Connecting Bio-Priming Approach with Integrated Nutrient Management for Improved Nutrient Use Efficiency in Crop Species
Abstract
:1. Introduction
2. Nutrient—An Energy-Intensive Sector
3. Nutrient Mining
Nutrient Mining in Indian Soils
4. Nutrient Use Efficiency
5. Bio-Priming Mediated Nutrient Use Efficiency
5.1. Nitrogen Use Efficiency
5.2. Phosphorus Use Efficiency
5.3. Potassium Use Efficiency
5.4. Bio-Priming Mediated Use Efficiency of Other Nutrients
6. Effect of Bio-Priming and Integrated Nutrient Management (INM) on Key Soil Functions Essential for Nutrient Cycling
6.1. Microbial Activity
6.2. Soil Fertility
7. Economics and Energy Approaches in Integrated Nutrient Management
8. Nutrient Kinetics Involved in Integrated Nutrient Management
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakshit, A.; Sunita, K.; Pal, S.; Singh, A.; Singh, H.B. Bio-Priming Mediated Nutrient Use Efficiency of Crop Species. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer: New Delhi, India, 2015; pp. 181–191. [Google Scholar]
- Rakshit, A. Impact Assessment of Bio Priming Mediated Nutrient Use Efficiency for Climate Resilient Agriculture. In Climate Change and Agriculture in India: Impact and Adaptation; Sheraz Mahdi, S., Ed.; Springer: Cham, Switzerland, 2019; pp. 57–68. [Google Scholar]
- Singh, K.P.; Prakash, V.; Srinivas, K.; Srivastva, A.K. Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max) based cropping systems under the rainfed conditions in North-West Himalayan Region. Soil Tillage Res. 2008, 100, 78–82. [Google Scholar] [CrossRef]
- Tuti, M.D.; Prakash, V.; Pandey, B.M.; Bhattacharyya, R.; Mahanta, D.; Bisht, J.K.; Kumar, M.; Mina, B.L.; Kumar, N.; Bhatt, J.C.; et al. Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy 2012, 45, 986–993. [Google Scholar] [CrossRef]
- Rattan, R.K. Soil processes and climate change. J. Indian Soc. Soil Sci. 2014, 62, S5–S24. [Google Scholar]
- Sarkar, D.; Rakesh, S.; Ganguly, S.; Rakshit, A. Management of increasing soil pollution in the ecosystem. Adv. Res. 2017, 12, 1–9. [Google Scholar] [CrossRef]
- Dhawan, A.S. Soil quality in relation to agricultural sustainability: A road map ahead. J. Indian Soc. Soil Sci. 2014, 62, S70–S77. [Google Scholar]
- Sanyal, S.K.; Majumdar, K.; Singh, V.K. Nutrient management in Indian agriculture with special reference to nutrient mining—A relook. J. Indian Soc. Soil Sci. 2014, 62, 307–325. [Google Scholar]
- Baligar, V.C.; Fageria, N.K. Nutrient Use Efficiency in Plants: An Overview. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer: New Delhi, India, 2014; pp. 1–14. [Google Scholar]
- Taylor, A.G.; Allen, P.S.; Bennett, M.A.; Bradford, K.J.; Burris, J.S.; Misra, M.K. Seed enhancements. Seed Sci. Res. 1998, 8, 245–256. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Pre-sowing seed treatment—A shotgun approach to improve germination, plant growth, and crop yield under-saline and non-saline conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Afzal, I.; Rehman, H.U.; Naveed, M.; Basra, S.M.A. Recent Advances in Seed Enhancements. In New Challenges in Seed Biology–Basic and Translational Research Driving Seed Technology; Araújo, S., Balestrazzi, A., Eds.; IntechOpen: Rijeka, Croatia, 2016; pp. 47–74. [Google Scholar]
- Tanou, G.; Fotopoulos, V.; Molassiotis, A. Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Front. Plant Sci. 2005, 3, 216. [Google Scholar] [CrossRef] [Green Version]
- Balmer, A.; Pastor, V.; Gamir, J.; Flors, V.; Mauch-Mani, B. The ‘prime-ome’: Towards a holistic approach to priming. Trends Plant Sci. 2015, 20, 443–452. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Jiang, D. Priming: A promising strategy for crop production in response to future climate. J. Integr. Agric. 2017, 16, 2709–2716. [Google Scholar] [CrossRef]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; Araújo, S., Balestrazzi, A., Eds.; IntechOpen: Rijeka, Croatia, 2016; pp. 1–46. [Google Scholar]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Sarkar, D.; Rakshit, A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol. Ecol. 2020, 96, fiaa221. [Google Scholar] [CrossRef]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Lee, D.-J. Evaluating the role of seed priming in improving drought tolerance of pigmented and non-pigmented rice. J. Agron. Crop Sci. 2017, 203, 269–276. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed coating: Science or marketing spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Fadavi, R.; Keyhani, A.; Mohtasebi, S.S. An analysis of energy use, input costs and relation between energy inputs and yield of apple orchard. Res. Agric. Eng. 2011, 57, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.B. Modern agriculture vis-à-vis natural resources and climate change. J. Indian Soc. Soil Sci. 2016, 64, S103–S114. [Google Scholar]
- Economic Survey. 2018. Available online: https://www.financialexpress.com/budget/economic-survey-2017-18-fertiliser-subsidy-idea-of-providing-income-support-to-farmers-floated-as-dbt-gets-delayed/1035606/ (accessed on 30 March 2021).
- Sharma, P.K. Nutrient-water management for sustainable soil health and crop productivity. J. Indian Soc. Soil Sci. 2016, 64, S27–S41. [Google Scholar]
- Buresh, R.J.; Pampolino, M.F.; Witt, C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems. Plant Soil 2010, 335, 35–64. [Google Scholar] [CrossRef]
- Chuan, L.; He, P.; Jin, J.; Li, S.; Grant, C.; Xu, X.; Qiu, S.; Zhao, S.; Zhou, W. Estimating nutrient uptake requirements for wheat in China. Field Crop. Res. 2013, 146, 96–104. [Google Scholar] [CrossRef]
- Ganeshamurthy, A.N.; Kalaivanan, D.; Selvakumar, G.; Panneerselvam, P. Nutrient management in horticultural crops. Indian J. Fert. 2015, 11, 30–42. [Google Scholar]
- Dwivedi, B.S. Revisiting soil testing and fertilizer use research. J. Indian Soc. Soil Sci. 2014, 62, S40–S55. [Google Scholar]
- Majumdar, K.; Sanyal, S.K.; Dutta, S.K.; Satyanarayana, T.; Singh, V.K. Nutrient mining: Addressing the challenges to soil resources and food security. In Biofortification of Food Crops; Singh, U., Praharaj, C., Singh, S., Singh, N., Eds.; Springer: New Delhi, India, 2016; pp. 177–198. [Google Scholar]
- Majumdar, S.; Prakash, N.B. Prospects of customized fertilizers in Indian agriculture. Curr. Sci. 2018, 115, 242–248. [Google Scholar] [CrossRef]
- Prasad, R. Sustaining Indian Agriculture (Souvenir 1905–2005); Indian Agricultural Research Institution: New Delhi, India, 2005; pp. 103–106. [Google Scholar]
- Sharma, S.K.; Tiwari, K.N. Proceedings of Fertilizer Association of India (FAI) Annual Seminar; FAI: New Delhi, India, 2004; p. SII-I/1-25. [Google Scholar]
- Subba Rao, A.; Sammi Reddy, K. Integrated nutrient management vis-à-vis crop production/productivity, nutrient balance, farmer livelihood in India. In Proceedings of the Regional Workshop, Beijing, China, 12–16 December 2005. [Google Scholar]
- Tandon, H.L.S. Soil nutrient balance sheets in India: Importance, status, issues, and concerns. Better Crop. India 2007, 1, 15–19. [Google Scholar]
- Muralidharudu, Y.; Sammi Reddy, K.; Mandal, B.N.; Subba Rao, A.; Singh, K.N.; Sonekar, S. GIS Based Soil Fertility Maps of Different States of India; AICRP-STCR, Indian Institute of Soil Science: Bhopal, India, 2011; pp. 1–224. [Google Scholar]
- Rattan, R.K. Soil—A Precious Resource. Indian Society of Soil Science (ISSS); Newsletter. September 2013; 33–35. [Google Scholar]
- AICRP-IFS (2006–07 to 2010–11). Annual Report of All India Coordinated Research Project on Integrated Farming Systems Research; Modipuram: Meerut, India, 2010. [Google Scholar]
- AICRP-IFS (2011–12). Annual Report of All India Coordinated Research Project on Integrated Farming Systems Research; Modipuram: Meerut, India, 2011. [Google Scholar]
- Tomar, P.S.; Verma, S.K.; Gupta, N.; Bansal, K.N. Effect of long-term integrated nutrient management on productivity of pearl millet (Pennisetum glaucum)-mustard (Brassica juncea) cropping system and soil fertility in an Inceptisol. J. Indian Soc. Soil Sci. 2018, 66, 295–299. [Google Scholar] [CrossRef]
- FAO. World Fertilizer Trends and Outlook to 2020—Summary Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i6895e.pdf (accessed on 5 June 2019).
- Fixen, P.; Brentrup, F.; Bruulsema, T.W.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency: Measurement, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA); International Water Management Institute (IWMI); International Plant Nutrition Institute (IPNI); International Potash Institute (IPI): Paris, France, 2015; pp. 8–38. [Google Scholar]
- Norton, R.; Snyder, C.; García, F.; Murrell, T.S. Ecological intensification and 4R nutrient stewardship: Measuring impacts. Better Crop. Plant Food 2017, 101, 10–12. [Google Scholar]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Meena, S.K.; Rakshit, A.; Singh, H.B.; Meena, V.S. Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatal. Agric. Biotechnol. 2017, 12, 172–178. [Google Scholar] [CrossRef]
- Meena, V.S.; Meena, S.K.; Verma, J.P.; Kumar, A.; Aeron, A.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A.; Naveed, M.; Dotaniya, M.L. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Pavithra, S.; Jumrani, J.; Pal, S. Role of optimal fertiliser use in boosting farm income. Indian J. Fert. 2017, 13, 16–24. [Google Scholar]
- Dubey, P.K.; Singh, G.S.; Abhilash, P.C. Adaptive Agricultural Practices: Building Resilience in a Changing Climate; Springer: Cham, Switzerland, 2020; p. 132. [Google Scholar]
- Dubey, P.K.; Singh, A.; Raghubanshi, A.; Abhilash, P.C. Steering the restoration of degraded agroecosystems during the United Nations Decade on Ecosystem Restoration. J. Environ. Manag. 2021, 280, 111798. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency—Measurement and management. In Proceedings of the International Fertilizer Industry Association (IFA) International Workshop on Fertilizer Best Management Practices, Brussels, Belgium, 7–9 March 2007; pp. 1–28. [Google Scholar]
- Zhao, R.; He, P. Ecological intensification to increase nutrient use efficiency while maintaining yield levels: An example from China. Better Crop. Plant Food 2017, 101, 21–22. [Google Scholar]
- Dobermann, A. Nitrogen use efficiency—State of the art. In Proceedings of the International Fertilizer Industry Association (IFA) International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; pp. 1–18. [Google Scholar]
- Murrell, T.S. Principles of nutrient use efficiency of phosphorus and potassium. In Proceedings of the International Plant Nutrition Institute (IPNI) Symposium on Nutrient Use Efficiency at the XVIII Latin American Congress of Soil Science, San José, Costa Rica, 16–20 November 2009; pp. 18–23. [Google Scholar]
- Nagendra Rao, T. Improving nutrient use efficiency: The role of beneficial management practices. Better Crop. India 2007, 1, 6–7. [Google Scholar]
- Musyoka, M.W.; Adamtey, N.; Muriuki, A.W.; Cadisch, G. Effect of organic and conventional farming systems on nitrogen use efficiency of potato, maize and vegetables in the Central highlands of Kenya. Eur. J. Agron. 2017, 86, 24–36. [Google Scholar] [CrossRef]
- Singh, R.J.; Ahlawat, I.P.S. Dry matter, nitrogen, phosphorous, and potassium partitioning, accumulation, and use efficiency in transgenic cotton-based cropping systems. Commun. Soil Sci. Plant Anal. 2012, 43, 2633–2650. [Google Scholar] [CrossRef]
- Kumar, N.; Mathpal, B.; Sharma, A.; Shukla, A.; Shankhdhar, D.; Shankhdhar, S.C. Physiological evaluation of nitrogen use efficiency and yield attributes in rice (Oryza sativa L.) genotypes under different nitrogen levels. Cereal Res. Commun. 2015, 43, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Gajri, P.R.; Prihar, S.S.; Arora, V.K. Interdependence of nitrogen and irrigation effects on growth and input-use efficiencies in wheat. Field Crop. Res. 1993, 31, 71–86. [Google Scholar] [CrossRef]
- Chaudhari, S.K. Soil, water and nutrient management in India: Future perspectives. J. Indian Soc. Soil Sci. 2005, 62, S95–S105. [Google Scholar]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. For. 2008, 32, 177–182. [Google Scholar]
- Surekha, K.; Satishkumar, Y.S. Productivity, nutrient balance, soil quality, and sustainability of rice (Oryza sativa L.) under organic and conventional production systems. Commun. Soil Sci. Plant Anal. 2014, 45, 415–428. [Google Scholar] [CrossRef]
- Adamtey, N.; Musyoka, M.W.; Zundel, C.; Cobo, J.G.; Karanja, E.; Fiaboe, K.K.M.; Muriuki, A.; Mucheru-Muna, M.; Vanlauwe, B.; Berset, E.; et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 2016, 235, 61–79. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Ramachandrappa, B.K.; Jakkula, V.S.; Kundu, S.; Venkateswarlu, B.; Pharande, A.L.; Rupendra Manideep, V.; Prakash Naik, R.; Venkanna, K. Nutrient balance after thirteen years of organic and chemical nutrient management and yield sustainability of groundnut-fingermillet rotation in rainfed Alfisols of semi-arid India. J. Indian Soc. Soil Sci. 2014, 62, 235–247. [Google Scholar]
- Munda, S.; Shivakumar, B.G.; Rana, D.S.; Gangaiah, B.; Manjaiah, K.M.; Dass, A.; Layek, J.; Lakshman, K. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max)–potato (Solanum tuberosum) cropping system. J. Saudi Soc. Agric. Sci. 2018, 17, 107–113. [Google Scholar] [CrossRef]
- Katroschan, K.U.; Uptmoor, R.; Stützel, H. Nitrogen use efficiency of organically fertilized white cabbage and residual effects on subsequent beetroot. Plant Soil 2014, 382, 237–251. [Google Scholar] [CrossRef]
- Meena, S.K.; Rakshit, A.; Meena, V.S. Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal. Agric. Biotechnol. 2016, 6, 68–75. [Google Scholar] [CrossRef]
- Sarkar, D.; Pal, S.; Singh, H.B.; Yadav, R.S.; Rakshit, A. Harnessing bio-priming for integrated resource management under changing climate. In Advances in PGPR Research; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; CAB International: Wallingford, UK, 2017; pp. 349–363. [Google Scholar]
- Shaharoona, B.; Naveed, M.; Arshad, M.; Zahir, Z.A. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 2008, 79, 147–155. [Google Scholar] [CrossRef]
- Duarah, I.; Deka, M.; Saikia, N.; Deka Boruah, H.P. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 2011, 1, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Nagaraju, A.; Sudisha, J.; Murthy, S.M.; Ito, S.I. Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australas. Plant Pathol. 2012, 41, 609–620. [Google Scholar] [CrossRef]
- Baig, K.S.; Arshad, M.; Shaharoona, B.; Khalid, A.; Ahmed, I. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann. Microbiol. 2012, 62, 1109–1119. [Google Scholar] [CrossRef]
- Kaur, G.; Reddy, M.S. Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Arch. Agron. Soil Sci. 2014, 60, 549–564. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Musa, N.; Manzoor, M. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 2015, 12, 4607–4619. [Google Scholar] [CrossRef] [Green Version]
- Jilani, G.; Akram, A.; Ali, R.M.; Hafeez, F.Y.; Shamsi, I.H.; Chaudhry, A.N.; Chaudhry, A.G. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann. Microbiol. 2007, 57, 177–184. [Google Scholar] [CrossRef]
- Khanghahi, M.Y.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.; Sepanlou, M.G. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2018, 76, 13–23. [Google Scholar] [CrossRef]
- Meena, V.S.; Zaid, A.; Maurya, B.R.; Meena, S.K.; Bahadur, I.; Saha, M.; Kumar, A.; Verma, R.; Wani, S.H. Evaluation of potassium solubilizing rhizobacteria (KSR): Enhancing K-bioavailability and optimizing K fertilization of maize plants under Indo-Gangetic Plains of India. Environ. Sci. Pollut. Res. 2018, 25, 36412–36424. [Google Scholar] [CrossRef]
- Molla, A.H.; Haque, M.M.; Haque, M.A.; Ilias, G.N.M. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicone sculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 2012, 1, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Entesari, M.; Sharifzadeh, F.; Ahmadzadeh, M.; Farhangfar, M. Seed biopriming with Trichoderma species and Pseudomonas fluorescent on growth parameters, enzymes activity and nutritional status of soybean. Int. J. Agron. Plant Prod. 2013, 4, 610–619. [Google Scholar]
- Yildirim, E.; Karlidag, H.; Turan, M.; Dursun, A.; Goktepe, F. Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience 2011, 46, 932–936. [Google Scholar] [CrossRef] [Green Version]
- Turan, M.; Ekinci, M.; Yildirim, E.; Güneş, A.; Karagöz, K.; Kotan, R.; Dursun, A. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For. 2014, 38, 327–333. [Google Scholar] [CrossRef]
- Pal, S.; Singh, H.B. Energy inputs and yield relationship in greenhouse okra production by bio-priming. Int. J. Agric. Environ. Biotechnol. 2018, 11, 741–746. [Google Scholar] [CrossRef]
- Sarkar, D.; Rakshit, A. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains, India. Sci. Hortic. 2021, 283, 110075. [Google Scholar] [CrossRef]
- Meena, K.K.; Mesapogu, S.; Kumar, M.; Yandigeri, M.S.; Singh, G.; Saxena, A.K. Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol. Fertil. Soils 2010, 46, 169–174. [Google Scholar] [CrossRef]
- Juan, L.I.; Zhao, B.Q.; Li, X.Y.; Jiang, R.B.; So, H.B. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agric. Sci. China 2008, 7, 336–343. [Google Scholar]
- Sharma, U.; Subehia, S.K. Effect of long-term integrated nutrient management on rice (Oryza sativa L.)—Wheat (Triticum aestivum L.) productivity and soil properties in North-Western Himalaya. J. Indian Soc. Soil Sci. 2014, 62, 248–254. [Google Scholar]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Selvi, D.; Santhy, P.; Dhakshinamoorthy, M.; Maheshwari, M. Microbial population and biomass in rhizosphere as influenced by continuous intensive cultivation and fertilization in an inceptisol. J. Indian Soc. Soil Sci. 2004, 52, 254–257. [Google Scholar]
- Mäder, P.; Kaiser, F.; Adholeya, A.; Singh, R.; Uppal, H.S.; Sharma, A.K.; Srivastava, R.; Sahai, V.; Aragno, M.; Wiemken, A.; et al. Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol. Biochem. 2010, 43, 609–619. [Google Scholar] [CrossRef]
- Hartman, K.; van der Heijden, M.G.; Wittwer, R.A.; Banerjee, S.; Walser, J.C.; Schlaeppi, K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 2018, 6, 14. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef] [PubMed]
- Narayanamma, M.; Chiranjeevi, C.H.; Reddy, I.P.; Ahmed, S.R. Integrated nutrient management in cauliflower (Brassica oleracea var. botrytis L.). Veg. Sci. 2005, 32, 62–64. [Google Scholar]
- Sur, P.; Mandal, M.; Das, D.K. Effect of integrated nutrient management on soil fertility and organic carbon in cabbage (Brassica oleracea var. capitata) growing soils. Indian J. Agric. Sci. 2010, 80, 38–41. [Google Scholar]
- Mengual, C.; Schoebitz, M.; Azcón, R.; Roldán, A. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J. Environ. Manag. 2014, 134, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kaushal, R.; Spehia, R.S.; Pathania, S.S.; Sharma, V. Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. J. Plant Nutr. 2014, 40, 921–927. [Google Scholar] [CrossRef]
- Solanki, R.L.; Sharma, M.; Indoria, D. Effect of phosphorus, sulphur and PSB on yield of Indian mustard (Brassica juncea L.) and available macronutrients in soil. J. Indian Soc. Soil Sci. 2018, 66, 415–419. [Google Scholar] [CrossRef]
- Ku, Y.; Xu, G.; Tian, X.; Xie, H.; Yang, X.; Cao, C. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6. PLoS ONE 2018, 13, e0200181. [Google Scholar] [CrossRef] [Green Version]
- Sood, G.; Kaushal, R.; Chauhan, A.; Gupta, S. Effect of conjoint application of indigenous PGPR and chemical fertilizers on productivity of maize (Zea mays L.) under mid hills of Himachal Pradesh. J. Plant Nutr. 2018, 41, 297–303. [Google Scholar] [CrossRef]
- Parmar, D.K. Yield, produce quality and soil health under vegetable cropping systems as influenced by integrated nutrient management in Mid-hill Zone of Himachal Pradesh. J. Indian Soc. Soil Sci. 2018, 62, 45–51. [Google Scholar]
- Pande, J.; Singh, S. Fertilizer recommendations based on target yield concept for cabbage grown in a Mollisol of Uttarakhand. J. Indian Soc. Soil Sci. 2016, 64, 265–270. [Google Scholar] [CrossRef]
- Mihov, M.; Tringovska, I. Energy efficiency improvement of greenhouse tomato production by applying new biofertilizers. Bulg. J. Agric. Sci. 2010, 16, 454–458. [Google Scholar]
- Shahan, S.; Jafari, A.; Mobli, H.; Rafiee, S.; Karimi, M. Energy use and economical analysis of wheat production in Iran: A case study from Ardabil province. J. Agric. Technol. 2008, 4, 77–88. [Google Scholar]
- Ibrahim, H.Y. Energy inputs and crop yield relationship for sesame production in North Central Nigeria. J. Agric. Technol. 2011, 7, 907–914. [Google Scholar]
- Basak, B.B.; Biswas, D.R. Carbon and nitrogen mineralization in soil amended with value-added manures and fertilizers under varying temperature and soil moisture regimes. J. Indian Soc. Soil Sci. 2014, 62, 18–28. [Google Scholar]
- Formánek, P.; Rejšek, K.; Vranova, V.; Marek, M.V. Bio-available amino acids and mineral nitrogen forms in soil of moderately mown and abandoned mountain meadows. Amino Acids 2006, 34, 301–306. [Google Scholar] [CrossRef]
- Moharana, P.C.; Biswas, D.R. Use of mineralization kinetics to estimate the potentially mineralizable nitrogen of rock phosphate-enriched composts-amended soil. J. Plant Nutr. 2018, 41, 1333–1344. [Google Scholar] [CrossRef]
- Basha, I.J.; Singh, A.K.; Ao, E.; Gupta, R.C. Evaluation of Udaipur rock phosphate as phosphorus fertilizer in soybean (Glycine max L. Merrill) grown on acid upland soils of Nagaland. J. Indian Soc. Soil Sci. 2018, 66, 83–88. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Jamil Khan, M.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esaw, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holátko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-ul-Hye, M.; Fahad, S.; Saud, S.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability 2020, 12, 6286. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential Role of Compost Mixed Biochar with Rhizobacteria in Mitigating Lead Toxicity in Spinach. Sci. Rep. 2020, 10, 12159, Correction in Sci. Rep. 2020, 10, 17111, doi:10.1038/s41598-020-73325-4. [Google Scholar] [CrossRef]
- Abbas, M.; Anwar, J.; Zafar-ul-Hye, M.; Khan, R.I.; Saleem, M.; Rahi, A.A.; Danish, S.; Datta, R. Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae 2020, 6, 28. [Google Scholar] [CrossRef]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, M.; Shahzad, K.; Ahmad, F.; Iqbal, S.; Habib, M.; Rahman, M.; Ahmad, S.; Iqbal, M.; Danish, S.; et al. Impact of Seed Dressing and Soil Application of Potassium Humate on Cotton Plants Productivity and Fiber Quality. Plants 2020, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Zarei, T.; Danish, S. Effect of micronutrients foliar supplementation on the production and eminence of plum (Prunus domestica L.). Qual. Assur. Saf. Crop. Foods 2020, 12, 32–40. [Google Scholar] [CrossRef]
- Rafiullah; Khan, M.J.; Muhammad, D.; Fahad, S.; Adnan, M.; Wahid, F.; Alamri, S.; Khan, F.; Dawar, K.M.; Irshad, I.; et al. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants 2020, 9, 1389. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Efficiency (%) |
---|---|
Nitrogen | 30–50 |
Phosphorus | 15–20 |
Potassium | 50–60 |
Sulphur | 8–12 |
Zinc | 2–5 |
Iron | 1–2 |
Copper | 1–2 |
Manganese | 1–2 |
Boron | 2–3 |
Molybdenum | 2–5 |
Parameter | Calculation | Assessment | Typical Values for N in Cereals |
---|---|---|---|
Agronomic efficiency (AE) | AE (kg/kg) = (Y − Y0)/F | Economic production (grain) gained or lost per unit of nutrient input | 10–30 |
Physiological efficiency (PE) | PE (kg/kg) = (Y − Y0)/U − U0 | Yield gained or lost per unit of nutrient uptake | 30–60 |
Apparent recovery efficiency (ARE) | ARE (%) = (U − U0)/F × 100 | Proportion of nutrient uptake per unit of nutrient input | 30–50 |
Partial factor productivity (PFP) | PFP (kg/kg) = Y/F | How productive is this cropping system in comparison to its nutrient input? | 40–80 |
Partial nutrient balance (PNB) | PNB (kg/kg) = U/F | Quantity of nutrient being taken out of the field to the amount of nutrient input | <1.0 = more supplied than removed; >1.0 = more removed than supplied |
Crop | Primer | Experimental Conditions | Nutrient Use Efficiency | Reference | |
---|---|---|---|---|---|
Macronutrient | Micronutrient | ||||
Fodder maize | Bacillus mucilaginous | Field | Increase in N (11.20%), P (13.58%), and K (31.06%) uptake | - | [76] |
Wheat | Pseudomonas fluorescens | Field | Increase in N use efficiency (26%) and P use efficiency (57%) | - | [70] |
Chickpea (Cicer arietinum L.) | Pseudomonas striata + Piriformospora indica | Pot | Enhanced P content (27.78%) | - | [85] |
Rice | Staphylococcus epidermidis + Pseudomonas aeruginosa + Bacillus subtilis | Pot | Increase in N (36.10%), P (104.76%), and K (102.20%) content | - | [71] |
Broccoli | Bacillus cereus | Field | Enhanced K (18.6%) content | Enhanced Mn (36.4%) and Zn (56.7%) content | [81] |
Wheat | Bacillus spp. | Pot and field | Increase in grain P uptake to 77% and 85% under pot and field conditions, respectively | - | [73] |
Tomato | Trichoderma harzianum | Field | Enhanced K (20.62%) content | Enhanced Fe (33.84%), Mn (28.57%), Zn (54.54%), and Cu (23.07%) content | [79] |
Sunflower | Trichoderma harzianum | Greenhouse (25 ± 2 °C, 95% relative humidity) | Increase in N (30%), P (59%), and K (62%) uptake | - | [72] |
Soybean | Trichoderma harzianum BS1-1 | Pot | Increased N (15.90%) content | Increased Zn (8.23%) and Fe (57.83%) content | [80] |
Trichoderma virens As10-5 | Pot | Increased N (31.17%) content | Increased Zn (21.67%) and Fe (14.82%) content | ||
Maize | Pseudomonas plecoglossicida | Field | Enhanced grain P (48.65%) uptake | - | [74] |
Cabbage | Bacillus megaterium TV-91C | Pot | Increase in N (17.95%), P (10.28%), and K (5.01%) content | Increase in Fe (14.69%) and Mn (14.99%) content | [82] |
Bacillus subtilis TV-17C | Pot | Increase in N (10.26%), P (6.26%), and K (4.59%) content | Increase in Fe (27.97%) and Mn (10.85%) content | ||
Chili | Pseudomonas stutzeri + Azospirillumbrasilense + Agrobacterium tumefaciens | Pot | Enhanced P use efficiency (4–29%) | - | [75] |
Wheat | Trichoderma harzianum | Pot | Higher apparent N recovery efficiency (23.19%) | - | [68] |
Rice | Pseudomonas sp. | Pot | Higher apparent K recovery efficiency (150.4%) | - | [77] |
Okra | Trichoderma harzianum NBRI 1055 | Pot | Increase in N (49.18%), P (39.56%), and K (38.89%) content | Increase in Fe (69.04%) content | [83] |
Red cabbage | Pseudomonas fluorescens + Bacillus subtilis | Field | Increased P (0.37%) and K (2.84%) content | Increased Fe (160.12 mg kg−1) and Zn (34.18 mg kg−1) content | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, D.; Rakshit, A.; Al-Turki, A.I.; Sayyed, R.Z.; Datta, R. Connecting Bio-Priming Approach with Integrated Nutrient Management for Improved Nutrient Use Efficiency in Crop Species. Agriculture 2021, 11, 372. https://doi.org/10.3390/agriculture11040372
Sarkar D, Rakshit A, Al-Turki AI, Sayyed RZ, Datta R. Connecting Bio-Priming Approach with Integrated Nutrient Management for Improved Nutrient Use Efficiency in Crop Species. Agriculture. 2021; 11(4):372. https://doi.org/10.3390/agriculture11040372
Chicago/Turabian StyleSarkar, Deepranjan, Amitava Rakshit, Ahmad I. Al-Turki, R. Z. Sayyed, and Rahul Datta. 2021. "Connecting Bio-Priming Approach with Integrated Nutrient Management for Improved Nutrient Use Efficiency in Crop Species" Agriculture 11, no. 4: 372. https://doi.org/10.3390/agriculture11040372