Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Plant Materials
2.3. Chemical Analyses
2.4. In Vitro Fermentation
2.5. Analysis of Fermentation Products
2.6. Calculations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prażak, R. Prospects for Sorghum cultivation in Poland. Acta. Agrobot. 2016, 2, 1661–1668. [Google Scholar] [CrossRef] [Green Version]
- Babinszky, L.; Halas, V.; Verstegen, M.W.A. Impacts of Climate Change on Animal Production and Quality of Animal Food Products. In Climate Change—Socioeconomic Effects; Kheradmand, H., Blanco, J., Eds.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Ananda, G.K.S.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild Sorghum as a Promising Resource for Crop Improvement. Front. Plant Sci. 2020, 11, 1108. [Google Scholar] [CrossRef]
- Batog, J.; Frankowski, J.; Wawro, A.; Łacka, A. Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop. Energies 2020, 13, 6291. [Google Scholar] [CrossRef]
- Adebayo, O.O.; Ibraheem, O. The current status of cereals (maize, rice and sorghum) crops cultivation in Africa: Need for integration of advances in transgenic for sustainable crop production. Int. J. Environ. Res. Public. Health 2015, 3, 233–245. [Google Scholar] [CrossRef]
- Farré, I.; Faci, J.M. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water. Manag. 2006, 83, 135–143. [Google Scholar] [CrossRef]
- Zhang, L.; Leng, C.; Luo, H.; Wu, X.; Liu, Z.; Zhang, Y.; Zhang, H.; Xia, Y.; Shang, L.; Liu, C.; et al. Sweet sorghum originated through selection of dry, a plant-specific NAC transcription factor gene. Plant. Cell 2018, 30, 2286–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paradhipta, D.H.V.; Joo, Y.H.; Lee, H.J.; Lee, S.S.; Kim, D.H.; Kim, J.D.; Kim, S.C. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. J. Appl. Anim. Rese 2019, 47, 486–491. [Google Scholar] [CrossRef]
- Li, S.S.; Zhang, J.J.; Bai, Y.F.; Degen, A.; Wang, T.; Shang, Z.H.; Ding, L.M.; Long, R.J. Sorghum silage substituted for corn silage in diets for dairy cows: Effects on feed intake, milk yield and quality, and serum metabolites. Appl. Anim. Sci. 2020, 36, 228–236. [Google Scholar] [CrossRef]
- Kozłowski, S.; Zielewicz, W.; Potkański, A.; Cieślak, A.; Szumacher-Strabel, M. Effect of chemical composition of sugar sorghum and the cultivation technology on its utilisation for silage production. Acta Agronom. Hung 2009, 57, 67–78. [Google Scholar] [CrossRef]
- Ren, H.; Sun, W.; Yan, Z.; Zhang, Y.; Wang, Z.; Song, B.; Zheng, Y.; Li, J. Bioaugmentation of sweet sorghum ensiling with rumen fluid: Fermentation characteristics, chemical composition, microbial community, and enzymatic digestibility of silages. J Clean Prod. 2021, 20, 126308. [Google Scholar] [CrossRef]
- Cattani, M.; Maccarana, L.; Sartori, A.; Converso, R.; Bailoni, L. Chemical composition and in vitro fermentation of silages from different sorghum hybrids cultivated in three pilot farms. Poljopr. Agric. 2015, 21, 126–129. [Google Scholar] [CrossRef]
- Kljak, K.; Pino, F.; Heinrichs, A.J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. J. Dairy Sci. 2017, 100, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattani, M.; Guzzo, N.; Mantovani, R.; Bailoni, L. Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J. Anim. Sci. Biotechnol. 2017, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, S.; Dele, P.A.; Jimoh, S.O.; Aderinboye, R.Y.; Olanite, J.A. Physical, fermentative, and nutritional quality of silages made from three Sorghum bicolour varieties as affected by ensiling duration in South-west Nigeria. Trop. Anim. Health Prod. 2021, 53, 239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Amerjan, O.; Xue, X.; Zhang, X.; Guo, X.; Chen, L. Quality analysis on different sweet sorghum silages in Southern Xinjiang compared with a corn silage. Acta Prataculturae Sinica 2014, 3, 232–240. [Google Scholar] [CrossRef]
- Mahanta, S.; Pachauri, V. Nutritional Evaluation of Two Promising Varieties of Forage Sorghum in Sheep Fed as Silage. Anim. Biosci. 2005, 12, 1715–1720. [Google Scholar] [CrossRef]
- Khosravi, M.; Rouzbehan, Y.; Rezaei, M.; Rezaei, J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. J. Dairy Sci. 2018, 101, 10953–10961. [Google Scholar] [CrossRef] [Green Version]
- IZ-INRA. Standards for Cattle Nutrition. In Standards for Ruminants Nutrition; National Research Institute of Animal Production: Kraków, Poland, 2009; pp. 21–81. (In Polish) [Google Scholar]
- Głąb, L.; Sowiński, J. Sustainable Production of Sweet Sorghum as a Bioenergy Crop Using Biosolids Taking into Account Greenhouse Gas Emissions. Sustainability 2019, 11, 3033. [Google Scholar] [CrossRef] [Green Version]
- AOAC. International Official Methods of Analysis, 18th ed.; AOAC International: Arlington, TX, USA, 2005. [Google Scholar]
- Holst, D.O. Holst filtration apparatus for Van Soest detergent fibre analysis. J. AOAC 1973, 56, 1352–1356. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- McDougall, E.I. Studies on Ruminant Saliva. 1. The composition and output of sheep’s saliva. Biochem. J 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Miśta, D.; Pecka, E.; Zachwieja, A.; Zawadzki, W.; Bodarski, R.; Paczyńska, K.; Tumanowicz, J.; Kupczyński, R.; Adamski, M. In Vitro Ruminal Fluid Fermentation as Influenced by Corn-Derived Dried Distillers’ Grains with Solubles. Folia Biol-Krakow. 2014, 62, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecka-Kiełb, E.; Bujok, J.; Miśta, D.; Króliczewska, B.; Górecka, J.; Zawadzki, W. In Vitro Study of Caecal and Colon Microbial Fermentation Patterns in Wild Boar (Sus scrofa scrofa). Folia Biol. 2016, 64, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y. A comparison Study of the Analysis of Volatile Organic Acids and Fatty Acids. Application Note; 5991–9223EN; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2018. [Google Scholar]
- Zhou, Y.H.; Wang, C.X. Analysis of Permanent Gases and Methane with the Agilent 6820 Gas Chromatography; 5988–9269EN; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2003. [Google Scholar]
- Baran, M.; Žitňan, R. Effect of monensin sodium on fermentation efficiency in sheep rumen (short communication). Arch. Tierz 2002, 45, 181–185. [Google Scholar] [CrossRef]
- Chalupa, W. Manipulating rumen fermentation. J. Anim. Sci 1977, 46, 585–599. [Google Scholar] [CrossRef]
- STATISTICA (Data Analysis Software System), v. 10; StatSoft, Inc.: Tulsa, OK, USA, 2010.
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Tagang, A.; Patricia, I.K.; Abdullah, A. Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: A review. AJB 2010, 9, 6229–6232. [Google Scholar]
- Beckman, J.L.; Weiss, W.P. Nutrient Digestibility of Diets with Different Fiber to Starch Ratios when Fed to Lactating Dairy Cows. J. Dairy Sci. 2005, 88, 1015–1023. [Google Scholar] [CrossRef]
- Khaing, K.T.; Loh, T.C.; Ghizan, S.; Jahromi, M.F.; Halim, R.A.; Samsudin, A.A. Profiling of Rumen Fermentation and Microbial Population Changes in Goats Fed with Napier Grass Supplemented with Whole Corn Plant Silage. AJAS 2016, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, L.O.; Fox, D.G.; Russell, J.B. Accounting for ruminal deficiencies of nitrogen and branched-chain amino acids in the structure of the Cornell net carbohydrate and protein system. In Cornell Nutrition Conference for Feed Manufacturers; Rochester, New York State College of Agriculture & Life Sciences; Cornell University: Ithaca, NY, USA, 2000; pp. 224–238. [Google Scholar]
- Calabrò, S.; Tudisco, R.; Grossi, M.; Bovera, F.; Cutrignelli, M.I.; Guglielmelli, A.; Piccolo, V.; Infascelli, F. In vitro fermentation characteristics of corn and sorghum silages. Ital. J. Anim. Sci. 2007, 6, 559–562. [Google Scholar] [CrossRef]
- Deckardt, K.; Khol-Parisini, A.; Zebeli, Q. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges. Nutrients 2013, 5, 1970–1988. [Google Scholar] [CrossRef] [PubMed]
- Oba, M.; Mewis, J.L.; Zhining, Z. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. J. Dairy Sci. 2015, 98, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, H.; Wang, Z.; Zhang, X.; Zou, H.; Tan, C.; Peng, Q. Effects of Dietary Carbohydrate Composition on Rumen Fermentation Characteristics and Microbial Population in Vitro. Ital. J. Anim. Sci. 2015, 3, 3366. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or ca nola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.J.; Huntington, J.A.; Wilkinson, R.G.; Bartram, C.G.; Sinclair, L.A. The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows. Animal 2015, 9, 983–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanili, P.R.B.; Sarturi, J.O.; Ballou, M.A.; Trojan, S.J.; Sugg, D.J.; Ovinge, L.A.; Alrumaih, A.U.; Pellarin, L.A.; Hoffman, A.A. Effects of silage type and inclusion level on ruminal characteristics and feeding behavior of steers fed finishing diets. J. Anim. Sci. 2017, 10, 4623–4637. [Google Scholar] [CrossRef] [Green Version]
- Brask, M.; Lund, P.; Hellwing, A.L.F.; Poulsen, M.; Weisbjerg, M.R. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. Anim. Feed. Sci. Technol. 2013, 184, 67–79. [Google Scholar] [CrossRef]
- Gaviria-Uribe, X.; Bolivar, D.M.; Rosenstock, T.S.; Molina-Botero, I.C.; Chirinda, N.; Barahona, R.; Arango, J. Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations with Two Leucaena Shrub Legumes. Front. Vet. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cieślak, A.; Potkański, A.; Kowalczyk, J.; Szumacher-Strabel, M.; Czaczyk, K.; Gubała, A.; Janicki, M.; Szymaszkiewicz, E. Methane production in in vitro studies as an effect of different additives to grass-clover silage. J. Anim. Feed. Sci. 2005, 1, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Colombini, S.; Zucali, M.; Rapetti, L.; Matteo Crovetto, G.; Sandrucci, A.; Bava, L. Substitution of corn silage with sorghum silages in lactating cow diets: In vivo methane emission and global warming potential of milk production. Agric. Syst. 2015, 136, 106–113. [Google Scholar] [CrossRef]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thiputen, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifes in vitro digestibility and methane production of forage sor-ghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Król, B.; Słupczyńska, M.; Sowiński, J.; Antoszkiewicz, Z. Effect of Lactobacillus buchneri on the nutritive value of Sucrosorgo 506 bagasse silage. JAFS 2020, 29, 158–166. [Google Scholar] [CrossRef]
Diet Composition | |
---|---|
Feedstuff | g/kg DM |
Maize silage | 492.0 |
Alfalfa forage | 290 |
Alfalfa hay silage | 87.9 |
Rapeseed meal | 35.1 |
Meadow hay | 26.4 |
Barley ground | 26.4 |
Lupin ground | 17.6 |
Triticale ground | 17.6 |
Premix | 7.0 |
DM (kg) | 20,32 |
Forage-concentrate ratio | 90:10 |
Diet Nutritional Value | |
Ingredient | g/kg DM |
OM | 930 |
CP | 138 |
NDF | 439 |
ADF | 244 |
ADL | 47 |
Starch | 162 |
WSC | 60 |
Ca abs | 2.5 |
P abs | 2.0 |
FV | 0.92 |
UFL | 0.85 |
PDIN | 87 |
PDIE | 79 |
PDIA | 29 |
Item | CS | GS | RS | SS1 | SS2 | SS3 |
---|---|---|---|---|---|---|
Dry matter (DM) (% of fresh) | 35.04 | 33.53 | 32.45 | 23.16 | 37.67 | 23.52 |
Crude protein | 8.14 | 13.93 | 10.93 | 7.09 | 6.72 | 6.36 |
Ether extract | 2.41 | 2.75 | 1.53 | 1.65 | 3.35 | 1.42 |
Crude fibre | 21.51 | 26.05 | 35.85 | 33.36 | 25.90 | 36.92 |
Neutral detergent fibre | 48.16 | 45.05 | 64.42 | 64.37 | 49.83 | 70.42 |
Acid detergent fibre | 28.61 | 28.71 | 39.38 | 38.81 | 28.04 | 43.19 |
Ash | 3.73 | 10.63 | 9.74 | 5.42 | 6.17 | 5.29 |
Nonstructural carbohydrates | 37.56 | 27.64 | 13.38 | 21.48 | 33.93 | 16.51 |
Nitrogen free extractives | 64.21 | 46.64 | 41.95 | 52.48 | 57.86 | 50.01 |
Gross energy (MJ/kg DM) | 5.37 | 6.74 | 6.14 | 4.80 | 7.27 | 4.31 |
Incubation Time (h) | Substrates | SEM | p Value 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CS | GS | RS | SS1 | SS2 | SS3 | SB | T | SB × T | |||
Total VFA 2 | 8 | 215.1 | 265.3 | 232.9 | 186.4 | 190.8 | 190.8 | 7.095 | <0.01 | <0.01 | 0.59 |
24 | 339.2 | 361.9 | 324.1 | 325.1 | 321.2 | 296.3 | |||||
Individual VFA, mol/100 mol | |||||||||||
Acetic acid | 8 | 63.08 | 66.73 | 65.60 | 66.94 | 65.69 | 63.76 | 0.255 | <0.01 | <0.05 | 0.36 |
24 | 63.23 | 67.41 | 66.44 | 67.32 | 66.85 | 67.08 | |||||
Propionic acid | 8 | 21.71 | 20.11 | 20.84 | 18.64 | 20.41 | 21.08 | 0.224 | <0.05 | 0.35 | 0.40 |
24 | 20.90 | 19.97 | 21.23 | 19.81 | 18.48 | 19.67 | |||||
Isobutyric acid | 8 | 0.66 | 0.65 | 0.79 | 0.65 | 0.53 | 0.61 | 0.012 | <0.01 | <0.01 | 0.24 |
24 | 0.75 | 0.74 | 0.82 | 0.69 | 0.71 | 0.67 | |||||
Butyric acid | 8 | 10.83 | 9.20 | 8.62 | 10.30 | 10.01 | 10.63 | 0.143 | <0.01 | <0.05 | 0.05 |
24 | 11.58 | 8.58 | 7.79 | 9.14 | 10.44 | 9.36 | |||||
Isovaleric acid | 8 | 1.37 | 1.05 | 1.38 | 1.26 | 1.29 | 1.13 | 0.022 | <0.01 | <0.05 | 0.84 |
24 | 1.54 | 1.24 | 1.47 | 1.30 | 1.37 | 1.30 | |||||
Valeric acid | 8 | 1.77 | 1.83 | 2.16 | 1.67 | 1.52 | 1.88 | 0.054 | <0.05 | <0.01 | 0.98 |
24 | 1.53 | 1.68 | 1.82 | 1.32 | 1.30 | 1.47 | |||||
A:P | 8 | 2.94 | 3.35 | 3.16 | 4.22 | 3.27 | 3.21 | 0.084 | 0.08 | 0.98 | 0.35 |
24 | 3.08 | 3.39 | 3.14 | 3.43 | 3.55 | 3.39 | |||||
P:B | 8 | 2.08 | 2.24 | 2.45 | 1.85 | 2.07 | 2.02 | 0.041 | <0.01 | 0.31 | 0.09 |
24 | 1.84 | 2.37 | 2.75 | 2.18 | 1.84 | 2.14 | |||||
pH | 8 | 6.53 | 6.55 | 6.71 | 6.66 | 6.65 | 6.73 | 0.014 | <0.01 | <0.05 | 0.77 |
24 | 6.52 | 6.54 | 6.60 | 6.60 | 6.62 | 6.61 |
Incubation Time (h) | Substrates | SEM | p-Value 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CS | GS | RS | SS1 | SS2 | SS3 | SB | T | SB × T | |||
FE (%) | 8 | 84.98 | 81.88 | 79.83 | 82.89 | 83.60 | 84.10 | 0.243 | <0.01 | <0.05 | 0.20 |
24 | 86.07 | 80.62 | 79.15 | 81.97 | 82.91 | 82.06 | |||||
CY 2 | 8 | 2.09 | 2.60 | 2.26 | 1.82 | 1.86 | 1.86 | 0.07 | <0.01 | <0.01 | 0.60 |
24 | 3.30 | 3.53 | 3.15 | 3.17 | 3.12 | 2.89 | |||||
Gas production 3 | 8 | 38.63 | 54.43 | 37.32 | 29.87 | 32.00 | 27.34 | 0.327 | <0.01 | <0.01 | 0.11 |
24 | 83.78 | 83.70 | 65.29 | 70.61 | 72.41 | 63.82 | |||||
Methane 3 | 8 | 11.51 | 13.08 | 9.53 | 10.06 | 11.99 | 10.69 | 0.108 | <0.01 | <0.01 | 0.20 |
24 | 25.49 | 23.30 | 16.64 | 22.33 | 23.60 | 18.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecka-Kiełb, E.; Miśta, D.; Króliczewska, B.; Zachwieja, A.; Słupczyńska, M.; Król, B.; Sowiński, J. Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage. Agriculture 2021, 11, 492. https://doi.org/10.3390/agriculture11060492
Pecka-Kiełb E, Miśta D, Króliczewska B, Zachwieja A, Słupczyńska M, Król B, Sowiński J. Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage. Agriculture. 2021; 11(6):492. https://doi.org/10.3390/agriculture11060492
Chicago/Turabian StylePecka-Kiełb, Ewa, Dorota Miśta, Bożena Króliczewska, Andrzej Zachwieja, Maja Słupczyńska, Barbara Król, and Józef Sowiński. 2021. "Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage" Agriculture 11, no. 6: 492. https://doi.org/10.3390/agriculture11060492
APA StylePecka-Kiełb, E., Miśta, D., Króliczewska, B., Zachwieja, A., Słupczyńska, M., Król, B., & Sowiński, J. (2021). Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage. Agriculture, 11(6), 492. https://doi.org/10.3390/agriculture11060492