Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Anaerobic Incubation Experiment
2.3. Soil Properties Analysis
2.4. Regression Model for CH4PP
2.5. Evaluation of the Regional Differences in CH4 Production Potential
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The physical Science Basis. In Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Jain, M.C.; Pathak, H. Properties of rice soils affecting methane production potentials: 2. Differences in topsoil and subsoil. Nutr. Cycl. Agroecosyst. 2002, 64, 183–191. [Google Scholar] [CrossRef]
- IPCC, 1996. Methane Emisions from Rice Cultivation: Flooded Rice Fields. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, 3 June 1992. pp. 53–75. Available online: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (accessed on 29 June 2020).
- Office of Agricultural Economics, 2019. Land Use for Agricultural Purpose in Thailand. Available online: http://www.oae.go.th/assets/portals/1/files/LandUtilization2560.pdf (accessed on 4 July 2020). (In Thai)
- Arunrat, N.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy 2020, 10, 1061. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations, 2019. Greenhouse Gas (GHG) Emissions from Rice Cultivation. Available online: http://www.fao.org/faostat/en/#home (accessed on 15 March 2021).
- Minamikawa, K.; Sakai, N.; Yagi, K. Methane Emission from Paddy Fields and its Mitigation Options on a Field Scale. Microbes Environ. 2006, 21, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Inglett, P.; Reddy, K.; Corstanje, R. Anaerobic Soils. Encycl. Soils Environ. 2005, 4, 72–78. [Google Scholar] [CrossRef]
- Inubushi, K.; Saito, H.; Arai, H.; Ito, K.; Endoh, K.; Yashima, M.M. Effect of oxidizing and reducing agents in soil on methane production in Southeast Asian paddies. Soil Sci. Plant Nutr. 2018, 64, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Sass, R.L.; Lewis, S.T.; Jund, M.F.; Turner, F.T.; Fisher, F.M. Methane emissions from rice fields: Effect of soil properties. Glob. Biogeochem. Cycles 1994, 8, 135–140. [Google Scholar] [CrossRef]
- Wang, Z.P.; Lindau, C.W.; Delaune, R.D.; Patrick, W.H. Methane emission and entrapment in flooded rice soils as affected by soil properties. Biol. Fertil. Soils 1993, 16, 163–168. [Google Scholar] [CrossRef]
- Mitra, S.; Wassmann, R.; Jain, M.C.; Pathak, H. Properties of rice soils affecting methane production potentials: 1. Temporal patterns and diagnostic procedures. Nutr. Cycl. Agroecosyst. 2002, 64, 169–182. [Google Scholar] [CrossRef]
- Dasselaar, A.V.D.P.-V.; van Beusichem, M.L.; Oenema, O. Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry 1999, 44, 221–237. [Google Scholar] [CrossRef]
- Mujiyo, M.; Sunarminto, B.; Hanudin, E.; Widada, J.; Syamsiyah, J. Methane production potential of soil profile in organic paddy field. Soil Water Res. 2017, 12, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, R.; Liu, G.; Chen, C.; He, Y.; Liu, X. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour. Technol. 2013, 149, 565–569. [Google Scholar] [CrossRef]
- Thai Meteorological Department. 2018. Monthly rainfall in Thailand. Available online: http://hydromet.tmd.go.th/Reports/Main.aspx (accessed on 19 December 2019).
- Kawasaki, J.; Herath, S. Impact assessment of climate change on rice production in Khon Kaen province, Thailand. J. ISSAAS 2011, 17, 14–28. [Google Scholar]
- Yagi, K.; Minami, K. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Allen, T. Particle Size Measurement, 3rd ed.; Springer: Boston, MA, USA, 1981. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soils; Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows (Version 21); IBM Corp: Armonk, NY, USA, 2012. [Google Scholar]
- Beckett, C.; Eriksson, L.; Johansson, E.; Wikström, C. Multivariate Data Analysis (MVDA), 7th ed.; Pearson Education Limited: Harlow, UK, 2017. [Google Scholar] [CrossRef]
- Land Development Department, 2011. Soil Nutrition Map. Available online: http://www.ldd.go.th/ (accessed on 19 December 2019).
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop (10.1); Environmental Systems Research Institute: Redlands, CA, USA, 2012. [Google Scholar]
- Zongliang, C.; Debo, L.; Kesheng, S.; Bujun, W. Features of CH4 emission from rice paddy fields in Beijing and Nanjing. Chemosphere 1993, 26, 239–245. [Google Scholar] [CrossRef]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xu, Y.; Wang, Z.; Li, Z.; Ding, Y.; Guo, Y. Methane production potentials of twenty-eight rice soils in China. Biol. Fertil. Soils 1999, 29, 74–80. [Google Scholar] [CrossRef]
- Wassmann, R.; Wang, M.X.; Shangguan, X.J.; Xie, X.L.; Shen, R.X.; Wang, Y.S.; Papen, H.; Rennenberg, H.; Seiler, W. First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-Province (PR China). Geophys. Res. Lett. 1993, 20, 2071–2074. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N. Practices for Reducing Greenhouse Gas Emissions from Rice Production in Northeast Thailand. Agriculture 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Chidthaisong, A.; Obata, H.; Watanabe, I. Methane formation and sumas I bstrate utilisation in anaerobic rice soils as affected by fertilisation. Soil Biol. Biochem. 1998, 31, 135–143. [Google Scholar] [CrossRef]
- Mk, E.; Tokida, T.; Sugiyama, S.-I.; Nakajima, M.; Sameshima, R. Effect of rice straw application on CH4 emission in continuous and recently converted paddy fields. J. Agric. Meteorol. 2011, 67, 185–192. [Google Scholar] [CrossRef]
- Takai, Y. Reduction and microbial metabolism in paddy soils (3). Nogyo Gijutsu. 1961, 19, 122–126. [Google Scholar]
- Ramaswamy, H.S. Electrical Conductivity. In Ohmic Heating in Food Processing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 36–37. [Google Scholar] [CrossRef]
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
Khonkaen and Mahasarakam | Ayutthaya | ||
---|---|---|---|
Site No. | Location | Site No. | Location |
KK1 | 16°10′50.142″ N, 102°41′57.3396″ E | AY1 | 14°11′12.48″ N, 100°41′41.28″ E |
KK2 | 16°10′51.9024″ N, 102°41′56.6268″ E | AY2 | 14°11′45.3372″ N, 100°32′36.7764″ E |
KK3 | 16°32′38.4072″ N, 102°50′55.8384″ E | AY3 | 14°18′40.68″ N, 100°30′48.24″ E |
KK4 | 16°32′47.0112″ N, 102°51′2.6712″ E | AY4 | 14°27′41.76″ N, 100°15′32.76″ E |
KK5 | 16°36′9.8244″ N, 102°53′13.6356″ E | AY5 | 14°27′51.84″ N, 100°15′46.08″ E |
KK6 | 16°29′38.4612″ N, 102°54′34.8696″ E | AY6 | 14°28′16.68″ N, 100°15′16.56″ E |
KK7 | 16°29′40.9776″ N, 102°54′44.46″ E | AY7 | 14°28′14.52″ N, 100°15′16.56″ E |
KK8 | 16°19′48.9864″ N, 102°59′19.068″ E | AY8 | 14°17′8.1816″ N, 100°35′1.3992″ E |
KK9 | 16°19′47.424″ N, 102°58′56.8992″ E | AY9 | 14°29′6.72″ N, 100°15′28.44″ E |
KK10 | 16°20′39.4728″ N, 102°59′6.1764″ E | AY10 | 14°28′22.08″ N, 100°15′7.92″ E |
KK11 | 16°20′33.0396″ N, 102°58′39.6048″ E | AY11 | 14°29′3.84″ N, 100°15′45″ E |
KK12 | 16°20′24.5868″ N, 102°59′31.9704″ E | AY12 | 14°29′7.8″ N, 100°15′49.32″ E |
KK13 | 16°5′41.4924″ N, 102°55′48.4356″ E | AY13 | 14°27′47.16″ N, 100°17′7.8″ E |
KK14 | 16°5′47.2848″ N, 102°55′18.7572″ E | AY14 | 14°11′47.04″ N, 100°32′36.96″ E |
KK15 | 16°5′49.56″ N, 102°55′18.9264″ E | AY15 | 14°18′14.76″ N, 100°27′32.04″ E |
KK16 | 16°5′52.746″ N, 102°55′19.7364″ E | AY16 | 14°18′56.88″ N, 100°27′36.72″ E |
KK17 | 16°5′27.0492″ N, 102°55′4.9908″ E | AY17 | 14°18′11.16″ N, 100°27′41.76″ E |
KK18 | 16°5′39.4548″ N, 102°55′9.0732″ E | AY18 | 14°17′49.2″ N, 100°30′50.04″ E |
KK19 | 16°24′21.294″ N, 103°3′52.5852″ E | AY19 | 14°17′52.08″ N, 100°30′48.6″ E |
KK20 | 16°24′19.8252″ N, 103°3′50.8968″ E | AY20 | 14°13′50.52″ N, 100°29′25.44″ E |
KK21 | 16°24′23.4972″ N, 103°3′58.3884″ E | ||
KK22 | 16°14′19.1796″ N, 103°13′29.9748″ E | ||
KK23 | 16°14′16.5192″ N, 103°13′31.6776″ E | ||
KK24 | 16°14′12.6996″ N, 103°13′29.406″ E |
CH4PP | pH (AI) | EC(AI) | Fe2+ | Mn2+ | Cl− (AI) | NO3− (AI) | SO42− (AI) | ExNH4(AI) | TOC | IC | |
---|---|---|---|---|---|---|---|---|---|---|---|
CH4PP | |||||||||||
pHAI | −0.49 ** | ||||||||||
EC AI | −0.07 | 0.02 | |||||||||
Fe2+ | 0.30 * | −0.49 | −0.15 | ||||||||
Mn2+ | −0.17 | 0.23 | −0.16 | −0.28 | |||||||
Cl− AI | −0.16 | 0.16 | 0.26 | −0.2 | 0.01 | ||||||
NO3− (AI) | −0.13 | −0.01 | 0.06 | −0.05 | 0.04 | 0.03 | |||||
SO42− (AI) | −0.02 | −0.25 | 0.69 ** | −0.02 | −0.21 | 0.04 | −0.02 | ||||
ExNH4 (AI) | 0.07 | −0.12 | 0.46 * | 0.16 | −0.19 | 0.02 | 0.12 | 0.23 | |||
WSOC | 0.35 * | −0.31 | −0.01 | 0.13 | −0.25 | −0.15 | −0.19 | 0.99 | −0.17 | ||
IC | −0.25 | 0.42 ** | 0.32 * | −0.21 | −0.15 | 0.317 * | 0.25 | −0.08 | 0.55 ** | −0.29 |
Predictors | Beta | Significant | Regression Equation | R2 (p Value) | VIF |
---|---|---|---|---|---|
SOC (%) | 1.3 | 0.00003 | CH4PP(μg C/kg/week) = 3649.1(SOC) + 120.7(ExNH4(BI)) + 89.5(Sand) − 328.5(1:10 ECBI) − 5845.7 | 0.50 (0.00002) | 8.3 |
ExNH4(BI) (mg·kg−1) | 0.3 | 0.01 | 1.3 | ||
Sand (%) | 0.9 | 0.00005 | 4.7 | ||
1:10 ECBI (mS·m−1) | −0.7 | 0.002 | 3.3 |
Variables | Ayutthaya | Khonkaen | p Value |
---|---|---|---|
CH4PP (μg·Ckg−1·week−1) | 329.9 ± 956.32 | 370.37 ± 1061.15 | 0.19 |
SOC (%) | 1.54 ± 0.68 | 0.46 ± 0.47 | <0.001 |
ExNH4(BI) (mg·kg−1) | 12.60 ± 0.48 | 11.23 ± 0.52 | <0.001 |
Sand (%) | 21.01 ± 6.03 | 49.76 ± 6.63 | <0.001 |
1:10 ECBI (mS·m−1) | 13.5 ± 4.25 | 7.41 ± 4.06 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukdanont, P.; Arunrat, N.; Amkha, S.; Hatano, R. Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand. Agriculture 2021, 11, 467. https://doi.org/10.3390/agriculture11050467
Sukdanont P, Arunrat N, Amkha S, Hatano R. Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand. Agriculture. 2021; 11(5):467. https://doi.org/10.3390/agriculture11050467
Chicago/Turabian StyleSukdanont, Pongsathorn, Noppol Arunrat, Suphachai Amkha, and Ryusuke Hatano. 2021. "Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand" Agriculture 11, no. 5: 467. https://doi.org/10.3390/agriculture11050467
APA StyleSukdanont, P., Arunrat, N., Amkha, S., & Hatano, R. (2021). Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand. Agriculture, 11(5), 467. https://doi.org/10.3390/agriculture11050467