Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. In Situ Data
2.2.2. ERA5-Land Data
2.3. Methods
2.3.1. Soil Water Deficit Index (SWDI)
2.3.2. Percentage of Drought Weeks (PDW)
2.3.3. Atmospheric Water Deficit Index (AWD)
2.3.4. Evaluation Indices
3. Results and Discussion
3.1. Statistical Characteristics of Soil Moisture
3.2. Evaluation of ERA5-Land Soil Moisture and ERA5-Land_SWDI
3.3. The Relationship between the Surface and Subsurface Weekly ERA5-Land_SWDI
3.4. Drought Estimation in the Four Southern Provinces
3.4.1. Temporal Analysis of the ERA5-Land_SWDI
3.4.2. Spatial Analysis of the ERA5-Land_SWDI
3.4.3. Temporal Analysis of the PDW
3.4.4. Spatial Analysis of the PDW
3.5. Comparison between the ERA5-Land_SWDI and the AWD
4. Conclusions
- There is an overestimation in the ERA5-Land soil moisture compared to the in situ data, but this bias can be reduced by the calculation of the SWDI to some extent, and thus agricultural droughts can be more accurately assessed.
- Both the ERA5-Land soil moisture and the derived weekly SWDI have relatively high accuracy, and the subsurface layer can more accurately reflect agricultural drought than the surface layer.
- There is a high correlation between the surface and subsurface ERA5-Land_SWDI.
- Each of the three climate zones had a similar seasonal trend in the SWDI during 2017–2019. However, different climate zones had different drought periods and drought severities, mainly due to their differences in precipitation and evapotranspiration, and less agricultural droughts happened in the temperate, no dry season climate zone.
- Among the four selected representative weeks from different seasons, the 50th week (the early winter) witnessed the most severe droughts with the largest spatial extent, while the 28th week (middle summer) had the least droughts. Agricultural droughts in the temperate, no dry season climate zone in the 50th week in 2019 were the most severe with the largest extent. Extreme droughts also happened in Hainan and on the coast of Guangxi and Guangdong in the 14th week of 2018, and in the northeast of Guangxi in the 40th week of 2019.
- According to the PDW, Yunnan in the temperate, dry winter climate zone and Hainan in the tropical climate zone have a longer drought period than other areas in the four southern provinces of China.
- Except for southwestern Yunnan, where land surface conditions may be the controlling factors of agricultural drought, the SWDI and the meteorological drought index AWD have a relatively high correlation. However, the SWDI is more suitable for agricultural assessment as it directly reflects the water storage deficiency.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Xu, Y.P.; Wang, G. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin. Sci. Total Environ. 2017, 622–623, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.D.; Chen, X.H.; Lai, C.G.; Wang, Z.L.; Lian, Y.Q.; Yu, H.J.; Wu, X.Q. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Huang, S.Z.; Huang, Q.; Chang, J.X.; Leng, G.Y.; Xing, L. The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China. Agric. Water Manag. 2015, 159, 45–54. [Google Scholar] [CrossRef]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil Moisture Drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q.; Liu, X.; Leng, G.; Zhe, L. Soil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China. J. Hydrometeorol. 2017, 18, 5–23. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Trejo, F.; Barbosa, H.; Loukas, A. Evaluation of the SMOS-Derived Soil Water Deficit Index as Agricultural Drought Index in Northeast of Brazil. Water 2017, 9, 377. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. For. Meteorol. 2017, 237–238, 257–269. [Google Scholar] [CrossRef]
- Mishra, A.; Vu, T.; Veettil, A.V.; Entekhabi, D. Drought monitoring with soil moisture active passive (SMAP) measurements. J. Hydrol. 2017, 552, 620–632. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Yu, Z.B. Evaluating uncertainties in multi-layer soil moisture estimation with support vector machines and ensemble Kalman filtering. J. Hydrol. 2016, 538, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; van Dijk, A.I.J.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Wang, H.S.; Rogers, J.C.; Munroe, D.K. Commonly Used Drought Indices as Indicators of Soil Moisture in China. J. Hydrometeorol. 2015, 16, 1397–1408. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. In Goddard Space Flight Center 3d ERTS-1 Symp; NASA: Washington, DC, USA, 1974; 1, pp. 309–317. [Google Scholar]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Bai, J.Y.; Cui, Q.; Chen, D.Q.; Yu, H.W.; Mao, X.D.; Meng, L.K.; Cai, Y. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. Remote Sens. 2018, 10, 1302. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Luo, Y.L.; Xu, Y.P.; Tian, Y.; Yang, T.T. Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. Remote Sens. 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Zhang, Q.; Singh, V.P.; Cui, Y. Copula-based evaluations of drought variations in Guangdong, South China. Nat. Hazards 2011, 59, 1533–1546. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.Z.; Singh, V.P.; Li, J.F. Regionalization and spatial changing properties of droughts across the pearl river basin. J. Hydrol. 2012, 472–473, 355–366. [Google Scholar] [CrossRef]
- Deng, S.L.; Chen, T.; Yang, N.; Qu, l.A.; Li, M.C.; Chen, D. Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin. Sci. Total Environ. 2018, 619–620, 28–41. [Google Scholar] [CrossRef]
- Li, M.X.; Ma, Z.G. Soil moisture drought detection and multi-temporal variability across China. Sci. China Earth Sci. 2018, 58, 1798–1813. [Google Scholar] [CrossRef]
- Ma, S.Y.; Zhang, S.Q.; Wang, N.L.; Huang, C.; Wang, X. Prolonged duration and increased severity of agricultural droughts during 1978 to 2016 detected by ESA CCI SM in the humid Yunnan Province, Southwest China. CATENA 2011, 198, 105036–105049. [Google Scholar] [CrossRef]
- Franz, R.; Markus, K. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar]
- Li, C. Towards Automatic Monitoring Approach of Agro-Meteorology for Maize and Wheat (in Chinese). Ph.D. Thesis, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China, 2017. [Google Scholar]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. data discuss.
- Miriam, P.; Martínez-Fernández, J.; Nilda, S.; Angel, G.Z. Temporal and Spatial Comparison of Agricultural Drought Indices from Moderate Resolution Satellite Soil Moisture Data over Northwest Spain. Remote Sens. 2017, 9, 1168. [Google Scholar]
- Torres, G.M.; Lollato, R.P.; Ochsner, T.E. Comparison of Drought Probability Assessments Based on Atmospheric Water Deficit and Soil Water Deficit. Agron. J. 2013, 105, 428–436. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Jedlicka, K.; Vales, J.; Hajek, P.; Kepka, M.; Pitonak, M. Calculation of Agro-Climatic Factors from Global Climatic Data. Appl. Sci. 2021, 11, 1245. [Google Scholar] [CrossRef]
- Pablos, M.; González-Zamora, A.; Sánchez, N.; Martínez-Fernández, J. Assessment of SMADI and SWDI agricultural drought indices using remotely sensed root zone soil moisture. Int. Assoc. Hydrol. Sci. 2018, 380, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.D.; Liu, J.L.; Song, L.L. Characteristics and forming causes of drought and its controlling measures in Leizhou peninsula. Agric. Res. 2004, 01, 28–31. [Google Scholar]
- Niu, J. Precipitation in the Pearl River basin, South China: Scaling, regional patterns, and influence of large-scale climate anomalies. Stoch Environ. Res. Risk Assess. 2013, 27, 1253–1268. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zou, X.Q.; Cao, L.G.; Xu, X.W.H. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.Z.; Huang, G.H.; Huang, Q.; Wang, H.; Wang, L.; Zhang, Y.; Li, P.; Ma, L. Copulas-based risk analysis for inter-seasonal combinations of wet and dry conditions under a changing climate. Int. J. Climatol. 2019, 39, 2005–2021. [Google Scholar] [CrossRef]
- Fang, W.; Huang, S.Z.; Huang, Q.; Huang, G.; Wang, H.; Leng, G.; Wang, L.; Guo, Y. Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. Remote Sens. Environ. 2019, 232, 111290. [Google Scholar] [CrossRef]
- Liu, W.J.; Liu, C.Q.; Zhao, Z.Q.; Xu, Z.F.; Liang, C.S.; Li, L.B.; Feng, J.Y. Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: Implications for chemical weathering and parent materials. J. Asian Earth Sci. 2013, 67–68, 138–152. [Google Scholar] [CrossRef]
- Wang, J.X.; Zou, B.P.; Liu, Y.; Tang, Y.; Zhang, X.; Yang, P. Erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou, China. Environ. Earth Sci. 2014, 72, 2751–2764. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Wang, K.; Fu, W. Soil moisture dynamics under different land uses on karst hillslope in northwest Guangxi, China. Environ. Earth Sci. 2010, 61, 1105–1111. [Google Scholar] [CrossRef]
- Zhang, D.D.; Yan, D.H.; Lu, Y.F.; Wang, Y.C.; Feng, J. Copula-based risk assessment of drought in Yunnan province, China. Nat. Hazards 2015, 75, 2199–2220. [Google Scholar] [CrossRef]
- Wang, A.; Kong, X. Regional climate model simulation of soil moisture and its application in drought reconstruction across China from 1911 to 2010. Int. J. Climatol. 2021, 41 (Suppl. S1), E1028–E1044. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liu, Y.B.; Wang, W. Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis. Remote Sens. Environ. 2019, 220, 1–18. [Google Scholar] [CrossRef]
Layer | Climate | Data | Minimum | Maximum | Mean | Median | Standard Deviation | Number of Observations (grids) |
---|---|---|---|---|---|---|---|---|
Surface | Tropical | In situ | 3.65 | 59.83 | 29.25 | 27.8 | 5.02 | 14 |
ERA5-Land | 13.01 | 50.95 | 37.94 | 38.97 | 6.01 | 14 | ||
Temperate, no dry season | In situ | 12.27 | 52.17 | 30.12 | 29.90 | 3.42 | 42 | |
ERA5-Land | 6.12 | 51.68 | 40.48 | 41.96 | 5.23 | 124 | ||
Temperate, dry winter | In situ | 6.38 | 71.02 | 27.68 | 26.78 | 5.31 | 49 | |
ERA5-Land | 7.49 | 51.63 | 38.69 | 40.70 | 6.48 | 193 | ||
Subsurface | Tropical | In situ | 5.27 | 57.80 | 32.01 | 31.52 | 4.36 | 14 |
ERA5-Land | 14.84 | 50.65 | 37.94 | 38.7 | 5.75 | 14 | ||
Temperate, no dry season | In situ | 13.9 | 53.53 | 32.08 | 31.55 | 2.65 | 42 | |
ERA5-Land | 8.5 | 51.49 | 40.66 | 41.92 | 4.81 | 124 | ||
Temperate, dry winter | In situ | 7.15 | 67.62 | 31.29 | 31.95 | 4.55 | 49 | |
ERA5-Land | 16.32 | 51.16 | 39.57 | 40.68 | 5.36 | 193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, L.; Zhang, Y.; Huang, F.; Li, J.; Liu, W.; Mao, T.; Xiong, Z.; Shangguan, W. Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China. Agriculture 2021, 11, 411. https://doi.org/10.3390/agriculture11050411
Zhang R, Li L, Zhang Y, Huang F, Li J, Liu W, Mao T, Xiong Z, Shangguan W. Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China. Agriculture. 2021; 11(5):411. https://doi.org/10.3390/agriculture11050411
Chicago/Turabian StyleZhang, Ruqing, Lu Li, Ye Zhang, Feini Huang, Jianduo Li, Wei Liu, Taoning Mao, Zili Xiong, and Wei Shangguan. 2021. "Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China" Agriculture 11, no. 5: 411. https://doi.org/10.3390/agriculture11050411
APA StyleZhang, R., Li, L., Zhang, Y., Huang, F., Li, J., Liu, W., Mao, T., Xiong, Z., & Shangguan, W. (2021). Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China. Agriculture, 11(5), 411. https://doi.org/10.3390/agriculture11050411