A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Standards and Reagents
2.2. Description of the Study Area
2.3. Sample Preparation
2.4. Gas Chromatography–Mass Spectrometry-GC-QqQ-MS Analysis
2.5. Analytical Method Validation
2.5.1. Linearity–Matrix Effect
2.5.2. Accuracy, Limit of Quantification, and Precision
2.6. Predicted Environmental Concentration in Soil (PECsoil)
2.7. Health Risk Assessment
3. Results and Discussion
3.1. Analytical Method Performance
3.2. Soil Samples Results
3.3. Human Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pico, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alobaid, S.M.; Barcelo, D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2019, 652, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Koul, B.; Taak, P. Soil Pollution: Causes and Consequences. In Biotechnological Strategies for Effective Remediation of Polluted Soils; Koul, B., Taak, P., Eds.; Springer: Singapore, 2018; pp. 1–31. [Google Scholar]
- Directive. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- Muir, D.C.G.; Norstrom, R.J.; Simon, M. Organochlorine Contaminants in Arctic Marine Food-Chains—Accumulation of Specific Polychlorinated-Biphenyls and Chlordane-Related Compounds. Environ. Sci. Technol. 1988, 22, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Olsson, A.; Valters, K.; Burreau, S. Concentrations of organochlorine substances in relation to fish size and trophic position: A study on perch (Perca fluviatilis L.). Environ. Sci. Technol. 2000, 34, 4878–4886. [Google Scholar] [CrossRef]
- UNEP. Regionally Based Assessment of Persistent Toxic Substances—Global Report; United Nations Environment Programme, Châtelaine: Geneva, Switzerland, 2011; p. 207. [Google Scholar]
- Stockholm-Convention. Stockholm Convention on Persistent Organic Pollutants (POPs). 2011. Available online: http://chm.pops.int/ (accessed on 10 January 2021).
- United Nations Environment Programme (UNEP). Stockholm Convention on Persistent Organic Pollutions (POPs); Châtelaine GE: Switzerland, 2017; Available online: http://chm.pops.int (accessed on 10 January 2021).
- Shegunova, P.; Klanova, J.; Holoubek, I. Residues of organochlorinated pesticides in soils from the Czech Republic. Environ. Pollut. 2007, 146, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Umulisa, V.; Kalisa, D.; Skutlarek, D.; Reichert, B. First evaluation of DDT (dichlorodiphenyltrichloroethane) residues and other Persistence Organic Pollutants in soils of Rwanda: Nyabarongo urban versus rural wetlands. Ecotoxicol. Environ. Safe 2020, 197. [Google Scholar] [CrossRef] [PubMed]
- Krohn, C.; Jin, J.; Ryan, J.; Fabijanski, P.; Franks, A.E.; Tang, C.X. Composition of soil organic matter drives total loss of dieldrin and dichlorodiphenyltrichloroethane in high-value pastures over thirty years. Sci. Total Environ. 2019, 691, 135–145. [Google Scholar] [CrossRef]
- Khuman, S.N.; Vinod, P.G.; Bharat, G.; Kumar, Y.S.M.; Chakraborty, P. Spatial distribution and compositional profiles of organochlorine pesticides in the surface soil from the agricultural, coastal and backwater transects along the south-west coast of India. Chemosphere 2020, 254. [Google Scholar] [CrossRef]
- Eudoxie, G.D.; Mathurin, G.; Lopez, V.; Perminova, O. Assessment of pesticides in soil from obsolete pesticides stores: A Caribbean case study. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef]
- Biswas, B.; Qi, F.J.; Biswas, J.K.; Wijayawardena, A.; Khan, M.A.I.; Naidu, R. The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm—A Review. Soil Syst. 2018, 2, 51. [Google Scholar] [CrossRef] [Green Version]
- Calderbank, A. The Occurrence and Significance of Bound Pesticide-Residues in Soil. Rev. Environ. Contam. T 1989, 108, 71–103. [Google Scholar]
- Jenkinson, D.S.; Rayner, J.H. Turnover of Soil Organic-Matter in Some of Rothamsted Classical Experiments. Soil Sci. 1977, 123, 298–305. [Google Scholar] [CrossRef]
- Ren, X.Y.; Zeng, G.M.; Tang, L.; Wang, J.J.; Wan, J.; Liu, Y.N.; Yu, J.F.; Yi, H.; Ye, S.J.; Deng, R. Sorption, transport and biodegradation—An insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 2018, 610, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, Y.; Tao, S.; Liu, Y.; Shi, K.L. Sequestration of organochlorine pesticides in soils of distinct organic carbon content. Environ. Pollut. 2011, 159, 700–705. [Google Scholar] [CrossRef]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
- Xing, B.S.; Pignatello, J.J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ. Sci. Technol. 1997, 31, 792–799. [Google Scholar] [CrossRef]
- Sharom, M.S.; Miles, J.R.W.; Harris, C.R.; Mcewen, F.L. Behavior of 12 Insecticides in Soil and Aqueous Suspensions of Soil and Sediment. Water Res. 1980, 14, 1095–1100. [Google Scholar] [CrossRef]
- Carlon, C.; D’Alessandro, M.; Swartjes, F. Derivation Methods of Soil Screening Values in Europe. A Review and Evaluation of National Procedures towards Harmonization; European Commission, Joint Research Centre: Ispra, Italy, 2007; p. 306. [Google Scholar]
- Muir, D.; Sverko, E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Anal. Bioanal. Chem. 2006, 386, 769–789. [Google Scholar] [CrossRef] [Green Version]
- Fatoki, O.S.; Awofolu, R.O. Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electron-capture detection. J. Chromatogr. A 2003, 983, 225–236. [Google Scholar] [CrossRef]
- Otani, T.; Seike, N.; Sakata, Y. Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci. Plant Nutr. 2007, 53, 86–94. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- ICH. Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 12 November 2020).
- SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Pano-Farias, N.S.; Ceballos-Magana, S.G.; Muniz-Valencia, R.; Gonzalez, J. Validation and assessment of matrix effect and uncertainty of a gas chromatography coupled to mass spectrometry method for pesticides in papaya and avocado samples. J. Food Drug Anal. 2017, 25, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Diez, C.; Barrado, E.; Marinero, P.; Sanz, M. Orthogonal array optimization of a multiresidue method for cereal herbicides in soils. J. Chromatogr. A 2008, 1180, 10–23. [Google Scholar] [CrossRef]
- FOCUS-1997. Soil Persistence Models and EU Registration. Available online: https://esdac.jrc.ec.europa.eu/public_path/u891/Soil%20persistence%20models%20and%20EU%20registration’%20%281997%29.pdf (accessed on 10 February 2021).
- PEC-Soil. Available online: https://english.ctgb.nl/documents/assessment-framework-ppp/2017/12/22/calculation-of-pec-soil-values (accessed on 10 February 2021).
- WHO. Environmental Health Criteria 91: Aldrin and Dieldrin. Available online: http://www.inchem.org/documents/ehc/ehc/ehc91.htm (accessed on 12 January 2021).
- James, T.; Gaw, S. Available online: https://envirolink.govt.nz/assets/Envirolink/1472-TSDC103-Review-of-potential-soil-contamination-issues-from-pesticide-use-in-productive-land-and-sports-fields.pdf (accessed on 12 January 2021).
- US-EPA. US EPA (United States Environmental Protection Agency). Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table; US-EPA: Washington, DC, USA, 2013. [Google Scholar]
- Niu, L.; Xu, Y.; Xu, C.; Yun, L.; Liu, W. Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environ. Pollut. 2014, 195, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, Y.; Wang, P.; Wang, T.; Zhang, Y.; Suriyanarayanan, S.; Liang, R.; Baninla, Y.; Khan, K. Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environ. Pollut. 2018, 239, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Pesticides-TMDL. Molalla-Pudding Subbasin TMDL Chapter 4 Pesticides. Available online: https://www.oregon.gov/deq/FilterDocs/MoPudChapter4Pesticides.pdf (accessed on 10 January 2021).
- BOOK. Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, 3rd ed.; Howard, P.H., Michalenko, E.M., Jarvis, W.F., Basu, D.K., Sage, G.W., Meylan, W.M., Beauman, J.A., Anthony Gray, D., Eds.; CRC Press: Boca Raton, FL, USA, 1991; p. 712. [Google Scholar] [CrossRef]
- Tox-Profile. Toxicological Profile for Aldrin/Dieldrin. U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp1.pdf (accessed on 10 January 2021).
- FAO. Assessing Soil Contamination—A Reference Manual; FAO: Rome, Italy, 2000; Available online: http://www.fao.org/3/X2570E/X2570E00.htm (accessed on 10 February 2021).
- Kah, M.; Beulke, S.; Brown, C.D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem. 2007, 55, 4487–4492. [Google Scholar] [CrossRef]
- Qu, C.; Sun, Y.; Albanese, S.; Lima, A.; Sun, W.; Di Bonito, M.; Qi, S.H.; De Vivo, B. Organochlorine pesticides in sediments from Gulfs of Naples and Salerno, Southern Italy. J. Geochem. Explor. 2018, 195, 87–96. [Google Scholar] [CrossRef]
- Qu, C.; Albanese, S.; Lima, A.; Li, J.; Doherty, A.L.; Qi, S.; De Vivo, B. Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ. Pollut. 2017, 231, 1497–1506. [Google Scholar] [CrossRef]
- Newton, I. Changes in the status of the Peregrine Falcon in Europe: An overview. Peregrine Falcon Popul. Manag. Recovery 1988, 227, 1982–1986. [Google Scholar]
- Qu, C.; Albanese, S.; Li, J.; Cicchella, D.; Zuzolo, D.; Hope, D.; Cerino, P.; Pizzolante, A.; Doherty, A.L.; Lima, A.; et al. Organochlorine pesticides in the soils from Benevento provincial territory, southern Italy: Spatial distribution, air-soil exchange, and implications for environmental health. Sci. Total Environ. 2019, 674, 159–170. [Google Scholar] [CrossRef]
- ONCGSCI. Office of the National Coordination Group for Stockholm Convention Implementation. In The People’s Republic of China National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants; China Environment Science Press: Beijing, China, 2009. [Google Scholar]
- US-EPA. Guidance for Developing Ecological Soil Screening Levels. (OSWER Directive 9285.7-55); Office of Solid Waste and Emergency Response: Washington, DC, USA. Available online: https://rais.ornl.gov/guidance/epa_eco.html (accessed on 2 November 2020).
- Weisgerb, I.; Kohli, J.; Kaul, R.; Klein, W.; Korte, F. Fate of Aldrin-C-14 in Maize, Wheat, and Soils under Outdoor Conditions. J. Agric. Food Chem. 1974, 22, 609–612. [Google Scholar] [CrossRef] [PubMed]
(a ± Sa) | (b ± Sb) | r | LOQ (mg kg−1) | |
5992.7 ± 221.2 | 10,596.2 ± 188.8 | 0.9992 | 0.005 | |
Active substance | Spiking level (mg kg−1) | Mean Recovery % ± RSD%, N = 5 | Precision (RSD%), Ν = 5 | |
(RSDr%) | (RSDR%) | |||
Dieldrin | 0.005 | 85.2 ± 11.2 | 8.0 | 10.4 |
0.01 | 102.4 ± 6.4 | 4.8 | 9.2 | |
0.05 | 81.1 ± 5.9 | 6.3 | 5.9 | |
(a ± Sa) | (b ± Sb) | r | LOQ (mg kg−1) | |
12,982.1 ± 188.4 | 10,096.1 ± 107.9 | 0.9996 | 0.005 | |
Active substance | Spiking level (mg kg−1) | Mean Recovery % ± RSD%, N = 5 | Precision (RSD%), Ν = 5 | |
(RSDr%) | (RSDR%) | |||
Aldrin | 0.005 | 80.1 ± 7.7 | 7.0 | 10.2 |
0.01 | 93.4 ± 5.9 | 3.2 | 7.2 | |
0.05 | 77.1 ± 3.8 | 5.5 | 6.9 |
Non-Carcinogenic | |||||||||
---|---|---|---|---|---|---|---|---|---|
ADDintake * | ADDingest | ADDdermal | ADDinhale | Cumulative health risk | |||||
Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
5.4518 × 10−6 | 2.5442 × 10−5 | 2.4657 × 10−8 | 1.1507 × 10−7 | 9.8384 × 10−8 | 4.5912 × 10−7 | 1.2691 × 10−8 | 1.2692 × 10−8 | ||
THQintake | THQingest | THQdermal | - | HI | |||||
Adults | Children | Adults | Children | Adults | Children | - | Adults | Children | |
0.1090 | 0.5088 | 0.0005 | 00023 | 0.0020 | 0.0092 | - | 0.1115 | 0.5203 | |
Carcinogenic | |||||||||
ADDintake | ADDingest | ADDdermal | ADDinhale | Cumulative health risk | |||||
Adults | Children | Adults | Children | Adults | Children | Adults | Children | ||
1.8692 × 10−6 | 2.1807 × 10−6 | 2.8110 × 10−8 | 2.8110 × 10−8 | 8.9014 × 10−8 | 8.9014 × 10−6 | 4.3513 × 10−9 | 1.0878 × 10−9 | ||
CRintake | CRingest | CRdermal | CRinhale | CR | |||||
Adults | Children | Adults | Children | Adults | Children | Adults | Children | Adults | Children |
2.9907 × 10−5 | 3.4891 × 10−5 | 4.4975 × 10−7 | 4.4975 × 10−7 | 1.4242 × 10−6 | 1.4242 × 10−6 | 2.0016 × 10−14 | 5.0040 × 10−15 | 3.1781 × 10−5 | 3.6765 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiantas, P.; Tzanetou, E.N.; Karasali, H.; Kasiotis, K.M. A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment. Agriculture 2021, 11, 314. https://doi.org/10.3390/agriculture11040314
Tsiantas P, Tzanetou EN, Karasali H, Kasiotis KM. A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment. Agriculture. 2021; 11(4):314. https://doi.org/10.3390/agriculture11040314
Chicago/Turabian StyleTsiantas, Petros, Evangelia N. Tzanetou, Helen Karasali, and Konstantinos M. Kasiotis. 2021. "A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment" Agriculture 11, no. 4: 314. https://doi.org/10.3390/agriculture11040314
APA StyleTsiantas, P., Tzanetou, E. N., Karasali, H., & Kasiotis, K. M. (2021). A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment. Agriculture, 11(4), 314. https://doi.org/10.3390/agriculture11040314