4. Total Soluble Solids
2.5. Specific Gravity
2.6. pH and Free Acidity
2.7. Ash
2.8. Electrical Conductivity
2.9. Statistical Analyses
3. Results
3.1. Water-Insoluble Solids
3.2. Color
3.3. Refractive Index and Moisture
3.4. Solid Substances and Total Soluble Substances
3.5. Specific Gravity
3.6. pH and Free Acidity
3.7. Ash and Electrical Conductivity
3.8. Statistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Pita-Calvo, C.; Vázquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Med. Cell. Longev. 2017, 2012, 21. [Google Scholar] [CrossRef]
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile profile and physico-chemical analysis of acacia honey for geographical origin and nutritional value determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Oroian, M.; Amariei, S.; Leahu, A.; Gutt, G. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis. Pol. J. Food Nutr. Sci. 2015, 65, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Dobre, I.; Alexe, P.; Escuredo, O.; Seijo, C.M. Palynological evaluation of selected honeys from Romania. Grana 2013, 52, 113–121. [Google Scholar] [CrossRef]
- Czipa, N.; Kovács, B. Electrical conductivity of hungarian honeys. J. Food Phys. 2014, 27, 13–20. [Google Scholar]
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef] [PubMed]
- Baloš, M.Ž.; Popov, N.; Vidaković, S.; Pelić, D.L.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Romanian Standards Association. SR (Romanian Standard) 784-3:2009: Miere de albine. Partea 3: Metode de analiză. Honey bee. Part 3: Analytical methods. Available online: https://e-standard.eu/en/standard/174480 (accessed on 16 April 2018).
- European Commission. Council Directive 2001/110/CE concerning honey. Off. J. Eur.Comm. 2002, L10, 47–52.
- Bogdanov, S. 2009: Harmonized Methods of the International Honey Commission. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 30 May 2018).
- Czipa, N.; Phillips, C.J.; Kovács, B. Composition of acacia honeys following processing, storage and adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontis, J.A.; Costa, L.A.M.A.D.; Silva, S.J.R.D.; Flach, A. Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci. Technol. 2014, 34, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebiai, A.; Lanez, T. Comparative study of honey collected from different flora of Algeria. J. Fundam. Appl. Sci. 2014, 6, 48–55. [Google Scholar] [CrossRef] [Green Version]
- USDA. Extracted Honey Grading Manual, United States Department of Agriculture. Standards for Honey Grading; USDA: Washington, DC, USA, 1985. Available online: https://www.ams.usda.gov/sites/default/files/media/Extracted_Honey_Inspection_Instructions%5B1%5D.pdf (accessed on 10 December 2018).
- Ahamed, M.M.E.; Abdallah, A.; Abdalaziz, A.; Serag, E.; Atallah, A.B.E.H. Some physiochemical properties of Acacia honey from different altitudes of the Asir Region in Southern Saudi Arabia. Czech J. Food Sci. 2017, 35, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Sereia, M.J.; Março, P.H.; Perdoncini, M.R.G.; Parpinelli, R.S.; de Lima, E.G.; Anjo, F.A. Chapter 9: Techniques for the Evaluation of Physicochemical Quality and Bioactive Compounds in Honey. In Honey Analysis; INTECH: London, UK, 2017; pp. 194–214. [Google Scholar]
- Popescu, N.; Meica, S. Bee products and their chemical analysis. In Produsele Apicole și Analiza lor Chimică; Diacon Coresi: București, RO, USA, 1997. [Google Scholar]
- Cantarelli, M.A.; Pellerano, R.G.; Marchevsky, E.J.; Camina, J.M. Quality of honey from Argentina: Study of chemical composition and trace elements. J. Argent. Chem. Soc. 2008, 96, 33–41. [Google Scholar]
- Kivrak, ¸S.; Kivrak, I.; Karababa, E. Characterization of Turkish honeys regarding of physicochemical properties, and their adulteration analysis. Food Sci. Technol. 2017, 37, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Crane, E. Honey: A Comprehensive Survey; Heinemann: London, UK, 1979. [Google Scholar]
- Ahmida, N.H.; Elagori, M.; Agha, A.; Elwerfali, S.; Ahmida, M.H. Physicochemical, heavy metals and phenolic compounds analysis of Libyan honey samples collected from Benghazi during 2009–2010. Food Nutr. Sci. 2013, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Čelechovská, O.; Vorlová, L. Groups of honey—Physicochemical properties and heavy metals. Acta Vet. Brno 2001, 70, 91–95. [Google Scholar] [CrossRef]
- Bakirdere, S.; Yaroglu, T.; Tirik, N.; Demiroz, M.; Karaca, A. Analysis of some physical, chemical and microbiological aspects of honey samples produced and consumed in Turkey. Rev. Fac. Cienc. Agrar. Uncuyo 2018, 50, 263–271. [Google Scholar]
- Santos, F.K.; Dantas Filho, A.N.; Leite, R.H.; Aroucha, E.M.; Santos, A.G.; Oliveira, T.A. Rheological and some physicochemical characteristics of selected floral honeys from plants of caatinga. An. Acad. Bras. Ciências 2014, 86, 981–994. [Google Scholar] [CrossRef] [Green Version]
- Directive 2014/63/EU of the European Parliament and of the Council of 15 May 2014 amending Council Directive 2001/110/EC relating to honey. Off. J. Eur. Comm. 2014, 164, 1–5.
- Codex Alimentarius, Alinorm 01/25, Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission Twenty-fourth Session, Geneva, 2–7 July 2001. Available online: www.fao.org/download/report/277/Al01_25e (accessed on 19 June 2019).
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Mărghitaș, L.A.; Dezmirean, D.; Moise, A.; Bobiș, O.; Laslo, L.; Bogdanov, Ș. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.M.M.; Oliveira, M.B.S.; Costa, J.G.; Valentim, I.B.; Goulart, M.O.F. Antioxidant Capacity, Physicochemical and Floral Characterization of Honeys from the NorthEast of Brazil. Rev. Virtual Química 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Juan-Borrás, M.; Domenech, E.; Conchado, A.; Escriche, I. Physicochemical Quality Parameters at the Reception of the Honey Packaging Process: Influence of Type of Honey, Year of Harvest, and Beekeeper. J. Chem. 2015. [Google Scholar] [CrossRef]
- Kumazawa, S.; Okuyama, Y.; Murase, M.; Ahn, M.-R.; Nakamura, J.; Tatefuji, T. Antioxidant Activity in Honeys of Various Floral Origins: Isolation and Identification of Antioxidants in Peppermint Honey. Food Sci. Technol. Res. 2012, 18, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Albu, A.; Cucu-Man, S.M.; Pop, I.M. Physicochemical Parameters and Spectral Structure (Ft-Ir) of Honey From Iasi County (North-Eastern Romania). Sci. Pap. Ser. D. Anim. Sci. 2019, LXII, 206–216. [Google Scholar]
- Khalil, M.I.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, M.; Islam, M.A.; Islam, M.N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, M.; Sulaiman, S.A.; Azlan, S.A.M.; Gan, S.H. Two-year variations of phenolics, flavonoids and antioxidant contents in acacia honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef] [Green Version]
- White, J.W.; Doner, L.W. Honey Composition and Properties: Beekeeping in the United States. Agric. Handb. 1980, 335, 82–91. [Google Scholar]
- de-Melo, A.A.M.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A reviewA. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.; Mafra, I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [Green Version]
- Popescu, R.; Geana, E.I.; Dinca, O.R.; Sandru, C.; Costinel, D.; Ionete, R.E. Characterization of the Quality and Floral Origin of Romanian Honey. Anal. Lett. 2015, 49, 411–422. [Google Scholar] [CrossRef]
- Purcarea, C.; Teusdea, C.A.; Chis, M.A. Chemometric Analysis of Selected Honey Samples from Western Part of Romania. Rev. De Chim. 2016, 67, 2129–2133. [Google Scholar]
- Scripcă, L.A.; Norocel, L.; Amariei, S. Comparison of physicochemical, microbiological properties and bioactive compounds content of grassland honey and other floral origin honeys. Molecules 2019, 24, 2932. [Google Scholar] [CrossRef] [Green Version]
- Anguebes, F.; Pat, L.; Ali, B.; Guerrero, A.; Córdova, A.V.; Abatal, M.; Garduza, J.P. Application of multivariable analysis and FTIR-ATR spectroscopy to the prediction of properties in campeche honey. J. Anal. Methods Chem. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarević, K.B.; Andrić, F.; Trifković, J.; Tešić, Ž.; Milojković-Opsenica, D. Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chem. 2012, 32, 2060–2064. [Google Scholar] [CrossRef]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef] [PubMed]
- Krishnasree, V.; Ukkuru, P.M. Quality Analysis of Bee Honeys. Int. J. Curr. Microbiol. Appl. Sci 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Attri, P.K. Physico-chemical investigation of honey samples of Apis cerana incica F.(Traditional Beekeeping) and Apis mellifera (Morden apiculture) from Chamba district, Himachal Pradesh. Biol Forum Int. J. 2011, 3, 67–73. [Google Scholar]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T.J. Review article: Methods of analysis of honey. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Mărghitaș, L.A.; Dezmirean, D.S.; Pocol, C.B.; Marioara, I.; Bobiș, O.; Gergen, I. The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 84–90. [Google Scholar]
- Cimpoiu, C.; Hosu, A.; Miclaus, V.; Puscas, A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta Part A 2013, 100, 149–154. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dzugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical Characterization and Antioxidant Activity of Commercial Portuguese Honeys. J. Food Sci. 2013, 78, 1159–1165. [Google Scholar] [CrossRef]
- Kahraman, T.; Buyukunal, S.K.; Vural, A.; Altunatmaz, S.S. Physico-chemical properties in honey from different regions of Turkey. Food Chem. 2010, 123, 41–44. [Google Scholar] [CrossRef]
- Stihi, C.; Chelărescu, E.D.; Duliu, O.G.; Toma, L.G. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom. Rep. Phys. 2016, 68, 362–369. [Google Scholar]
- Matović, K.; Ćirić, J.; Kaljević, V.; Nedić, N.; Jevtić, G.; Vasković, N.; Baltić, M.Ž. Physicochemical parameters and microbiological status of honey produced in an urban environment in Serbia. Environ. Sci. Pollut. Res. 2018, 25, 14148–14157. [Google Scholar] [CrossRef]
- Giorgi, A.; Madeo, M.; Baumgartner, J.; Lozzia, G.C. The Relationships between Phenolic Content, Pollen Diversity, Physicochemical Information and Radical Scavenging Activity in Honey. Molecules 2011, 16, 336–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kędzierska-Matysek, M.; Matwijczuk, A.; Florek, M.; Barłowska, J.; Wolanciuk, A.; Matwijczuk, A.; Chruściel, E.; Walkowiak, R.; Karcz, D.; Gładyszewska, B. Application of FTIR spectroscopy for analysis of the quality of honey. Bio. Web Conf. 2018, 10, 02008. [Google Scholar] [CrossRef] [Green Version]
- Halouzka, R.; Tarkowski, P.; Zeljković, S.Ć. Characterisation of Phenolics and other Quality Parameters.of Different Types of Honey. Czech J. Food Sci. 2016, 34, 244–253. [Google Scholar]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Majewska, E.; Druzynska, B.; Wołosiak, R. Determination of the botanical origin of honeybee honeys based on the analysis of their selected physicochemical parameters coupled with chemometric assays. Food Sci. Biotechnol. 2019, 28, 1307–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Acacia | Linden | Multifloral | ||||||
---|---|---|---|---|---|---|---|---|---|
Descriptive Statistics | |||||||||
Min–Max | Mean ± SD | CV% | Min–Max | Mean ± SD | CV% | Min–Max | Mean ± SD | CV% | |
WIS (%) | 0.023–0.122 | 0.062 ± 0.03 | 48.86 | 0.032–0.109 | 0.070 ± 0.03 | 35.84 | 0.036–0.131 | 0.080 ± 0.03 | 41.39 |
Pfund value (mm) | 0.3–8.8 | 2.2 ± 2.66 | 123.8 | 22.6–76.4 | 40.2 ± 15.17 | 37.77 | 15.4–70.1 | 44.8 ± 17.45 | 38.95 |
Color intensity | water white-extra white | white-light amber | extra white-light amber | ||||||
RI | 1.485–1.496 | 1.491 ± 0.00 | 0.26 | 1.488–1.499 | 1.493 ± 0.00 | 0.2 | 1.485–1.497 | 1.492 ± 0.00 | 0.25 |
M (%) | 16.20–20.52 | 18.11 ± 1.47 | 8.13 | 15.20–19.32 | 17.42 ± 1.14 | 6.52 | 15.83–20.77 | 17.93 ± 1.44 | 8.03 |
SS (%) | 79.48–83.80 | 81.89 ± 1.47 | 1.8 | 80.68–84.80 | 82.58 ± 1.14 | 1.38 | 79.23–84.17 | 82.07 ± 1.44 | 1.75 |
TSS (°Brix) | 78.08–82.27 | 80.40 ± 1.43 | 1.78 | 79.20–83.26 | 81.07 ± 1.11 | 1.37 | 77.83–82.67 | 80.60 ± 1.41 | 1.75 |
SG (g/cm3) | 1.414–1.443 | 1.430 ± 0.01 | 0.68 | 1.422–1.450 | 1.435 ± 0.01 | 0.54 | 1.414–1.446 | 1.431 ± 0.01 | 0.66 |
pH | 3.673–5.503 | 4.272 ± 0.45 | 10.57 | 3.742–5.398 | 4.479 ± 0.42 | 9.48 | 3.761–4.468 | 4.117 ± 0.21 | 5.13 |
FA (meq kg−1) | 2.4–17.0 | 8.6 ± 5.14 | 59.74 | 12.7–49.8 | 24.7 ± 11.88 | 48.05 | 15.6–50.0 | 27.1 ± 11.34 | 41.85 |
Ash (%) | 0.030–0.242 | 0.088 ± 0.07 | 74.94 | 0.080–0.543 | 0.225 ± 0.13 | 59.43 | 0.088–0.277 | 0.178 ± 0.06 | 32.69 |
EC (µS cm−1) | 130–500 | 223 ± 12.31 | 50.4 | 279–646 | 506 ± 120.97 | 23.92 | 210–679 | 414 ± 162.27 | 39.16 |
References | Country | M (%) | TSS (Brix°) | SG (g cm−1) | pH | FA (meq kg−1) | EC (mS cm−1) | Ash (%) |
---|---|---|---|---|---|---|---|---|
Linden | ||||||||
Present study | Romania | 15.20–19.32 | 79.20–83.26 | 1.422–1.450 | 3.742–5.398 | 12.70–49.80 | 0.279–0.646 | 0.080–0.543 |
Mărghitaș et al. (2009) | Romania | 16.70–19.10 | - | - | - | - | - | 0.190–0.300 |
Stihi et al. (2016) | Romania | 17.20–18.80 | - | - | 3.840–4.350 | - | 0.202–0.346 | - |
Popescu et al. (2015) | Romania | 5.40–6.00 | 78.70–82.30 | - | 3.600–4.700 | - | 0.410–0.730 | - |
Purcarea et al. (2016) | Romania | 18.44 | - | - | 4.425 | - | 0.486 | 0.186 |
Scripcă et al. (2019) | Romania | 16.00–17.90 | - | - | - | - | 0.550–0.720 | - |
Kędzierska-Matysek et al. (2018) | Poland | 19.40 | 79.20 | - | 4.130 | 14.50 | 0.579 | - |
Tomczyk et al. (2019) | Poland | - | - | - | 3.810 | 34.20 | 0.530 | - |
Lazarević et al. (2012) | Serbia | 13.41–22.48 | - | - | 3.980–5.400 | 8.20–26.20 | 0.300–0.760 | - |
Matović et al. (2018) | Serbia | 17.20 | 12.18 | 0.390 | 0.060 | |||
Tomczyk et al. (2019) | Slovakia | 18.35 | - | - | 3.900 | 21.60 | 0.230 | - |
Acacia | ||||||||
Present study | Romania | 16.20–20.52 | 78.08–82.27 | 1.414–1.443 | 3.673–5.503 | 2.40–17.00 | 0.130–0.500 | 0.030–0.242 |
Stihi et al. (2016) | Romania | 16.70–22.80 | - | - | 3.650–4.630 | - | 0.097–0.268 | - |
Mărghitaș et al. (2009) | Romania | 16.60–19.80 | - | - | - | - | - | 0.030–0.280 |
Mărghitaș et al. (2010) | Romania | 17.20–19.00 | - | - | 3.860–4.090 | 1.84–10.87 | 0.098–0.212 | - |
Cimpoiu et al. (2013) | Romania | - | - | - | - | - | - | 0.040–0.270 |
Popescu et al. (2015) | Romania | 3.90–6.20 | 78.30–83.60 | - | 3.700–4.300 | - | 0.110–0.270 | - |
Scripcă et al. (2019) | Romania | 16.30–18.00 | - | - | 0.220–0.350 | - | ||
Ahamed et al. (2017) | Saudi Arabia | 8.80–13.85 | - | 1.420–1.460 | 3.320–3.770 | 19.80–65.00 | 0.364–1.207 | 0.020–0.200 |
Attri (2011) | India | 17.07–17.20 | - | 1.426–1.440 | - | - | 0.240–0.380 | 0.010–0.100 |
Lazarević et al. (2012) | Serbia | 13.90–20.57 | - | - | 3.490–5.850 | 7.80–29.60 | 0.100–0.680 | - |
Tomczyk et al. (2019) | Poland | 17.73 | - | - | 3.790 | 25.60 | 0.420 | - |
Tomczyk et al. (2019) | Slovakia | 17.86 | - | - | 3.710 | 16.10 | 0.200 | - |
Multifloral | ||||||||
Present study | Romania | 15.83–20.77 | 77.83–82.67 | 1.414–1.446 | 3.761–4.468 | 15.60–50.00 | 0.210–0.679 | 0.088–0.277 |
Pauliuc et al. 2020 | Romania | 19.60 | - | - | 4.090 | 23.90 | 0.354 | - |
Popescu et al. 2015 | Romania | 4.80–7.40 | 80.20–83.00 | - | 3.200–4.600 | - | 0.232–0.831 | - |
Cimpoiu et al. 2013 | Romania | - | - | - | - | - | 0.050–0.100 | |
Scripcă et al. 2019 | Romania | 15.90–17.90 | - | - | - | - | 0.280–0.450 | - |
Aazza et al. (2013) | Portugal | 19.00–19.90 | - | - | 3.750–3.870 | 28.62–39.75 | 0.358–0.469 | 0.170–0.330 |
Anguebes et al. (2016) | Mexico | 14.15–18.94 | 82.44–86.06 | - | 3.800–4.400 | 15.77–23.03 | 0.580–0.680 | 0.120–0.160 |
Halouzka et al. (2016) | Czech Republic | 17.00–18.20 | - | - | 3.870–4.390 | 15.70–17.80 | 0.270–0.670 | - |
Cantarelli et al. (2008) | Argentine | 14.28–18.60 | - | - | 3.340–4.700 | 21.23–43.20 | - | 0.060–0.210 |
Giorgi et al. (2011) | Italy | 16.30–17.30 | - | - | 3.850–4.510 | 9.00–29.00 | 0.150–0.780 | - |
Kędzierska-Matysek et al. (2018) | Poland | 18.40 | 80.10 | - | 4.730 | 4.50 | 0.371 | - |
Tomczyk et al. (2019) | Poland | 18.65 | - | - | 3.570 | 37.00 | 0.350 | |
Khalil et al. (2012) | Algeria | 11.59–14.13 | - | - | 3.700–4.000 | - | 0.417–0.806 | - |
Krishnasree and Ukkuru (2017) | India | 13.30–14.38 | 76.00–77.50 | 1.380–1.400 | 3.730–3.830 | 31.00–32.00 | 0.130–0.310 | 0.140–0.160 |
Almeida et al. (2016) | Brazil | 17.46–20.28 | - | - | 3.650–4.170 | 12.77–48.04 | - | 0.075–0.472 |
Tomczyk et al. (2019) | Slovakia | 18.53 | - | - | 3.680 | 23.30 | 0.210 | - |
Kahraman et al. (2010) | Turkey | 15.30–16.90 | - | - | - | 23.90–24.40 | - | 0.280–0.290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albu, A.; Radu-Rusu, C.-G.; Pop, I.M.; Frunza, G.; Nacu, G. Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture 2021, 11, 247. https://doi.org/10.3390/agriculture11030247
Albu A, Radu-Rusu C-G, Pop IM, Frunza G, Nacu G. Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture. 2021; 11(3):247. https://doi.org/10.3390/agriculture11030247
Chicago/Turabian StyleAlbu, Aida, Cristina-Gabriela Radu-Rusu, Ioan Mircea Pop, Gabriela Frunza, and Gherasim Nacu. 2021. "Quality Assessment of Raw Honey Issued from Eastern Romania" Agriculture 11, no. 3: 247. https://doi.org/10.3390/agriculture11030247
APA StyleAlbu, A., Radu-Rusu, C.-G., Pop, I. M., Frunza, G., & Nacu, G. (2021). Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture, 11(3), 247. https://doi.org/10.3390/agriculture11030247