Increase in the Value of Agricultural Parcels—Modelling and Simulation of the Effects of Land Consolidation Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linear Regression
- Y—dependent variable
- β0—intercept
- β1, β2, βk—independent variables’ coefficients
- X1, X2, Xi—independent variables
- ξ—random component
- 270 observations—0.40
- 215 observations—0.64
- 203 observations—0.68
2.2. Artificial Neural Networks
- -
- training set: 70%
- -
- test set: 15%
- -
- validation set: 15%
- Yi—predicted values,
- ti—actual values,
- n—number of observation
3. Results
3.1. Multiple Linear Regression Model
3.2. Artificial Neural Network Model (ANN)
3.3. Simulation of the Change in the Values of Agricultural Parcels with a Change in Their Elongation, Surface Area, and Access to a Public Road
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prus, P. Sustainable Farming Production and Its Impact on the Natural Environment—Case Study Based on a Selected Group of Farmers. In 8th International Scientific Conference on Rural Development—Bioeconomy Challenges; Raupeliene, A., Ed.; Aleksandras Stulginskis University: Akademija, Lithuania, 2017; pp. 1280–1285. [Google Scholar]
- Farms and Farmland in the European Union—Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics (accessed on 3 April 2021).
- Ertunç, E. Analysis of the effect of land consolidation projects in terms of land fragmentation and parcel shapes: The case of Konya, Turkey. Arab J. Geosci. 2020, 13, 350. [Google Scholar] [CrossRef]
- Woch, F. Organizacja Przestrzenna Gospodarstw Rolniczych Oraz Jej Wpływ na Efektywność Gospodarowania. Studia I Rap. Iung Pib 2007, 7, 117–137. [Google Scholar]
- Heinrichs, J.; Kuhn, T.; Pahmeyer, C.; Britz, W. Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agric. Syst. 2021, 187, 102992. [Google Scholar] [CrossRef]
- Wojewodzic, T.; Janus, J.; Dacko, M.; Pijanowski, J.; Taszakowski, J. Measuring the effectiveness of land consolidation: An economic approach based on selected case studies from Poland. Land Use Policy 2020, 100, 1–10. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2009, 26, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Hiironen, J.; Riekkinen, K. Agricultural impacts and profitability of land consolidations. Land Use Policy 2016, 55, 309–317. [Google Scholar] [CrossRef]
- Bizimana, C.; Nieuwoudt, W.L.; Ferrer, S.R. Farm Size, Land Fragmentation and Economic Efficiency in Southern Rwanda. Agrekon 2004, 43, 244–262. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Raabe, K.; Grote, U. Rural-Urban Migration, Household Vulnerability, and Welfare in Vietnam. World Dev. 2015, 71, 79–93. [Google Scholar] [CrossRef]
- Van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy Reform and Agricultural Land Abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Choumert, J.; Phélinas, P. Determinants of agricultural land values in Argentina. Ecol. Econ. 2015, 110, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Miller, G.Y.; Sherrick, B.J.; Gómez, M.I. Factors influencing Illinois farmland values. Am. Agric. Econ. Assoc. 2006, 88, 458–470. [Google Scholar] [CrossRef]
- Salamon, J. Analysis of factors affecting prices of agricultural and building plots on an example of Bochnia commune. Infrastruktura i Ekologia Terenów Wiejskich 2010, 2, 185–191. [Google Scholar]
- Salata, T.; Prus, B.; Janus, J. Planning as trigger for land use changes. Eng. Rural Dev. 2015, 14, 729–734. [Google Scholar]
- Siejka, M. Attempt of applying ahp method to evaluate the influence of changes of real estate features on the estate value. Infrastrukt. I Ekol. Teren. Wiej. 2010, 12, 93101. [Google Scholar]
- Efektywność Ekonomiczna Scaleń Gruntów w Polsce. Available online: https://scalenia.urk.edu.pl/zasoby/207/Efektywnosc_ekonomiczna_scalen_gruntow_w_Polsce.pdf (accessed on 3 April 2021).
- Wojewodzic, T. Procesy Dywestycji i Dezagraryzacji w Rolnictwie o Rozdrobnionej Strukturze Agrarnej; Zeszyty Naukowe Uniwersytetu Rolniczego im. Hugona Kołłątaja w Krakowie Series 535; Wydawnictwo Uniwersytetu Rolniczego: Kraków, Poland, 2017. [Google Scholar]
- Satoła, Ł.; Wojewodzic, T.; Sroka, W. Barriers to exit encountered by small farms in light of the theory of new institutional economics. Agric. Econ. Zemed. Ekon. 2018, 64, 277–290. [Google Scholar]
- Latruffe, L.; Piet, L. Does land fragmentation affect farm performance? A case study from Brittany, France. Agric. Syst. 2014, 129, 68–80. [Google Scholar] [CrossRef]
- Manjunatha, A.V.; Anik, A.R.; Speelman, S.; Nuppenau, E.A. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Lanillos, P.; Oliva, D.; Philippsen, A.; Yamashita, Y.; Nagai, Y.; Cheng, G. A review on neural network models of schizophrenia and autism spectrum disorder. Neural Netw. 2020, 122, 338–363. [Google Scholar] [CrossRef] [PubMed]
- Pizarroso, J.; Portela, J.; Muñoz, A. NeuralSens: Sensitivity Analysis of Neural Networks. arXiv 2020, arXiv:2002.11423. Available online: https://arxiv.org/abs/2002.11423 (accessed on 3 April 2021).
- Szaleniec, M. Sieci neuronowe i regresja wieloraka—Czyli jak okiełznać złożoność w badaniach naukowych. In Zastosowania Statystyki i Data Mining w Badaniach Naukowych; Wątroba, J., Ed.; Statsoft: Kraków, Poland, 2008; pp. 69–86. [Google Scholar]
- Bruce, R.W.; Sundell, D.J. Multiple regression analysis: History and applications in the appraisal profession. Real Estate Appraiser 1977, 43, 37–44. [Google Scholar]
- Eckert, J.K. Property Appraisal and Assessment Administration; International Association of Assessing Officers: Chicago, IL, USA, 1990. [Google Scholar]
- Isakson, H.R. An Empirical Analysis of the Determinants of the Value of Vacant Land. J. Real Estate Res. 1997, 13, 103–114. [Google Scholar] [CrossRef]
- Cellmer, R. Zasady i Metody Analizy Elementów Składowych Rynku Nieruchomości; Wydawnictwo ART: Olsztyn, Poland, 1999. [Google Scholar]
- Dacko, M. Zastosowanie regresji wielokrotnej w szacowaniu nieruchomości w arkuszu kalkulacyjnym Microsoft Excel 2000. In Wycena: Wartość—Obrót—Zarządzanie Nieruchomościami; Wyd. Educaterra: Olsztyn, Poland, 2000. [Google Scholar]
- Czaja, J. Metody Szacowania Wartości Rynkowej i Katastralnej; Komp-System: Kraków, Poland, 2001. [Google Scholar]
- Hozer, J. Regresja Wieloraka a Wycena Nieruchomości. Rzeczoznawca Majątkowy 2001, 2, 13–14. [Google Scholar]
- Dacko, M.; Lendzion, M. Modelowanie cen nieruchomości za pomocą regresji wielorakiej i sztucznych sieci neuronowych. In Wycena; Wyd. Educaterra: Olsztyn, Poland, 2003; Volume 3. [Google Scholar]
- Śnieg, R. Czynniki i Cechy Kształtujące Sprzedaż i Dzierżawę Nieruchomości Rolnych Skarbu Państwa. Ph.D. Thesis, UWM, Olsztyn, Poland, 2003. [Google Scholar]
- Benjamin, J.D.; Randall, S.; Guttery, R.S.; Sirmans, C.F. Mass Appraisal: An Introduction to Multiple Regression Analysis for Real Estate Valuation. J. Real Estate Pract. Educ. 2004, 7, 65–77. [Google Scholar] [CrossRef]
- Sirmans, G.S.; Macpherson, D.A.; Zietz, E.N. The Composition of Hedonic Pricing Models. J. Real Estate Lit. 2005, 13, 3–46. [Google Scholar]
- Adamczewski, Z. Elementy Modelowania Matematycznego w Wycenie Nieruchomości. Podejście Porównawcze, 2nd ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2011; pp. 51–52. [Google Scholar]
- Surowiec, G. Aspekty Geodezyjno-Przestrzenne w Badaniach Rynku Nieruchomości. Ph.D. Thesis, Politechnika Warszawska, Warszawa, Poland, 2006. [Google Scholar]
- Bitner, A. Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości. Acta Sci. Pol. Adm. Locorum 2007, 6, 59–66. [Google Scholar]
- Barańska, A. Statystyczne Metody Analizy i Weryfikacji Proponowanych Algorytmów Wyceny Nieruchomości; Rozprawy i Monografie Wydawnictwa AGH: Kraków, Poland, 2010. [Google Scholar]
- Sawiłow, E. Problematyka określania wartości nieruchomości metodą analizy statystycznej rynku. Studia I Mater. Tow. Nauk. Nieruchom. 2010, 8, 21–32. [Google Scholar]
- Prus, B. Assessment of information from real estate markets with help of multiple regression analysis models. Infrastruct. Ecol. Rural Areas 2010, 3, 103–113. [Google Scholar]
- Walkowiak, R.; Zydroń, A. Zastosowanie regresji krokowej do określenia atrybutów wpływających na wartość nieruchomości rolnych na przykładzie gminy Mosina. Acta Sci. Pol. Adm. Locorum 2012, 11, 239–253. [Google Scholar]
- Kot, S.M.; Jakubowski, J.; Sokołowski, A. Statystyka, 2nd ed.; Difin: Warszawa, Poland, 2011; pp. 108–113. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Turkoglu, B.; Kaya, E. Training multi-layer perceptron with artificial algae algorithm. Eng. Sci. Technol. Int. J. 2020, 23, 1342–1350. [Google Scholar] [CrossRef]
- McCluskey, W.J. Zastosowanie sztucznej inteligencji w wycenie masowej dla potrzeb taksacji nieruchomości. Wycena 1996, 5, 3. [Google Scholar]
- Migut, G. Sieci Neuronowe. Statsoft Polska. Kraków, Poland. 2019. Available online: https://www.statsoft.pl/uslugi/kursy-i-szkolenia/programy-szkolen/sieci-neuronowe/ (accessed on 3 April 2021).
- Özesmi, S.L.; Özesmi, U. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecol. Model. 1999, 116, 15–31. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Zeng, X.; Zhong, S. Computation of multilayer perceptron sensitivity to input perturbation. Neurocomputing 2013, 99, 390–398. [Google Scholar] [CrossRef]
- Janus, J.; Markuszewska, I. Land consolidation—A great need to improve effectiveness. A case study from Poland. Land Use Policy 2017, 65, 143–153. [Google Scholar] [CrossRef]
- Prystupa, M. Valuation of Real Estate Using a Comparative Approach. Overview of the Standard with Examples of Tasks; Polska Federacja Stowarzyszeń Rzeczoznawców Majątkowych: Warszawa, Poland, 2001. [Google Scholar]
- Gardner, K.; Barrows, R. The impact of soil conservation investments on land Prices. Am. J. Agric. Econ. 1984, 67, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Bitner, A. On the usefullness of statistical methods in real estate valuation. Infrastrukt. I Ekol. Teren. Wiej. 2010, 12, 145–158. [Google Scholar]
- Harasimowicz, S.; Bacior, S.; Gniadek, J.; Ertunç, E.; Janus, J. The impact of the variability of parameters related to transport costs and parcel shape on land reallocation results. Comput. Electron. Agric. 2021, 185, 106137. [Google Scholar] [CrossRef]
- Wilkowski, W. Metodyka określania wartości gruntów rolnych wchodzących w skład gospodarstw rolnych objętych postępowaniem scaleniowym. Przegląd Geod. 2002, 7, 3–8. [Google Scholar]
- Noga, K. Methodology for programming merge works and technology for their implementation in mountain areas. Zeszyty Naukowe AR Kraków Rozprawy 1990, 143, 101. [Google Scholar]
- Ligęza, A. Parametrical description geometry and topography of parcels in GIS systems. Studia Inform. 2011, 32, 329–348. [Google Scholar]
- Sundquist, A. Property taxation in Sweden. Part IV. Przegląd Geodezyjny 2002, 4, 3–8. [Google Scholar]
- Maleta, M.; Całka, B. Metodyka wyboru czynników cenotwórczych w procesie opracowania map średnich cen gruntów rolnych dla obszarów wiejskich. Rocz. Geomatyki Ann. Geomat. 2019, 17, 147–170. [Google Scholar]
Predictor Name | Type and Values or Variants of the Predictor |
---|---|
Tax region * | A discrete quantitative feature assuming four states in accordance with the list of municipalities and cities falling within the different tax regions: 1, 2, 3, and 4. |
General location | A continuous quantitative feature established based on analysis of variance as an average level of unit prices (PLN/m2) for the municipalities from which data on agricultural parcel transactions were obtained: 2.4—Szczurowa 4.2—Jordanów 2.3—Lelów 1.6—Mykanów 2.3—Łopiennik Górny 4.8—Mściwojów 2.8—Pilica 2.4—Praszka 3.2—Gaworzyce 3.6—Dobrzeń Wielki 2.9—Opole 2.7—Strzegowo |
Detailed location | A discrete quantitative feature assuming three states: 1—peripheral (away from settlement development clusters) 2—indirect (bordering settlement development clusters) 3—built-up zone (location within settlement development clusters) |
Soil quality * | A discrete quantitative feature assuming four states, determined based on the intervals of estimated soil classification rate (Wb **): 1—poor (Wb to 0.8) 2—average (Wb above 0.8 to 1.2) 3—good (Wb above 1.2 to 1.6) 4—very good (Wb above 1.6) |
Share of arable land | A continuous quantitative feature assuming values from the interval of 0.00 to 1.00 calculated as the quotient of the surface area of arable land and the total surface area of a parcel |
Obstacles to usage | A discrete quantitative feature assuming three states: 1—large (two or more of the following aspects appear at the same time: flintiness, wetness of the area, visible soil variability, bushes and coppices, wasteland, proximity of forests, sharp angles of parcel borders) 2—moderate (one of the above) 3—lack |
Vicinity | A discrete quantitative feature assuming two states: 0—not directly bordering a built-up area 1—directly bordering a built-up area |
Surface area * | A qualitative feature assuming five variants: up to 0.5 ha (very small parcels) from 0.5 to 1 ha (small parcels) from 1 to 2 ha (mid-sized parcels) from 2 to 3 ha (large parcels) above 3 ha (very large parcels) |
Parcel elongation | A continuous quantitative feature assuming values in the range from 1.0 to 114.6, calculated as a quotient of the parcel’s sides (longer/shorter) |
Access to a public road | A discrete quantitative feature assuming two states: 0—no access to a road 1—access to a road |
Denotation and Description of the Feature | Summary of the Regression of Dependent Variable Y (Value PLN/ha): n = 203; R2 = 0.68; F(7.195) = 61 | |||||
---|---|---|---|---|---|---|
Standardized Regression Coefficient b* | Standard Error b* | Regression Coefficient b | Standard Error b | t(195) | p | |
Intercept | −20,811 | 2840 | −7.33 | 0.0000 | ||
X1—General location | 0.644 | 0.042 | 9251 | 606 | 15.26 | 0.0000 |
X2—Share of arable land | 0.215 | 0.042 | 6160 | 1211 | 5.09 | 0.0000 |
X3—Parcel elongation | −0.108 | 0.042 | −56 | 22 | −2.58 | 0.0106 |
X4—Detailed location | 0.209 | 0.048 | 3413 | 785 | 4.35 | 0.0000 |
X5—Vicinity | 0.123 | 0.048 | 3590 | 1409 | 2.55 | 0.0116 |
X6—Access to a road | 0.117 | 0.041 | 4948 | 1745 | 2.83 | 0.0051 |
X7—Obstacles to usage | 0.187 | 0.042 | 2497 | 556 | 4.49 | 0.0000 |
Predictor | Sensitivity |
---|---|
X1—Access to a road | 6.70 |
X2—General location | 2.57 |
X3—Detailed location | 2.52 |
X4—Tax region | 2.18 |
X5—Soil quality | 2.07 |
X6—Obstacles to usage | 2.05 |
X7—Vicinity | 2.03 |
X8—Surface area | 1.34 |
X9—Share of arable land | 1.20 |
X10—Parcel elongation | 1.05 |
Market Prices that Are Likely to Change as a Result of Consolidation | Predicted Value (PLN/ha) | |||
---|---|---|---|---|
Elongation | Access | Surface Area | MRA Model | ANN Model |
1 | 1 | <0.5 | 30,748 a | 38,507 e |
0 | 25,800 | 16,086 | ||
50 | 1 | 28,004 | 35,093 | |
0 | 23,056 | 13,232 | ||
100 | 1 | 25,204 | 31,658 | |
0 | 20,256 b | 10,418 f | ||
1 | 1 | 0.5–1.0 | 30,748 | 34,225 h |
0 | 25,800 | 12,084 | ||
50 | 1 | 28,004 | 31,101 | |
0 | 23,056 | 9567 | ||
100 | 1 | 25,204 | 27,996 | |
0 | 20,256 | 7125 g | ||
1 | 1 | 1.0–2.0 | 30,748 | 34,271 |
0 | 25,800 | 12,794 | ||
50 | 1 | 28,004 | 31,267 | |
0 | 23,056 | 10,386 | ||
100 | 1 | 25,204 | 28,283 | |
0 | 20,256 | 8041 | ||
1 | 1 | 2.0–3.0 | 30,748 | 33,531 c |
0 | 25,800 | 14,046 | ||
50 | 1 | 28,004 | 30,214 | |
0 | 23,056 | 11,501 | ||
100 | 1 | 25,204 | 26,911 | |
0 | 20,256 | 9006 d | ||
1 | 1 | >3.0 | 30,748 | 38,129 |
0 | 25,800 | 16,308 | ||
50 | 1 | 28,004 | 34,859 | |
0 | 23,056 | 13,689 | ||
100 | 1 | 25,204 | 31,592 | |
0 | 20,256 | 11,135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dacko, M.; Wojewodzic, T.; Pijanowski, J.; Taszakowski, J.; Dacko, A.; Janus, J. Increase in the Value of Agricultural Parcels—Modelling and Simulation of the Effects of Land Consolidation Project. Agriculture 2021, 11, 388. https://doi.org/10.3390/agriculture11050388
Dacko M, Wojewodzic T, Pijanowski J, Taszakowski J, Dacko A, Janus J. Increase in the Value of Agricultural Parcels—Modelling and Simulation of the Effects of Land Consolidation Project. Agriculture. 2021; 11(5):388. https://doi.org/10.3390/agriculture11050388
Chicago/Turabian StyleDacko, Mariusz, Tomasz Wojewodzic, Jacek Pijanowski, Jarosław Taszakowski, Aneta Dacko, and Jarosław Janus. 2021. "Increase in the Value of Agricultural Parcels—Modelling and Simulation of the Effects of Land Consolidation Project" Agriculture 11, no. 5: 388. https://doi.org/10.3390/agriculture11050388
APA StyleDacko, M., Wojewodzic, T., Pijanowski, J., Taszakowski, J., Dacko, A., & Janus, J. (2021). Increase in the Value of Agricultural Parcels—Modelling and Simulation of the Effects of Land Consolidation Project. Agriculture, 11(5), 388. https://doi.org/10.3390/agriculture11050388