Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China
Abstract
:1. Introduction
2. Literature Review and Theory Construction
2.1. Implication and Classification of the Agricultural Value Chain
2.2. Poverty Reduction Mechanism of Smallholders’ Participation in Agricultural Value Chain Activities
3. Model, Data, and Variables
3.1. Measurement of Multidimensional Poverty
3.2. Model Building
3.3. Data Source
3.4. Variable Selection and Descriptive Statistics
4. Results
4.1. Measurement Results of One-Dimensional Poverty and Multidimensional Poverty
4.2. Influence of Smallholders’ Participation in the Agricultural Value Chain on Multidimensional Poverty
4.3. Heterogeneity of Multidimensional Poverty Reduction Effect of Smallholders’ Participation in the Agricultural Value Chain in Different Families
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | Model (6) | |
---|---|---|---|---|---|---|
Male | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty |
Whether to use improved fertilizers | −0.526 ** (0.230) | −0.328 ** (0.140) | ||||
Whether to participate in the procurement | −0.338 (0.380) | −0.596 ** (0.243) | ||||
Whether to use preservation technology | −0.778 *** (0.246) | −0.426 *** (0.137) | ||||
Control variable | ||||||
Pseudo R2 | 0.247 | 0.227 | 0.270 | |||
R2 | 0.231 | 0.231 | 0.249 | |||
Adj R2 | 0.168 | 0.169 | 0.187 | |||
Prob> chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
=LR chi2(14) | 56.15 | 51.67 | 61.54 | |||
Model (7) | Model (8) | Model (9) | Model (10) | Model (11) | Model (12) | |
Female | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty |
Whether to use improved fertilizers | −0.136 (0.173) | −0.272 ** (0.084) | ||||
Whether to participate in the procurement | −0.529 (0.447) | −0.575 *** (0.165) | ||||
Whether to use preservation technology | −0.681 *** (0.238) | −0.476 *** (0.126) | ||||
Control variable | ||||||
Pseudo R2 | 0.285 | 0.288 | 0.304 | |||
R2 | 0.259 | 0.262 | 0.266 | |||
Adj R2 | 0.232 | 0.236 | 0.239 | |||
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
LR chi2(14) | 111.18 | 112.13 | 118.60 | |||
Model (13) | Model (14) | Model (15) | Model (16) | Model (17) | Model (18) | |
Aged above 50 years | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty |
Whether to use improved fertilizers | −0.203 (0.173) | −0.304 *** (0.090) | ||||
Whether to participate in the procurement | −0.710 * (0.394) | −0.717 *** (0.165) | ||||
Whether to use preservation technology | −0.601 ** (0.213) | −0.397 *** (0.117) | ||||
Control variable | ||||||
Pseudo R2 | 0.291 | 0.297 | 0.307 | |||
R2 | 0.199 | 0.214 | 0.202 | |||
Adj R2 | 0.171 | 0.186 | 0.199 | |||
Prob> chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
LR chi2(14) | 116.44 | 118.80 | 123.04 | |||
Model (19) | Model (20) | Model (21) | Model (22) | Model (23) | Model (24) | |
Aged below 50 years | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty | Multidimensional poverty identification | The extent of multidimensional poverty |
Whether to use improved fertilizers | −0.059 (0.219) | −0.197 (0.125) | ||||
Whether to participate in the procurement | −0.142 (0.445) | −0.277 (0.265) | ||||
Whether to use preservation technology | −0.942 ** (0.277) | −0.536 *** (0.152) | ||||
Control variable | ||||||
Pseudo R2 | 0.178 | 0.178 | 0.232 | |||
R2 | 0.165 | 0.158 | 0.211 | |||
Adj R2 | 0.095 | 0.087 | 0.145 | |||
Prob > chi2 | 0.000 | 0.005 | 0.000 | 0.009 | 0.000 | 0.000 |
LR chi2(14) | 38.98 | 39.01 | 50.83 |
References
- FAO. Agricultural Value Chain Study in Iraq: Dates, Grapes, Tomatoes and Wheat; FAO: Baghdad, Iraq, 2021; ISBN 978-92-5-133634-2. [Google Scholar]
- Mitchell, J.; Coles, C. Markets and Rural Poverty: Upgrading in Value Chains; IDRC: Ottawa, ON, Canada, 2011; ISBN 1-84971-313-8. [Google Scholar]
- Bolzani, D.; de Villard, S.; de Pryck, J.D. Agricultural Value Chain Development: Threat or Opportunity for Women’s Employment? ILO: Geneva, Switzerland, 2010. [Google Scholar]
- Van den Broeck, G.; Swinnen, J.; Maertens, M. Global value chains, large-scale farming, and poverty: Long-term effects in Senegal. Food Policy 2017, 66, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Westermann, O.; Förch, W.; Thornton, P.; Körner, J.; Cramer, L.; Campbell, B. Scaling up agricultural interventions: Case studies of climate-smart agriculture. Agric. Syst. 2018, 165, 283–293. [Google Scholar] [CrossRef]
- Hussein, K.; Suttie, D. IFAD RESEARCH SERIES 5—Rural-Urban Linkages and Food Systems in Sub-Saharan Africa: The Rural Dimension; Social Science Research Network: Rochester, NY, USA, 2016. [Google Scholar]
- Gathala, M.K.; Laing, A.M.; Tiwari, T.P.; Timsina, J.; Rola-Rubzen, F.; Islam, S.; Maharjan, S.; Brown, P.R.; Das, K.K.; Pradhan, K.; et al. Improving smallholder farmers’ gross margins and labor-use efficiency across a range of cropping systems in the Eastern Gangetic Plains. World Dev. 2021, 138, 105266. [Google Scholar] [CrossRef]
- Rapsomanikis, G. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; FAO: Rome, Italy, 2015; pp. 1–3. [Google Scholar]
- IFAD. UNEP Smallholders, Food Security and the Environment; International Fund for Agricultural Development: Rome, Italy, 2013. [Google Scholar]
- Smith, L.C.; Frankenberger, T.R. Does resilience capacity reduce the negative impact of shocks on household food security? Evidence from the 2014 floods in Northern Bangladesh. World Dev. 2018, 102, 358–376. [Google Scholar] [CrossRef]
- Ceballos, F.; Kannan, S.; Kramer, B. Impacts of a national lockdown on smallholder farmers’ income and food security: Empirical evidence from two states in India. World Dev. 2020, 136, 105069. [Google Scholar] [CrossRef]
- Ravnborg, H.M.; Gómez, L.I. Poverty reduction through dispossession: The milk boom and the return of the elite in Santo Tomás, Nicaragua. World Dev. 2015, 73, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Dercon, S. Rural Poverty: Old challenges in new contexts. World Bank Res. Obs. 2009, 24, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Knickel, K.; Brunori, G.; Rand, S.; Proost, J. Towards a better conceptual framework for innovation processes in agriculture and rural development: From linear models to systemic approaches. J. Agric. Educ. Ext. 2009, 15, 131–146. [Google Scholar] [CrossRef]
- Miller, C.; Jones, L. Agricultural Value Chain Finance: Tools and Lessons; Practical Action Publishing: Warwickshire, UK, 2010; ISBN 1-78044-051-0. [Google Scholar]
- Swinnen, J. Value Chains, Agricultural Markets and Food Security; Food and Agriculture Organization: Quebec City, QC, Canada, 2015. [Google Scholar]
- Namara, R.E.; Hanjra, M.A.; Castillo, G.E.; Ravnborg, H.M.; Smith, L.; van Koppen, B. Agricultural Water Management and Poverty Linkages. Agric. Water Manag. 2010, 97, 520–527. [Google Scholar] [CrossRef]
- Rutherford, D.D.; Burke, H.M.; Cheung, K.K.; Field, S.H. Impact of an agricultural value chain project on smallholder farmers, households, and children in Liberia. World Dev. 2016, 83, 70–83. [Google Scholar] [CrossRef]
- Barnett, B.J.; Barrett, C.B.; Skees, J.R. Poverty traps and index-based risk transfer products. World Dev. 2008, 36, 1766–1785. [Google Scholar] [CrossRef]
- Pereira, D.S.; Marques, A.C.; Fuinhas, J.A. Are Renewables affecting income distribution and increasing the risk of household poverty? Energy 2019, 170, 791–803. [Google Scholar] [CrossRef]
- Tschakert, P. Environmental services and poverty reduction: Options for smallholders in the Sahel. Agric. Syst. 2007, 94, 75–86. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Yang, Y.; de Sherbinin, A.; Liu, Y. China’s poverty alleviation resettlement: Progress, problems and solutions. Habitat Int. 2020, 98, 102135. [Google Scholar] [CrossRef]
- Giovannucci, D.; Eyhorn, F.; Han, Z.; Joensen, L.; John, M.; Mehta, S.; Meng, F.; Ramakrishnappa, K.; Reddy, S.S.T.; Thimmaiah, A. Organic Agriculture and Poverty Reduction in Asia: China and India Focus; International Fund for Agricultural Development: Rome, Italy, 2005. [Google Scholar]
- Ito, J.; Bao, Z.; Su, Q. Distributional effects of agricultural cooperatives in China: Exclusion of smallholders and potential gains on participation. Food Policy 2012, 37, 700–709. [Google Scholar] [CrossRef]
- Singh, P.K.; Chudasama, H. Evaluating poverty alleviation strategies in a developing country. PLoS ONE 2020, 15, e0227176. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Wang, M.Y.; Xue, T. ‘Voluntary’ poverty alleviation resettlement in China. Dev. Change 2013, 44, 1159–1180. [Google Scholar] [CrossRef]
- Quirós, R. Agricultural Value Chain Finance. In Proceedings of the A summary of the Conference Agricultural Value Chain Finance in Costa Rica, San José, Costa Rica, 16–18 May 2006; pp. 16–18. [Google Scholar]
- Arias, P.; Hallam, D.; Krivonos, E.; Morrison, J. Smallholder Integration in Changing Food Markets; FAO: Rome, Italy, 2013. [Google Scholar]
- Swamy, V.; Dharani, M. Analyzing the agricultural value chain financing: Approaches and tools in India. Agric. Finance Rev. 2016, 76, 211–232. [Google Scholar] [CrossRef]
- Coe, N.M. Missing links: Logistics, governance and upgrading in a shifting global economy. Rev. Int. Polit. Econ. 2014, 21, 224–256. [Google Scholar] [CrossRef]
- Ola, O.; Menapace, L. Smallholders’ perceptions and preferences for market attributes promoting sustained participation in modern agricultural value chains. Food Policy 2020, 97, 101962. [Google Scholar] [CrossRef]
- Swinnen, J.F.M.; Vandeplas, A. Price Transmission and Market Power in Modern Agricultural Value Chains; Social Science Research Network: Rochester, NY, USA, 2014. [Google Scholar]
- von Loeper, W.J.; Drimie, S.; Blignaut, J. The struggles of smallholder farmers: A cause of modern agricultural value chains in South Africa. In Agricultural Value Chain; IntechOpen: London UK, 2018; p. 161. [Google Scholar]
- Webber, C.M.; Labaste, P. Building Competitiveness in Africa’s Agriculture: A Guide to Value Chain Concepts and Applications; The World Bank: Washington, DC, USA, 2009; ISBN 0-8213-7952-6. [Google Scholar]
- Thiele, G.; Devaux, A.; Reinoso, I.; Pico, H.; Montesdeoca, F.; Pumisacho, M.; Andrade-Piedra, J.; Velasco, C.; Flores, P.; Esprella, R.; et al. Multi-stakeholder platforms for linking small farmers to value chains: Evidence from the Andes. Int. J. Agric. Sustain. 2011, 9, 423–433. [Google Scholar] [CrossRef]
- Elena, M.; Yannou-Le Bris, G.; Yannou, B.; Petit, G. A template for sustainable food value chains. Int. Food Agribus. Manag. Rev. 2017, 20, 461–476. [Google Scholar]
- Maestre, M.; Poole, N.; Henson, S. Assessing food value chain pathways, linkages and impacts for better nutrition of vulnerable groups. Food Policy 2017, 68, 31–39. [Google Scholar] [CrossRef]
- Humphrey, J.; Navas-Alemán, L. Value chains, donor interventions and poverty reduction: A review of donor practice. IDS Res. Rep. 2010, 2010, 1–106. [Google Scholar] [CrossRef]
- Jordaan, H.; Grové, B.; Backeberg, G.R. Conceptual framework for value chain analysis for poverty alleviation among smallholder farmers. Agrekon 2014, 53, 1–25. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, H.; Kumar, S.; Mittal, S. Value chains of agricultural commodities and their role in food security and poverty alleviation—A synthesis. Agric. Econ. Res. Rev. 2011, 24, 169–181. [Google Scholar]
- Bijman, J.; Muradian, R.; Cechin, A. Agricultural cooperatives and value chain coordination. In Value Chains, Inclusion and Economic Development: Contrasting Theories and Realities; Routledge: Oxford, UK, 2011; pp. 82–101. [Google Scholar]
- Verhofstadt, E.; Maertens, M. Can Agricultural cooperatives reduce poverty? heterogeneous impact of cooperative membership on farmers’ welfare in Rwanda. Appl. Econ. Perspect. Policy 2015, 37, 86–106. [Google Scholar] [CrossRef] [Green Version]
- Bizikova, L.; Nkonya, E.; Minah, M.; Hanisch, M.; Turaga, R.M.R.; Speranza, C.I.; Karthikeyan, M.; Tang, L.; Ghezzi-Kopel, K.; Kelly, J.; et al. A scoping review of the contributions of farmers’ organizations to smallholder agriculture. Nat. Food 2020, 1, 620–630. [Google Scholar] [CrossRef]
- Nangia, V.; Turral, H.; Molden, D. Increasing water productivity with improved N Fertilizer management. Irrig. Drain. Syst. 2008, 22, 193–207. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Gobbett, D.L. Regional scale application of the precision agriculture thought process to promote improved fertilizer management in the Australian sugar industry. Precis. Agric. 2019, 20, 362–378. [Google Scholar] [CrossRef]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation agriculture for sustainable intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Wineman, A.; Young, S.; Tambo, J.; Vargas, C.; Reardon, T.; Adjognon, G.S.; Porciello, J.; Gathoni, N.; Bizikova, L.; et al. A scoping review of market links between value chain actors and small-scale producers in developing regions. Nat. Sustain. 2020, 3, 799–808. [Google Scholar] [CrossRef]
- Chengappa, P.G. Development of agriculture value chains as a strategy for enhancing farmers’ income. Agric. Econ. Res. Rev. 2018, 31, 1–12. [Google Scholar] [CrossRef]
- Kolavalli, S.; Mensah-Bonsu, A.; Zaman, S. Agricultural Value Chain Development in Practice: Private Sector-Led Smallholder Development; Social Science Research Network: Rochester, NY, USA, 2015. [Google Scholar]
- Olorunfemi, B.J.; Kayode, S.E. Post-harvest loss and grain storage technology—A review. Turk. J. Agric. Food Sci. Technol. 2021, 9, 75–83. [Google Scholar] [CrossRef]
- Kotu, B.H.; Abass, A.B.; Hoeschle-Zeledon, I.; Mbwambo, H.; Bekunda, M. Exploring the profitability of improved storage technologies and their potential impacts on food security and income of smallholder farm households in Tanzania. J. Stored Prod. Res. 2019, 82, 98–109. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R. Efficient fertilizer use: The key to food security and better environment. J. Trop. Agric. 2009, 47, 1–17. [Google Scholar]
- Etesami, H. Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In Nutrient Dynamics for Sustainable Crop Production; Meena, R.S., Ed.; Springer: Singapore, 2020; pp. 215–245. ISBN 9789811386602. [Google Scholar]
- Roy, A.H. Fertilizers and Food Production. In Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology; Kent, J.A., Ed.; Springer: Boston, MA, USA, 2007; pp. 1111–1156. ISBN 978-0-387-27843-8. [Google Scholar]
- Liu, Y.; Guo, Y.; Zhou, Y. Poverty alleviation in rural China: Policy changes, future challenges and policy implications. China Agric. Econ. Rev. 2018, 10, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Lo, K.; Xue, L.; Wang, M. Spatial Restructuring through poverty alleviation resettlement in rural China. J. Rural. Stud. 2016, 47, 496–505. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Sun, C.; Elahi, E. Targeted poverty alleviation using photovoltaic power: Review of Chinese policies. Energy Policy 2018, 120, 550–558. [Google Scholar] [CrossRef]
- Zhang, K.; Dearing, J.A.; Dawson, T.P.; Dong, X.; Yang, X.; Zhang, W. Poverty alleviation strategies in Eastern China lead to critical ecological dynamics. Sci. Total Environ. 2015, 506–507, 164–181. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Guo, L.; Liu, Y. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Bellu, L.G. Value Chain Analysis for Policy Making Methodological Guidelines and Country Cases for a Quantitative Approach; EASYPol Ser.; FAO: Rome, Italy, 2013; Volume 129, pp. 2–12. [Google Scholar]
- Schouten, G.; Bitzer, V. The emergence of southern standards in agricultural value chains: A new trend in sustainability governance? Ecol. Econ. 2015, 120, 175–184. [Google Scholar] [CrossRef]
- Neven, D. Developing Sustainable Food Value Chains Guiding Principles; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Available online: http://www.fao.org/sustainable-food-value-chains/library/details/en/c/265156/ (accessed on 11 March 2021).
- Liu, K.-N.; Fan, Z.-P.; Li, Y.-H.; Dai, X.-Q. A method for selecting enterprise business model in the view of the value chain. Chin. J. Manag. Sci. 2017, 25, 170–180. [Google Scholar] [CrossRef]
- Aboah, J.; Wilson, M.M.J.; Bicknell, K.; Rich, K.M. Identifying the precursors of vulnerability in agricultural value chains: A system dynamics approach. Int. J. Prod. Res. 2021, 59, 683–701. [Google Scholar] [CrossRef]
- Chen, G. Mechanism and Countermeasures of Green Value Chain to Agricultural Sustainable Development—A Case Study of the Green Livestock and Poultry Breeding Project of WENS Group. Acta Agric. Jiangxi 2020, 32, 131–137. [Google Scholar]
- Ho, K.L.P.; Nguyen, C.N.; Adhikari, R.; Miles, M.P.; Bonney, L. Leveraging innovation knowledge management to create positional advantage in agricultural value chains. J. Innov. Knowl. 2019, 4, 115–123. [Google Scholar] [CrossRef]
- Yang, S.; Chen, J. Organic connection between small farmers and modern agriculture in China: Obstacles and solutions. High. Educ. Soc. Sci. 2019, 16, 1–4. [Google Scholar] [CrossRef]
- Balié, J.; del Prete, D.; Magrini, E.; Montalbano, P.; Nenci, S. Does trade policy impact food and agriculture global value chain participation of Sub-Saharan African countries? Am. J. Agric. Econ. 2019, 101, 773–789. [Google Scholar] [CrossRef]
- Montalbano, P.; Pietrelli, R.; Salvatici, L. Participation in the market chain and food security: The case of the Ugandan Maize farmers. Food Policy 2018, 76, 81–98. [Google Scholar] [CrossRef]
- Vroegindewey, R.; Hodbod, J. Resilience of agricultural value chains in developing country contexts: A framework and assessment approach. Sustainability 2018, 10, 916. [Google Scholar] [CrossRef] [Green Version]
- Trienekens, J.H. Agricultural value chains in developing countries: A framework for analysis. Int. Food Agribus. Manag. Rev. 2011, 14, 1–32. [Google Scholar]
- Laven, A.; Verhart, N. Addressing Gender Equality in Agricultural Value Chains: Sharing Work in Progress; Nijmegen, The Netherlands, 2011; 17p, Available online: https://bibalex.org/baifa/Attachment/Documents/352651.pdf (accessed on 11 March 2021).
- Chen, K.Z.; Joshi, P.K.; Cheng, E.; Birthal, P.S. Innovations in financing of agri-food value chains in China and India: Lessons and policies for inclusive financing. China Agric. Econ. Rev. 2015, 7, 616–640. [Google Scholar] [CrossRef]
- Oberholster, C.; Adendorff, C.; Jonker, K. Financing agricultural production from a value chain perspective: Recent evidence from South Africa. Outlook Agric. 2015, 44, 49–60. [Google Scholar] [CrossRef]
- Islam, A.H.M.S. Dynamics and determinants of participation in integrated aquaculture–agriculture value chain: Evidence from a panel data analysis of indigenous smallholders in Bangladesh. J. Dev. Stud. 2021, 1–22. [Google Scholar] [CrossRef]
- Morton, J. On the susceptibility and vulnerability of agricultural value chains to COVID-19. World Dev. 2020, 136, 105132. [Google Scholar] [CrossRef]
- Fan, L.; Sun, L. Rural E-Commerce Two-Way Logistics Model Design; Atlantis Press: Zhengzhou, China, 2018; pp. 860–867. [Google Scholar]
- Alexander, K.S.; Greenhalgh, G.; Moglia, M.; Thephavanh, M.; Sinavong, P.; Larson, S.; Jovanovic, T.; Case, P. What Is technology adoption? Exploring the agricultural research value chain for smallholder farmers in Lao PDR. Agric. Hum. Values 2020, 37, 17–32. [Google Scholar] [CrossRef]
- Gengenbach, H.; Schurman, R.A.; Bassett, T.J.; Munro, W.A.; Moseley, W.G. Limits of the new green revolution for Africa: Reconceptualising gendered agricultural value chains. Geogr. J. 2018, 184, 208–214. [Google Scholar] [CrossRef]
- Theriault, V.; Smale, M.; Assima, A. The Malian fertiliser value chain post-subsidy: An analysis of its structure and performance. Dev. Pract. 2018, 28, 242–256. [Google Scholar] [CrossRef]
- Von Loeper, W.; Musango, J.; Brent, A.; Drimie, S. Analysing challenges facing smallholder farmers and conservation agriculture in South Africa: A system dynamics approach. S. Afr. J. Econ. Manag. Sci. 2016, 19, 747–773. [Google Scholar] [CrossRef]
- Humphrey, J.; Memedovic, O. Global Value Chains in the Agrifood Sector; United Nations [UN] Industrial Development Organization: Vienna, Austria, 2006. [Google Scholar]
- Hartwich, F.; Devlin, J.; Kormawa, P.; Bisallah, I.D.; Odufote, B.O.; Polycarp, I.M. Unleashing Agricultural Development in Nigeria through Value Chain Financing; United Nations Industrial Development Organization: Vienna, Austria, 2010. [Google Scholar]
- Ling, L.; Guo, X.; Hu, Z.; Liang, L. The risk-sharing contracts under random yield and stochastic demand in agricultural supply chain. Chin. J. Manag. Sci. 2013, 11–23. [Google Scholar]
- Rashid, S.; Tefera, N.; Minot, N.; Ayele, G. Fertilizer in Ethiopia: An Assessment of Policies, Value Chain, and Profitability; Social Science Research Network: Rochester, NY, USA, 2013. [Google Scholar]
- Zavale, H.; Matchaya, G.; Vilissa, D.; Nhemachena, C.; Nhlengethwa, S.; Wilson, D. Dynamics of the fertilizer value chain in mozambique. Sustainability 2020, 12, 4691. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z. Does farmer economic organization and agricultural specialization improve rural income? Evidence from China. Econ. Model. 2012, 29, 990–993. [Google Scholar] [CrossRef]
- Kirk, M.; Steele, J.; Delbe, C.; Laura, C.; Keeble, J.; Fricke, C.; Myerscough, R.; Bulloch, G. Connected Agriculture: The Role of Mobile in Driving Efficiency and Sustainability in the Food and Agriculture Value Chain; Oxfam: Oxford, UK, 2011. [Google Scholar]
- Muflikh, Y.N.; Smith, C.; Aziz, A.A. A Systematic review of the contribution of system dynamics to value chain analysis in agricultural development. Agric. Syst. 2021, 189, 103044. [Google Scholar] [CrossRef]
- Tilahun, S.; Choi, H.R.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Hyok, K.; Park, S.M.; Jeong, C.S. Ripening quality of kiwifruit cultivars is affected by harvest time. Sci. Hortic. 2020, 261, 108936. [Google Scholar] [CrossRef]
- Leeters, B.; Rikken, M. Export Value Chain Analysis Fruit and Vegetables Jordan; Authorized by: Netherlands Enterprise Agency RVO. nl; 2016; Available online: http://www.bureauleeters.nl/data/103-wsXTPO1yf418/export-value-chain-fruit-vegetables-jordan-2016.pdf (accessed on 11 March 2021).
- Nang’ole, E.; Mithöfer, D.; Franzel, S. Review of Guidelines and Manuals for Value Chain Analysis for Agricultural and Forest Products; World Agroforestry Centre: Nairobi, Kenya, 2011; ISBN 92-9059-301-6. [Google Scholar]
- Irz, X.; Lin, L.; Thirtle, C.; Wiggins, S. Agricultural productivity growth and poverty alleviation. Dev. Policy Rev. 2001, 19, 449–466. [Google Scholar] [CrossRef]
- Alkire, S.; Foster, J. Counting and multidimensional poverty measurement. J. Public Econ. 2011, 95, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Zhou, Y. Spatio-temporal patterns of rural poverty in China and targeted poverty alleviation strategies. J. Rural. Stud. 2017, 52, 66–75. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Zhou, Y.; He, J.; Huang, Z.; He, L.; Pan, J. SoH-aware charging of supercapacitors with energy efficiency maximization. IEEE Trans. Energy Convers. 2018, 33, 1766–1775. [Google Scholar] [CrossRef]
- Wang, H.; Sarkar, A.; Qian, L. Evaluations of the roles of organizational support, organizational norms and organizational learning for adopting environmentally friendly technologies: A case of kiwifruit farmers’ cooperatives of Meixian, China. Land 2021, 10, 284. [Google Scholar] [CrossRef]
- Xu, G.; Sarkar, A.; Qian, L. Does organizational participation affect farmers’ behavior in adopting the joint mechanism of pest and disease control? A study of Meixian County, Shaanxi Province. Pest Manag. Sci. 2021, 77, 1428–1443. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Radovich, T.J.K.; Nguyen, H.V.; Uyeda, J.; Arakaki, A.; Cadby, J.; Paull, R.; Teves, J.S. and G. Use of Organic Fertilizers to Enhance Soil Fertility, Plant Growth, and Yield in a Tropical Environment; IntechOpen: London, UK, 2016; ISBN 978-953-51-2450-4. [Google Scholar]
- Mugivhisa, L.L.; Olowoyo, J.O.; Mzimba, D. Perceptions on organic farming and selected organic fertilizers by subsistence farmers in Ga-Rankuwa, Pretoria, South Africa. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 85–91. [Google Scholar] [CrossRef]
- de Brauw, A.; Li, Q.; Liu, C.; Rozelle, S.; Zhang, L. Feminization of agriculture in China? Myths surrounding women’s participation in farming. China Q. 2008, 327–348. [Google Scholar] [CrossRef]
- Park, Y.S.; Im, M.H.; Choi, J.-H.; Lee, H.-C.; Ham, K.-S.; Kang, S.-G.; Park, Y.-K.; Suhaj, M.; Namiesnik, J.; Gorinstein, S. Effect of long-term cold storage on physicochemical attributes and bioactive components of kiwi fruit cultivars. CyTA J. Food 2014, 12, 360–368. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Kader, A.A. Kiwifruit postharvest quality maintenance guidelines. Cent. Val. Postharvest Newsl. 1999, 8, 1–11. [Google Scholar]
- Chayal, K.; Dhaka, B.L.; Poonia, M.K.; Tyagi, S.V.S.; Verma, S.R. Involvement of farm women in decision-making in agriculture. Stud. Home Community Sci. 2013, 7, 35–37. [Google Scholar] [CrossRef]
Level I Index | Weight | Poverty Standard | Assignment |
---|---|---|---|
Per capita net income | 0.1 | Per capita net income of the family in 2018 | 1 = income < 3200 |
0 = income ≥ 3200 | |||
Educational years of the householder | 0.1 | The educational years of the householder are six years | 1 ≤ 6 years |
0 ≥ 6 years | |||
The enrollment rate of children | 0.1 | At least one six-year-old child in the family does not go to school | 1 = yes, 0 = no |
Drinking water | 0.1 | The drinking water of the family is not from groundwater more than 5 m below the ground or water plant (assigned the value of 1) | 1 = yes, 0 = no |
Toilet | 0.1 | The toilet is flush toilet | 1 = pit toilet, 0 = flush toilet |
Electricity supply | 0.1 | No electricity or frequent power failure | 1 = no electricity, 0 = frequent power failure |
Cooking fuel | 0.1 | Main cooking fuel for the family | 1 = straw, coal and firewood, 0 = LPG, gas, natural gas, electricity, etc. |
Fixed asset | 0.1 | More than two items among motorcycle, television, washing machine, electric bicycle, computer, camera, mobile phone, and air conditioner | 1 = number of fixed assets ≤ 2 0 = number of fixed assets > 2 |
Housing condition | 0.1 | No self-owned house or homestead, or the house is made of wood and thatch | 1 = yes, 0 = no |
Medical coverage | 0.1 | At least one person over six years old who is not insured | 1 = yes, 0 = no |
Variable | Implication | Mean | SD |
---|---|---|---|
Multidimensional poverty identification | Yes = 1, No = 0 | 0.780 | 0.414 |
The extent of multidimensional poverty | Overall degree of multidimensional poverty | 1.258 | 0.955 |
Whether to use improved fertilizers | Whether to use fertilizers purchased by industry organizations before production, Yes = 1, No = 0 | 0.425 | 0.495 |
Whether to participate in the procurement | Whether to accept procurement by industry organizations after production | 0.927 | 0.261 |
Whether to use preservation technology | Whether to use preservation technology during production, Yes = 1, No = 0 | 0.253 | 0.435 |
Individual characteristics of farmers | |||
Sex of the householder | Male = 1, female = 0 | 0.315 | 0.464 |
Age of the householder | The actual age of the householder (years) | 56.92 | 10.78 |
Years of the householder engaged in agriculture | Subject to the actual survey data (years) | 32.32 | 16.609 |
Number of workers | The actual number of adult workers in the family | 0.255 | 0.548 |
Characteristics of production and operation | |||
Whether farmyard manure improves kiwifruit quality | Yes = 1, No = 0 | 0.875 | 0.439 |
The unit price of fertilizer | The unit price of fertilizer purchased (Yuan) | 147.54 | 63.569 |
Leading enterprises | Whether to join leading enterprises, Yes = 1, No = 0 | 0.143 | 0.693 |
The income of Xuxiang kiwifruit | Actual income of Xuxiang kiwifruit (Yuan) | 3670.38 | 10,942.42 |
Purchase of bagging | Purchase cost of bagging (Yuan) | 321.343 | 860.922 |
Irrigation cost | Actual irrigation cost (Yuan) | 707.379 | 1364.053 |
Machinery operation cost | Actual machinery operation cost (Yuan) | 320.622 | 762.191 |
Planting years of Xuxiang kiwifruit | Actual planting years of Xuxiang kiwifruit (years) | 14.93 | 8.32 |
The yield of Xuxiang kiwifruit | Actual yield of Xuxiang kiwifruit (Jin) | 6394.85 | 7920.70 |
Machinery procurement cost | Actual machinery procurement cost (Yuan) | 1383.62 | 3937.54 |
Social network | Frequency of association with relatives and friends, 1 = seldom, 2 = sometimes, 3 = average, 4 = relatively frequent, 5 = often | 2.534 | 1.215 |
Risk attitude | Willing to adopt new agricultural technology, 1 = totally unwilling, 2 = unwilling, 3 = willing | 1.764 | 1.011 |
Dimension | Poverty Incidence | Dimension | Poverty Incidence | Dimension | Poverty Incidence |
---|---|---|---|---|---|
1 Per capita net income | 51.8% | Drinking water | 9.5% | 7 Cooking fuel | 0 |
2 Education years of the householder | 33.3% | 5 Toilet | 5.4% | 8 Fixed asset | 0 |
3 Enrollment rate of children | 12.2% | 6 Electricity supply | 0 | 9 Housing condition | 0.7% |
10 Medical coverage | 13.3% |
Dimension | Poverty Incidence | Dimension | Poverty Incidence |
---|---|---|---|
No poverty experience | 22% | Three-dimensional poverty | 10.5% |
One-dimensional poverty | 43% | Four-dimensional poverty | 1.2% |
Two-dimensional poverty | 23.3% | Five-dimensional poverty | 0% |
Whether to Use Improved Fertilizers | Whether to Participate in the Procurement | Whether to Use Preservation Technology | ||||
---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | |
Multidimensional poverty identification | 0.745 | 0.806 | 0.773 | 0.864 | 0.611 | 0.837 |
Extent of multidimensional poverty | 1.075 | 1.394 | 1.212 | 1.841 | 0.875 | 1.388 |
Whether to Use Improved Fertilizers | Whether to Participate in the Procurement | Whether to Use Preservation Technology | |
---|---|---|---|
No poverty experience | 49.2% | 95.5% | 43.2% |
One-dimensional poverty | 48.4% | 95.4% | 39.8% |
Two-dimensional poverty | 34.3% | 91.4% | 33.6% |
Three-dimensional poverty | 23.8% | 82.5% | 20.6% |
Four-dimensional poverty | 28.6% | 57.1% | 28.6% |
Independent Variable | Matching Method | Treatment Group/Control Group | Average Treatment Effect | SD | T-Value |
---|---|---|---|---|---|
Improving fertilizer | Neighbor matching | 216/259 | −0.294 ** | 0.125 | −2.31 |
Radius matching (caliper 0.05) | 216/259 | −0.314 ** | 0.128 | −2.69 | |
Kernel matching | 216/259 | −0.290 ** | 0.121 | −2.45 | |
Local linear regression matching | 216/259 | −0.311 ** | 0.155 | −1.99 | |
Mean | — | −0.301 | — | — | |
Fresh-keeping technology | Neighbor matching | 200/275 | −0.233 ** | 0.116 | −2.00 |
Radius matching (caliper 0.05) | 200/275 | −0.226 ** | 0.103 | −2.20 | |
Kernel matching | 200/275 | −0.301 *** | 0.099 | −3.08 | |
Local linear regression matching | 200/275 | −0.241 ** | 0.136 | −1.99 | |
Mean | — | −0.250 | — | — | |
Organizational acquisition | Neighbor matching | 198/277 | −0.455 ** | 0.131 | −1.99 |
Radius matching (caliper 0.05) | 198/277 | −0.452 ** | 0.117 | −2.20 | |
Kernel matching | 198/277 | −0.488 *** | 0.113 | −2.58 | |
Local linear regression matching | 198/277 | −0.464 ** | 0.172 | −1.94 | |
Mean | — | −0.465 | — | — |
Independent Variable | Matching Method | Pseudo R2 | LRchi2 | Mean Bias | Medbias | B Value |
---|---|---|---|---|---|---|
Improving fertilizer | Before matching | 0.051 | 35.31 *** | 12.2 | 6.2 | 42.4 |
Neighbor matching | 0.001 | 1.91 | 5.5 | 4.5 | 19.1 | |
Radius matching (caliper 0.05) | 0.002 | 0.35 | 1.6 | 0.8 | 7.3 | |
Kernel matching | 0.005 | 0.54 | 1.5 | 1.7 | 6.22 | |
Local linear regression matching | 0.006 | 4.8 | 5.7 | 3.8 | 15.8 | |
Fresh-keeping technology | Before matching | 0.055 | 32.45 *** | 13.1 | 12.1 | 43.3 |
Neighbor matching | 0.006 | 1.62 | 3.9 | 3.6 | 17.5 | |
Radius matching (caliper 0.05) | 0.001 | 0.32 | 1.9 | 1.1 | 8.1 | |
Kernel matching | 0.002 | 0.23 | 1.6 | 1.1 | 5.2 | |
Local linear regression matching | 0.004 | 3.17 | 2.9 | 3.2 | 14.4 | |
Organizational acquisition | Before matching | 0.053 | 32.78 *** | 11.2 | 6.2 | 43.1 |
Neighbor matching | 0.009 | 3.21 | 2.4 | 2.7 | 20.3 | |
Radius matching (caliper 0.05) | 0.001 | 0.38 | 2.2 | 2.1 | 8.6 | |
Kernel matching | 0.004 | 0.46 | 1.8 | 1.2 | 7.46 | |
Local linear regression matching | 0.004 | 5.2 | 3.9 | 4.5 | 15.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, X.; Sarkar, A.; Qian, L. Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China. Agriculture 2021, 11, 462. https://doi.org/10.3390/agriculture11050462
Wang H, Wang X, Sarkar A, Qian L. Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China. Agriculture. 2021; 11(5):462. https://doi.org/10.3390/agriculture11050462
Chicago/Turabian StyleWang, Hongyu, Xiaolei Wang, Apurbo Sarkar, and Lu Qian. 2021. "Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China" Agriculture 11, no. 5: 462. https://doi.org/10.3390/agriculture11050462
APA StyleWang, H., Wang, X., Sarkar, A., & Qian, L. (2021). Evaluating the Impacts of Smallholder Farmer’s Participation in Modern Agricultural Value Chain Tactics for Facilitating Poverty Alleviation—A Case Study of Kiwifruit Industry in Shaanxi, China. Agriculture, 11(5), 462. https://doi.org/10.3390/agriculture11050462