The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Station’s Location
2.2. Experimental Design and Management Practices
2.3. Soil Chemical Analyses
2.4. Sample Preparation and Analyses
2.5. Total Phenolic Acids Content
2.6. DPPH Radical Scavenging Activity Assay
2.7. Glutathione Analysis
2.8. Statistical Analysis
3. Results
3.1. Impact of Climatic Condition
3.2. Yield
3.3. Bioelements Analysis
3.4. Organic Compounds Analysis
4. Discussion
4.1. Chemical Composition of the Soil
4.2. Yield
4.3. Climatic Conditions
4.4. Macro- and Micronutrients Enrichment and Their Content
4.5. L-ascorbic Acid, Total Phenolic Acid, Antioxidant Activity, Glutathione Content
4.6. Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slusarenko, A.J.; Patel, A.; Portz, D. Control of plant diseases by natural products: Allicin from garlic as a case study. Eur. J. Plant Pathol. 2008, 121, 313–322. [Google Scholar] [CrossRef]
- Kazemi, S.; Asgary, S.; Moshtaghian, J.; Rafieian, M.; Adelnia, A.; Shamsi, F. Liver-protective effects of hydroalcoholic extract of Allium hirtifolium Boiss. in rats with alloxan-induced diabetes mellitus. ARYA Atheroscler. J. 2010, 6, 11–15. [Google Scholar]
- Abbey, L.; Joyce, D.C.; Aked, J.; Smith, B. Genotype, sulphur, nutrition and soil type effects on growth and dry matter production of spring onion. J. Hort. Sci. Biotechnol. 2002, 77, 340–345. [Google Scholar] [CrossRef]
- Coolong, T.W.; Kopsell, D.A.; Kopsell, D.E.; Randle, W.M. Nitrogen and sulfur influence nutrient usage and accumulation in onion. J. Plant Nutr. 2004, 27, 1667–1686. [Google Scholar] [CrossRef]
- Losak, T.; Wiśniowska-Kielian, B. Fertilization of garlic (Allium sativum L.) with nitrogen and sulphur. Ann. Univresities Mariae Curie-Sklodowske Sect. E 2006, 61, 45–50. [Google Scholar]
- Liu, S.; He, H.; Feng, G.; Chen, Q. Effects of nitrogen and sulphur interaction on growth and pungency of different pseudostem types of Chinese spring onion (Allium fistulosum L.). Sci. Hortic. 2009, 121, 12–18. [Google Scholar] [CrossRef]
- Chandra, N.; Pandey, N. Influence of sulfur induced stress on oxidative status and antioxidative machinery in leaves of Allium cepa L. Int. Sch. Res. Not. 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Lian, H.F.; Liu, Y.Y.; Yu, X.H.; Sun, Y.L.; Sun, X.D.; Shi, Q.H.; Liu, S.Q. Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. J. Integr. Agric. 2016, 15, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Youssif, B.D.; Hosna, M.A.F.; Mervat, A.A.T. Effect of sulphur and sulphur oxidizing bacteria on growth and production of garlic (Allium sativum L.) under saline conditions. Middle East. J. Agric. Res. 2015, 4, 446–459. [Google Scholar]
- Babaleshwar, S.B.; Koppad, S.R.; Math, K.K.; Dharmatti, R. Influence of sulphur on growth and yield of garlic (Allium sativum L.). J. Pharm. Phytochem. 2017, 6, 450–452. [Google Scholar] [CrossRef]
- Zaman, M.S.; Hashem, M.A.; Jahiruddin, M.; Rahim, M.A. Effect of sulphur fertilization on the growth and yield of garlic (Allium sativum L.). Bangladesh J. Agril. Res. 2011, 36, 647–656. [Google Scholar] [CrossRef]
- Shete, M.B.; Chiktey, H.M.; Jadhav, S.B.; Bhalekar, M.N. Effect of sulphur on growth, yield and quality of garlic (Allium sativum L.). Int. J. Chem. Stud. 2018, 6, 552–555. [Google Scholar]
- Diriba-Shiferaw, G.; Nigussie-Dechassa, R.; Kebede, W.; Getachew, T.; Sharma, J.J. Growth and nutrients content and uptake of garlic (Allium sativum L.) as influenced by different types of fertilizers and soils. Sci. Technol. Arts Res. J. 2013, 2, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Bloem, E.; Haneklaus, S.; Schnug, E. Storage life of field–grown garlic bulbs (Allium sativum L.) as influenced by nitrogen and sulfur fertilization. J. Agric. Food Chem. 2011, 59, 4442–4447. [Google Scholar] [CrossRef] [PubMed]
- Bloem, E.; Haneklaus, S.; Schnug, E. Influence of fertilizer practices on S-containing metabolites in garlic (Allium sativum L.) under field conditions. J. Agric. Food Chem. 2010, 58, 10690–10696. [Google Scholar] [CrossRef]
- Huchette, O.; Arnault, I.; Auger, J.; Bellamy, C.; Trueman, L.; Thomas, B.; Kahane, R. Genotype, nitrogen fertility and sulphur availability interact to affect flavour in garlic (Allium sativum L.). J. Hortic. Sci. Biotechnol. 2007, 82, 79–88. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Barłóg, P.; Grzebisz, W.; Spiżewski, T. Onion (Allium cepa L.) yield and growth dynamics response to in-season patterns of nitrogen and sulfur uptake. Agronomy 2020, 10, 1146. [Google Scholar] [CrossRef]
- Kacjan Marsic, N.; Necemer, M.; Veberic, R.; Poklar Urlih, N.; Skrt, M. Effect of cultivar and fertilization on garlic yield and allicin content in bulbs harvest and during storage. Turk. J. Agric. For. 2019, 43, 414–429. [Google Scholar] [CrossRef]
- Shukla, L.M. Evaluation of soil test methods for sulphur in soils of India. Fertil. News 2001, 46, 55–58. [Google Scholar]
- Jokela, W.E.; Grabber, J.H.; Karlen, D.L.; Balser, T.C.; Palmquist, D.E. Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron. J. 2009, 101, 727–737. [Google Scholar] [CrossRef] [Green Version]
- Germida, J.J.; Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 1993, 35, 101–114. [Google Scholar] [CrossRef]
- Cardoso, I.M.; Kuyper, T.W. Mycorrhizas and tropical soil fertility. Agric. Ecosyst. Environ. 2006, 116, 72–84. [Google Scholar] [CrossRef]
- Couëdel, A.; Alletto, L.; Tribouillois, H.; Justes, E. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric. Ecosyst. Environ. 2018, 254, 50–59. [Google Scholar] [CrossRef]
- Sałata, A.; Moreno-Ramon, H.; Ibanez-Asensio, S.; Buczkowska, H.; Nurzyńska-Wierdak, R.; Witorożec, A.; Parzymes, M. Possibilities to improve soil physical properties in garlic cultivation with cover crops as living mulches. Acta Sci. Pol. Hortorum Cultus 2017, 16, 153–162. [Google Scholar] [CrossRef]
- Jamil, M.; Munir, M.; Quasim, M.; Baloch, J.U.D.; Rehman, K. Effect of different types of mulches and their duration on the growth and yield garlic (Allium sativum L.). Int. J. Agric. Biol. 2005, 7, 588–599. [Google Scholar]
- Karaye, A.K.; Yakubu, A.I. Influence of intra-row spacing and mulching on weed growth and bulb yield of garlic (Alliun sativum L.) in Sokoto, Nigeria. Afr. J. Biotechnol. 2006, 5, 260–264. [Google Scholar] [CrossRef]
- Faradonbeh, M.M.; Mashhadi, A.A.; Bakhshandeh, A.; Jalalabadi, A.L. Evaluation of the effects of different material on quantity and quality yield of garlic populations (Allium sativum L.). Int. Agric. Crop Sci. 2013, 5, 2660–2665. [Google Scholar]
- Murmu, D.K.; Das, B.; Yonzone, R.; Panda, R.; Pandit, T.K.; Barman, R. Effect of different doses of nitrogen, phosphorous and vermicompost on growth and yield of garlic (Allium sativum L.). Int. J. Chem. Stud. 2018, 6, 79–82. [Google Scholar]
- Patidar, M.; Shaktawat, R.P.S.; Naruka, I.S. Effect of sulphur and vermicompost on growth, yield and quality of garlic (Allium sativum L.). J. Krishi Vigyan 2017, 5, 54–56. [Google Scholar] [CrossRef]
- Sałata, A.; Pandino, G.; Buczkowska, H.; Lombardo, S. Influence of catch crops on yield and chemical composition of winter garlic grown for bunch harvesting. Agriculture 2020, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, J.J.; Horwath, W.R.; Mitchell, J.P. Tillage and cover cropping effects on aggregate protected carbon in cotton and tomato. Soil Sci. Soc. Am. J. 2007, 71, 362–371. [Google Scholar] [CrossRef]
- Cherr, C.M.; Avila, L.; Scholberg, J.M.S.; McSorley, R.M. Effects of green manure use on sweet corn root length density under reduced tillage conditions. Renew. Agric. Food Syst. 2006, 21, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Xie, B.; Zhang, H. Nitrogen dynamics and mineralization in degraded agricultural soil mulched with fresh grass. Plant Soil 2007, 300, 269–280. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. Carbon and nitrogen mineralized from leaves and stems of four cover crops. Soil Sci. Soc. Am. J. 1995, 59, 471–477. [Google Scholar] [CrossRef]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R.M. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Kimble, J.M.; Eswaran, H.; Alton, B. Global Climate Change and Tropical Ecosystems; CRC Press: Boca Raton, FL, USA, 2000; p. 438. [Google Scholar]
- Balkcon, K.S.; Reeves, D.W. Sunn-hemp utilized as a legume cover crops for corn production. Agron. J. 2005, 97, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Snapp, S.S.; Borden, H. Enhanced nitrogen mineralization in mowed or glyphosate treated cover crops compared to direct incorporation. Plant. Soil 2005, 270, 101–112. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Hansen, E.M. Cover crop growth and impact on N leaching as affected by pre- and postharvest sowing and time of incorporation. Soil Use Manag. 2014, 30, 48–57. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant. Soil 2001, 230, 185–195. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Nicolardot, B. Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: Parameterization of the residue decomposition module of STICS model for mature and non mature residues. Plant. Soil 2009, 325, 171–185. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer intensive cropping systems: A meta-analysis of crop yields and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Leithold, G. Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutr. Cycl. Agroecosyst. 2008, 82, 233–249. [Google Scholar] [CrossRef]
- Wendling, M.; Büchi, L.; Amossé, C.; Jeangros, B.; Walter, A.; Charles, R. Specific interactions leading to transgressive overyielding in cover crop mixtures. Agric. Ecosyst. Environ. 2017, 241, 88–99. [Google Scholar] [CrossRef]
- Tribouillois, H.; Cohan, J.-P.; Justes, E. Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: Assessment combining experimentation and modelling. Plant. Soil 2016, 401, 347–364. [Google Scholar] [CrossRef]
- Põldma, P.; Moor, U.; Tõnutare, T.; Herodes, K.; Rebane, R. Selenium treatment under field conditions affects mineral nutrition, yield and antioxidant properties of bulb onion (Allium cepa L.). Acta Sci. Pol. Hortorum Cultus 2013, 12, 167–181. [Google Scholar]
- Bloem, E.; Haneklaus, S.; Schnug, E. Influence of nitrogen and sulfur fertilization on the alliin content of onions and garlic. J. Plant. Nutr. 2005, 27, 1827–1839. [Google Scholar] [CrossRef]
- Zhao, C.; Degryse, F.; Gupta, V.; McLaughlin, M.J. Elemental sulfur oxidation in Australian cropping soils. Soil Sci. Soc. Am. J. 2015, 79, 89–96. [Google Scholar] [CrossRef]
- PN-ISO 10390. Jakość Gleby–Oznaczanie Ph. In Soil Quality-Determination of pH; PKN: Warszawa, Poland, 1997. (In Polish)
- Du Preez, D.R.; Bate, G.C. A simple method for the quantitative recovery of nitrate-N during Kjeldahl analysis of dry soil and plant samples. Commun. Soil Sci. Plant. Anal. 1989, 20, 345–357. [Google Scholar] [CrossRef]
- Nowosielski, O. Metody oznaczania potrzeb nawożenia. In Methods of Determining Fertilization; PWRiL: Warszawa, Poland, 1974; pp. 1–91. (In Polish) [Google Scholar]
- Nowosielski, O. Zasady opracowywania zaleceń nawozowych w ogrodnictwie. In Ules for Fertilization Recommendations in Horticulture, Second Edition; PWRiL: Warszawa, Poland, 1988; p. 310. [Google Scholar]
- PN-R-04023. Analiza chemiczno-rolnicza gleby-Oznaczanie zawartości przyswajalnego fosforu w glebach mineralnych. In Chemical and Agricultural Analysis of soil-Determination of Available Phosphorus in Mineral Soils; PKN: Warszawa, Poland, 1996. (In Polish)
- PN-R-04022. Analiza chemiczno-rolnicza gleby-Oznaczanie zawartości przyswajalnego potasu w glebach mineralnych. In Chemical and Agricultural Analysis of soil-Determination of Available Potassium in Mineral Soils; PKN: Warszawa, Poland, 1996. (In Polish)
- PN-90/A-75101/03. Przetwory Owocowe i Warzywne. Oznaczanie zawartości suchej masy. In Determine the Content of Dry Matter Using the Weight Method; PKN: Warszawa, Poland, 1990. (In Polish)
- PN-EN ISO 6869. Forage. In Determination of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc Content by Atomic Absorption Spectrometry; Polish Committee for Standardization: Warszawa, Poland, 2002.
- PN-ISO 6491. Animal Feeding Stuffs-Determination of Phosphorus Content-Spectrometric Method; Polish Committee for Standardization: Warszawa, Poland, 2000. [Google Scholar]
- PN-A-04019. Produkty spożywcze. Onaczanie zawartości witaminy C. Determine of Vitamin C Content Using the Tillman Method; PKN: Warszawa, Poland, 1998. (In Polish) [Google Scholar]
- Pharmacopoeia Poland; Polish Pharmaceutical Society: Warszawa, Poland, 1999; Volume 5, p. 472.
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agron. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Guri, A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 1983, 63, 733–737. [Google Scholar] [CrossRef]
- Borowiak, J. Uprawa czosnku. In Growing Garlic; Wyd. PWR: Poznań, Poland, 2020; 102p. [Google Scholar]
- Adamski, Z.; Breś, W.; Golcz, A.; Komosa, A.; Kozik, E.; Tyksiński, W. Nawożenie roślin ogrodniczych. Cz. I Diagnostyka potrzeb nawozowych. In Fertilization of Horticultural Plants. Th. I Diagnostics of Fertilization Needs; Wyd. AR: Poznań, Poland, 1992; p. 112. [Google Scholar]
- Rekowska, E.; Skupień, K. The influence of selected agronomic practices on the yield and chemical composition of winter garlic. Veget. Crops Res. Bull. 2009, 70, 173–182. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Jensen, L.S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 2003, 79, 227–302. [Google Scholar]
- Hamilton, B.K.; Pike, L.M.; Yoo, K.S. Clonal variations of pungency, sugar content, and bulb weight of onions due to sulphur nutrition. Sci. Hortic. 1997, 71, 131–136. [Google Scholar] [CrossRef]
- Jaggi, R.C.; Aulakh, M.S.; Sharma, R. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acid, neutral alkaline soils. Biol. Fertil. Soils 2005, 41, 52–58. [Google Scholar] [CrossRef]
- González-Morales, S.; Pérez-Labrada, F.; García-Enciso, E.L.; Leija-Martínez, P.; Medrano-Macías, J.; Dávila-Rangel, I.E.; Juárez-Maldonado, A.; Rivas-Martínez, E.N.; Benavides-Mendoza, A. Selenium and sulfur to produce Allium functional crops. Molecules 2017, 22, 558. [Google Scholar] [CrossRef] [Green Version]
- Gransee, A.; Fuhrs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant. Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Zarzecka, K.; Gugała, M.; Mystkowska, I. Wartość odżywcza i możliwość wykorzystania gryki. Nutritional value and the possibility of using buckwheat. Post. Fitoterapii 2014, 1, 28–31. [Google Scholar]
- Jiku, A.S.; Alimuzzaman, M.; Singha, A.; Rahaman, A.; Ganapati, R.K.; Alam, A.; Sinha, S.R. Response and productivity of garlic (Allium sativum L.) by different levels of potassium fertilizer in farm soils. Bull. Nat. Res. Centre 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Coolong, T.W.; Randle, W.M. Sulfur and nitrogen availability interact to affect the flavor biosynthetic pathway in onion. J. Am. Soc. Hortic. Sci. 2003, 128, 776–783. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.V.; Kumar, A.; Singh, C. Studies on the storage onion (Allium cepa L.) as affected by different levels of phosphorous. Indian J. Agric. Res. 1998, 32, 51–56. [Google Scholar]
- Piątkowska, E.; Kopeć, A.; Leszczyńska, T. Basic chemical composition, content of micro- and macroelements and antioxidant activity of different varieties of garlic’s leaves polish orgin. Żywn. Nauka Techonol. Jakość 2015, 98, 181–192. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernades, A.; Ntsatsi, G.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. National value, chemical characterization and bulb morphology of Greek landraces. Molecules 2018, 23, 319. [Google Scholar] [CrossRef] [Green Version]
- Diriba-Shiferaw, G.; Nigussie-Dechassa, R.; Woldetsadik, K.; Tabor, G.; Sharma, J.J. Bulb quality of Garlic (Allium sativum L.) as influenced by the application of inorganic fertilizers. Afr. J. Agric. Res. 2014, 9, 778–790. [Google Scholar]
- Droux, M. Sulfur assimilation and the role of sulfur in plant metabolism: A survey. Photosynth. Res. 2004, 79, 331–348. [Google Scholar] [CrossRef]
- Lucheta, A.; Lambais, M. Sulfur in agriculture. Rev. Bras. Ciencia Solo. 2012, 36, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Larkin, R.P. Effects of selected soil amendments and mulch type on soil properties and productivity in organic vegetable production. Agronomy 2020, 10, 795. [Google Scholar] [CrossRef]
- Melakeberhan, H.; Jones, A.L.; Bird, G.W. Effects of soil pH and Pratylenchus penetrans on the mortality of ‘Mazzard’ cherry seedlings and their susceptibility to Pseudomonas syringae pv. syringae. Can. J. Plant. Pathol. 2000, 22, 131–137. [Google Scholar] [CrossRef]
- Frossard, E.; Bucher, M.; Machler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. J. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Smoleń, S.; Sady, W. Ledwożyw-Smoleń, I. Quantitative relations between the content of selected trace elements in soil extracted with 0.03 M CH3COOH or 1 M HCl and its total concentration in carrot storage roots. Acta Sci. Pol. Hortorum Cultus 2010, 9, 3–12. [Google Scholar]
- Golubkina, N.A.; Seredin, T.M.; Antoshkina, M.S.; Kosheleva, O.V.; Teliban, G.C.; Caruso, G. Yield, quality, antioxidant and elemental composition of new leek cultivars under organic or conventional system in a greenhouse. Horticulturae 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.R.; Manganaris, G.A.; Sozzi, G.O.; Crisisto, C.H. Nutritional Quality of Fruits and Vegetables. In Postharvest Handing: A Systems Approach; Florkowski, W.J., Shewfelt, R.L., Brueckner, R., Prussia, S.E., Third Edition, Eds.; Elsevier INC: San Diego, CA, USA, 2014; pp. 89–90. [Google Scholar]
- Soliman, M.F.; Kostandii, S.F.; van Beusichem, M.L. Influence of sulphur and nitrogen fertilizer on the uptake of iron, manganese, and zinc by corn plants grown in calcareous soil. Commun. Soil Sci. Plant Anal. 1992, 23, 1289–1300. [Google Scholar] [CrossRef]
- Argüello, J.A.; Ledesma, A.; Núñez, S.B.; Rodríguez, C.H.; Goldfarb, M.D.C.D. Vermicompost effects on bulbing dynamics, nonstructural carbohydrate content, yield, and quality of ‘Rosado Paraguayo’ garlic bulbs. HortScience 2006, 41, 589–592. [Google Scholar] [CrossRef] [Green Version]
- Aydinalp, C.; Marinova, S. Distribution and forms of heavy metals in some agricultural soils. Pol. J. Environ. Stud. 2003, 12, 629–634. [Google Scholar]
- Garcia-Mina, J.M.; Antolin, M.C.; Sanchez-Diaz, M. Metal-humic complexes and plant micronutrient uptake: A study based on different plant species cultivated in diverse soil types. Plant Soil 2004, 258, 57–68. [Google Scholar] [CrossRef]
- Ozturk, H.S.; Ok, S.S.; Arcak, S. Leaching of boron through sewage sludge amended soil: The role of clinoptilolite. Bioresour. Technol. 2004, 95, 11–14. [Google Scholar] [CrossRef]
- Hatwal, P.K.; Kavita, A.; Choudhary, M.K.; Singh, B. Effect of vermicompost, sulphur and micronutrients on yield and quality of garlic (Allium sativum L.) Var. ‘G-282’. Ann. Biol. 2015, 31, 85–90. [Google Scholar]
- Ramos, Q.; Armienta, M.A.; AAguayo, A.; Cru, Z.O. Evaluation of the interactions of arsenic (As), boron (B), and lead (Pb) from geothermal production wells with agricultural soils. Ecotoxicol. Environ. Saf. 2021, 211, 111843. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Paradiso, R.; Barbieri, G. Quality and nutritional value of vegetables from organic and conventional farming. Sci. Hortic. 2013, 64, 532–539. [Google Scholar] [CrossRef]
- Imen, A.; Najjaa, H.; Neffati, M. Influence of sulfur fertilization on S containing, phenolic, and carbohydrate metabolites in rosy garlic (Allium roseum L.): A wild edible species in North Africa. Eur. Food Res. Technol. 2013, 237, 521–527. [Google Scholar] [CrossRef]
- Gorai, M.; Moussa, A.; Neffati, M. Does mineral sulphur availability account for growth performance, bulb development and metabolically related traits in wild leek (Allium ampeloprasum L.; Alliaceae)? Flora 2016, 219, 8–17. [Google Scholar] [CrossRef]
- Ghasemi, K.; Bolandnazar, S.; Tabatabaei, S.J.; Pirdashti, H.; Arzanlou, M.; Ebrahimzadeh, M.A.; Fathi, H. Antioxidant properties of garlic as affected by selenium and humic acid treatments. N. Z. J. Crop Hortic. Sci. 2015, 43, 173–181. [Google Scholar] [CrossRef] [Green Version]
Years | pH in H2O | N-NO3 | P-PO4 | K | Ca | Mg | S-SO4 | Zn | Mn | Fe | B |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 6.3 | 27.7 | 105 | 150 | 684 | 60 | traces | 8.8 | 4.7 | 5.1 | 0.7 |
2019 | 6.1 | 42.4 | 90 | 133 | 664 | 90 | traces | 9.4 | 6.4 | 5.9 | 0.7 |
F * | CC ** | Dry Matter *** | N | P | K | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | ||
S | Clover | 1.45 a | 1.38 a | 1.41 a | 1.75 ab | 2.18 b | 1.97 ab | 0.25 c | 0.52 ab | 0.39 cd | 0.61 a | 0.53 ab | 0.57 a |
Fodder radish | 1.09 ab | 1.16 ab | 1.13 b | 2.16 a | 2.60 a | 2.38 a | 0.36 b | 0.42 ab | 0.39 cd | 0.53 b | 0.56 ab | 0.55 a | |
Buckwheat | 0.93 b | 1.14 ab | 1.04 b | 2.15 a | 1.55 bc | 1.85 bc | 0.48 a | 0.58 a | 0.58 a | 0.55 b | 0.58 a | 0.57 a | |
Mustard | 0.95 b | 1.15 ab | 1.05 b | 2.15 a | 1.65 bc | 1.90 ab | 0.41 b | 0.47 ab | 0.44 ab | 0.50 b | 0.50 ab | 0.50 ab | |
Control | 0.94 b | 1.13 b | 1.04 b | 1.68 ab | 1.28 c | 1.48 c | 0.40 b | 0.43 ab | 0.42 ab | 0.43 b | 0.41 ab | 0.42 bc | |
Mean | 1.07 A | 1.19 A | 1.13 A | 1.98 A | 1.85 A | 1.92 A | 0.38 A | 0.48 A | 0.42 A | 0.52 A | 0.52 A | 0.52 A | |
nS | Clover | 0.81 b | 0.93 bc | 0.87 b | 1.12 d | 1.82 bc | 1. 47 b | 0.39 b | 0.56 ab | 0.48 ab | 0.53 b | 0.51 ab | 0.52 ab |
Fodder radish | 0.95 b | 0.93 bc | 0.94 b | 1.31 c | 0.99 d | 1.15 d | 0.33 b | 0.36 ab | 0.35 cd | 0.43 b | 0.43 ab | 0.43 bc | |
Buckwheat | 0.95 b | 0.95 bc | 0.95 b | 1.59 c | 1.43 c | 1.51 cd | 0.31 b | 0.45 ab | 0.38 cd | 0.49 b | 0.42 ab | 0.46 ab | |
Mustard | 0.95 b | 1.08 b | 1.02 b | 1.69 b | 1.32 c | 1.51 cd | 0.27 b | 0.47 ab | 0.37 cd | 0.51 b | 0.45 ab | 0.48 ab | |
Control | 0.83 b | 0.90 c | 0.87 b | 1.15 d | 0.96 d | 1.06 d | 0.31 b | 0.34 b | 0.33 d | 0.31 c | 0.33 b | 0.32 d | |
Mean | 0.90 B | 0.96 B | 0.93 B | 1.37 B | 1.30 B | 1.33 B | 0.32 B | 0.44 A | 0.38 B | 0.45 B | 0.43 B | 0.44 B | |
Source of variation | |||||||||||||
(F) | * | * | * | * | * | * | * | NS | * | * | * | * | |
(CC) | NS | NS | * | NS | * | * | NS | * | NS | * | NS | NS | |
(F) × (CC) | * | * | * | * | * | * | * | NS | * | NS | * | NS |
F * | CC ** | Ca *** | Mg | S | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | ||
S | Clover | 0.60 b | 0.56 b | 0.58 cd | 0.11 a | 0.16 ab | 0.16 a | 0.56 bc | 0.56 bc | 0.56 b |
Fodder radish | 0.59 b | 0.67 b | 0.63 b | 0.08 b | 0.18 ab | 0.13 ab | 0.75 a | 0.72 ab | 0.74 a | |
Buckwheat | 0.60 b | 0.65 b | 0.63 b | 0.10 b | 0.10 bc | 0.10 ab | 0.46 c | 0.84 a | 0.65 a | |
Mustard | 0.57 b | 0.57 b | 0.57 cd | 0.10 b | 0.11 bc | 0.11 ab | 0.64 b | 0.71 ab | 0.68 a | |
Control | 0.55 b | 0.37 c | 0.46 ef | 0.06 c | 0.07 c | 0.07 b | 0.54 bc | 0.49 cd | 0.52 b | |
Mean | 0.58 A | 0.56 A | 0.57 A | 0.09 A | 0.12 A | 0.10 A | 0.59 A | 0.66 A | 0.63 A | |
nS | Clover | 0.84 a | 0.84 a | 0.84 a | 0.10 b | 0.19 a | 0.15 ab | 0.40 d | 0.30 d | 0.35 c |
Fodder radish | 0.44 b | 0.53 b | 0.49 ef | 0.09 b | 0.13 ab | 0.11 ab | 0.62 b | 0.32 d | 0.47 b | |
Buckwheat | 0.50 b | 0.54 b | 0.52 cd | 0.10 b | 0.11 bc | 0.11 ab | 0.43 c | 0.30 d | 0.37 bc | |
Mustard | 0.49 b | 0.49 c | 0.49 ef | 0.10 b | 0.10 bc | 0.10 b | 0.65 b | 0.39 cd | 0.52 b | |
Control | 0.43 b | 0.45 c | 0.44 f | 0.09 b | 0.09 bc | 0.09 b | 0.40 d | 0.30 d | 0.35 c | |
Mean | 0.54 A | 0.57 A | 0.56 A | 0.10 A | 0.12 A | 0.11 A | 0.50 B | 0.32 B | 0.41 B | |
Source of variation | ||||||||||
(F) | NS | * | NS | NS | NS | NS | * | * | * | |
(CC) | * | * | * | * | * | NS | * | * | * | |
(F) × (CC) | * | * | * | * | NS | NS | * | * | * |
F * | CC ** | Zn *** | Cu | Mn | Fe | B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | ||
S | Clover | 20.40 b | 23.77 a | 22.09 ab | 2.22 b | 3.38 a | 2.80 a | 6.83 a | 5.29 c | 6.06 b | 20.50 c | 33.83 a | 27.17 bc | 5.23 d | 6.23 a | 5.73 d |
Fodder radish | 22.43 a | 21.66 a | 22.05 ab | 3.04 a | 2.23 a | 2.64 a | 5.15 b | 6.93 a | 6.04 b | 32.49 a | 24.70 b | 28.60 ab | 6.91 b | 7.57 a | 7.24 ab | |
Buckwheat | 22.60 a | 23.93 a | 23.27 a | 2.51 b | 2.37 a | 2.44 ab | 6.63 a | 6.66 a | 6.65 ab | 30.55 b | 31.55 b | 31.05 ab | 6.77 b | 6.77 a | 6.77 ab | |
Mustard | 22.55 a | 23.88 a | 23.22 a | 2.50 b | 2.33 a | 2.42 ab | 6.68 a | 6.78 a | 6.73 a | 30.38 b | 33.05 b | 31.72 a | 6.76 b | 7.10 a | 6.93 ab | |
Control | 20.00 c | 21.40 a | 20.70 ab | 2.20 b | 2.22 a | 2.21 b | 5.16 b | 5.28 c | 5.22 c | 19.70 c | 25.83 b | 22.77 c | 5.18 d | 6.18 a | 5.68 d | |
Mean | 21.60 A | 22.93 A | 22.26 A | 2.49 A | 2.51 A | 2.50 A | 6.09 B | 6.19 B | 6.14 B | 26.72 A | 29.79 A | 28.26 A | 6.17 B | 6.77 A | 6.47 B | |
nS | Clover | 21.32 b | 22.91 a | 22.12 ab | 2.53 b | 2.22 a | 2.38 b | 6.64 a | 6.51 a | 6.58 ab | 24.77 b | 28.10 b | 26.44 bc | 8.37 a | 7.37 a | 7.87 a |
Fodder radish | 21.30 b | 20.64 a | 20.97 ab | 2.37 b | 2.30 a | 2.34 b | 6.57 a | 6.44 a | 6.51 ab | 23.44 b | 26.77 b | 25.11 bc | 8.04 a | 7.38 a | 7.71 ab | |
Buckwheat | 19.70 c | 19.03 a | 19.37 b | 2.33 b | 2.23 a | 2.28 b | 6.34 a | 6.21 b | 6.28 b | 21.00 c | 27.66 b | 24.33 bc | 7.80 b | 7.46 a | 7.63 ab | |
Mustard | 20.90 b | 19.03 a | 19.97 b | 2.33 b | 2.30 a | 2.32 b | 6.34 a | 6.21 b | 6.28 b | 21.00 c | 24.33 b | 22.67 c | 7.80 b | 7.46 a | 7.80 ab | |
Control | 19.70 c | 20.56 a | 20.13 ab | 2.32 b | 2.20 a | 2.26 b | 6.07 a | 6.00 b | 6.04 b | 22.50 c | 18.50 c | 20.50 c | 6.50 c | 6.17 a | 6.34 cd | |
Mean | 20.58 B | 20.43 B | 20.51 B | 2.38 B | 2.25 B | 2.31 A | 6.39 A | 6.27 A | 6.33 A | 22.54 B | 25.07 B | 23.81 B | 7.70 A | 7.10 A | 7.40 A | |
Source of variation | ||||||||||||||||
(F) | * | * | * | NS | NS | NS | * | NS | * | * | * | * | * | NS | * | |
(CC) | NS | NS | NS | * | NS | NS | * | * | * | * | NS | NS | * | * | * | |
(F) × (CC) | * | * | * | * | NS | * | * | * | * | * | * | * | * | NS | * |
F * | CC ** | LAA *** | TPA | AA (DPPH) | Glutathione | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | 2019 | 2020 | Mean | ||
S | Clover | 18.00 b | 11.26 b | 14.63 cd | 102.60 a | 122.60 a | 112.60 a | 1.56 a | 1.69 a | 1.63 a | 13.99 b | 13.28 ab | 13.64 b |
Fodder radish | 18.00 b | 15.76 ab | 16.88 bc | 97.20 c | 107.20 a | 102.20 b | 1.16 b | 1.36 b | 1.26 b | 16.21 a | 15.54 a | 15.88 a | |
Buckwheat | 13.12 b | 14.22 ab | 13.67 cd | 93.85 c | 103.85 b | 98.85 b | 0.69 c | 0.93 de | 0.81 de | 16.76 a | 13.09 ab | 14.93 ab | |
Mustard | 15.01 b | 16.83 a | 15.92 cd | 98.40 b | 103.65 b | 101.03 b | 0.64 d | 0.74 f | 0.69 f | 16.38 a | 12.71 ab | 14.55 ab | |
Control | 10.00 c | 10.35 c | 10.18 e | 93.65 c | 98.40 c | 96.03 c | 0.63 d | 1.63 a | 1.13 c | 10.22 d | 14.55 a | 12.39 c | |
Mean | 14.83 B | 13.68 A | 14.26 A | 97.14 A | 107.14 A | 102.14 A | 0.94 A | 1.27 A | 1.10 A | 14.71 A | 13.83 A | 14.27 A | |
nS | Clover | 13.60 b | 10.79 bc | 12.20 d | 98.25 b | 87.35 d | 92.80 c | 0.65 d | 0.95 de | 0.80 d | 11.62 c | 11.29 b | 11.46 c |
Fodder radish | 26.00 a | 15.23 ab | 20.62 a | 90.45 d | 100.45 b | 95.45 c | 0.56 e | 1.06 cd | 0.81 de | 10.55 d | 9.06 c | 9.81 d | |
Buckwheat | 26.02 a | 12.31 ab | 19.17 ab | 77.35 f | 95.35 c | 86.35 d | 0.69 d | 0.79 ef | 0.74 ef | 10.24 d | 9.54 c | 9.89 d | |
Mustard | 13.95 b | 10.62 c | 12.29 cd | 83.13 e | 92.80 c | 87.97 d | 0.54 e | 1.14 c | 0.84 d | 12.36 c | 11.02 bc | 11.69 c | |
Control | 11.35 b | 10.35 c | 10.85 e | 75.35 g | 78.25 d | 76.80 e | 0.42 f | 0.72 f | 0.57 f | 10.02 d | 8.22 c | 9.12 d | |
Mean | 18.18 A | 11.86 B | 15.02 A | 84.91 B | 90.84 B | 87.87 B | 0.57 B | 0.93 B | 0.75 B | 10.96 B | 9.83 B | 10.39 B | |
Source of variation | |||||||||||||
(F) | * | * | NS | * | * | * | * | * | * | * | * | * | |
(CC) | * | * | * | * | * | NS | * | * | * | * | NS | * | |
(F) × (CC) | * | * | * | * | * | * | * | * | * | * | * | * |
Component | R2 | Structure of Significance Coefficients | Standard Regression Coefficient **** | |||||||
---|---|---|---|---|---|---|---|---|---|---|
b1 | b0 | |||||||||
F ** | CC *** | Years | F | CC | Years | F | CC | Years | ||
Yield | 0.528 | 0.449 * | 0.746 * | 0.087 | 2.296 * | 6.525 * | 1.300 | −0.085 * | −0.462 * | 0.036 |
Dry Matter | 0.485 | 0.623 * | 0.346 | 0.223 | 2.873 * | 4.831 | 0.913 | −1.328 * | −1.771 | 0.567 |
Macronutrient | ||||||||||
N | 0.528 | 0.609 * | 0.451 * | 0.212 | 2.415 * | 4.787 * | 1.882 | −0.544 * | −1.062 * | −0.227 |
P | 0.438 | 0.355 * | 0.066 | 0.518 * | 1.993 * | 3.361 | 0.498 | −1.203 * | −0.881 | 2.441 * |
K | 0.339 | 0.538 * | 0.296 | 0.090 | 2.658 * | 1.535 | 1.738 | −2.379 * | 3.010 | −0.489 |
Ca | 0.404 | 0.347 | 0.544 * | 0.213 | 2.093 | 6.011 * | 0.987 | −1.003 | −5.092 * | 0.865 |
Mg | 0.374 | 0.031 | 0.501 * | 0.334 * | 1.448 | 4.528 * | 0.850 * | 0.447 | −13.367 * | 5.678 * |
S | 0.541 | 0.740 * | 0.070 | 0.159 | 2.501 * | 3.309 | 1.748 | −1.914 * | −0.591 | −0.475 |
Micronutrient | ||||||||||
Zn | 0.330 | 0.546 * | 0.084 | 0.153 | 3.946 * | 1.695 | 0.658 | −0.114 * | 0.061 | 0.039 |
Cu | 0.351 | 0.290 | 0.404 * | 0.348 * | 2.503 | −1.531 * | 3.334 * | −0.425 | 1.919 * | −0.776 * |
Mn | 0.544 | 0.255 | 0.747 * | 0.007 | 0.714 | −6.239 * | 1.539 | 0.125 | 1.480 * | −0.006 |
Fe | 0.349 | 0.491 * | 0.288 | 0.246 | 2.394 * | 1.778 | 0.937 | −0.034 * | 0.046 | 0.021 |
B | 0.649 | 0.607 * | 0.640 * | 0.017 | −0.358 * | −2.594 * | 1.435 | 0.267 * | 0.804 * | 0.009 |
Bioactive compound | ||||||||||
LAA | 0.262 | 0.082 | 0.007 | 0.398 * | 1.371 | 2.967 | 2.111 * | 0.008 | 0.002 | −0.041 * |
TPA | 0.627 | 0.628 * | 0.351 | 0.429 * | 5.882 | 3.643 * | 0.241 | 0.030 | −0.022 * | 0.018 |
AA | 0.598 | 0.555 * | 0.374 * | 0.469 * | 2.072 * | 3.974 * | 0.917 | −0.621 * | −1.058 * | 0.683 |
Glutathione | 0.751 | 0.848 * | 0.332 | 0.192 | 3.279 * | 4.562 | 1.957 | −0.144 * | −0.126 | −0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sałata, A.; Buczkowska, H.; Papliński, R.; Rutkowska, A. The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs. Agriculture 2021, 11, 399. https://doi.org/10.3390/agriculture11050399
Sałata A, Buczkowska H, Papliński R, Rutkowska A. The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs. Agriculture. 2021; 11(5):399. https://doi.org/10.3390/agriculture11050399
Chicago/Turabian StyleSałata, Andrzej, Halina Buczkowska, Rafał Papliński, and Anna Rutkowska. 2021. "The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs" Agriculture 11, no. 5: 399. https://doi.org/10.3390/agriculture11050399
APA StyleSałata, A., Buczkowska, H., Papliński, R., & Rutkowska, A. (2021). The Effects of Using Sulfur and Organic Bedding on the Content of Macro- and Micronutrients and Biologically Active Substances in Winter Garlic Bulbs. Agriculture, 11(5), 399. https://doi.org/10.3390/agriculture11050399