Determinants of Rice Farmers’ Willingness to Pay for Conservation and Sustainable Use of Swampy Wetlands in Ghana’s Northern and Ashanti Regions
Abstract
:1. Introduction
2. Valuation of Swampy Wetlands
3. Materials and Methods
3.1. Study Area
3.2. Sampling Technique and Data Collection
3.3. Data Analysis
- Model A (all parameters)
- Nested Model B
- Nested Model C
4. Results
4.1. Sociodemographic Characteristics of Respondents
4.2. Assessment of the Effects of Postharvest Losses on Swampy Wetlands
4.2.1. Type of Land Used for Rice Production and Size of Swampy Wetland Degraded
4.2.2. Farmers’ Reasons for Increasing Swampy Wetland Use
4.3. WTP for Sustainable Use and Conservation of Swampy Wetland
4.4. Determinants of the WTP for Swampy Wetland Conservation
5. Discussion
6. Conclusions
7. Recommendations
8. Limitations
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsar Convention Secretariat. Wise Use of Wetlands: A Conceptual Framework for the Wise Use of Wetlands, 4th ed.; RCS: Gland, Switzerland, 2010; pp. 20–21. [Google Scholar]
- Ramsar Convention Secretariat. The Ramsar Convention Manual: A Guide to the Convention on Wetlands, 6th ed.; RCS: Gland, Switzerland, 2013; pp. 6–8. [Google Scholar]
- McCartney, M.P.; Koppen, B. Wetland Contributions to Livelihoods in the United Republic of Tanzania; FAO: Rome, Italy, 2004. [Google Scholar]
- Fischer, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. Wetlands as natural assets. Hydrol. Sci. J. 2011, 56, 1360–1373. [Google Scholar] [CrossRef]
- Barbier, E.B.; Acreman, M.C.; Knowler, D. Economic Valuation of Wetlands: A Guide for Policymakers and Planners; Ramsar Convention Secretariat: Gland, Switzerland, 1997. [Google Scholar]
- Emerton, L.; Bos, E. Value: Counting Ecosystems as Water Infrastructure; IUCN: Gland, Switzerland, 2004. [Google Scholar]
- Turner, N.J.; Gregory, R.; Brooks, C.; Failing, L.; Satterfield, T. From invisibility to transparency: Identifying the implications. Ecol. Soc. 2008, 13, 7. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Raskin, R.G. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Ramsar Convention Secretariat. An Introduction to the Convention on Wetlands, 5th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2016; p. 107. [Google Scholar]
- Galbraith, H.; Amerasinghe, P.; Huber-Lee, A. The Effects of Agricultural Irrigation on Wetland Ecosystems in Developing Countries: A Literature Review; Comprehensive Assessment Secretariat: Colombo, Sri Lanka, 2005. [Google Scholar]
- Kumi, J.; Kumi, M.; Apraku, A. Threats to the conservation of wetlands in Ghana: The case of Songor Ramsar site. J. Sci. Res. Rep. 2015, 6, 13–25. [Google Scholar] [CrossRef]
- Siew, M.K.; Yacob, M.R.; Radam, A.; Adamu, A.; Alias, E.F. Estimating willingness to pay for wetland conservation: A contingent valuation study of Paya Indah Wetland, Selangor Malaysia. Procedia Environ. Sci. 2015, 30, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Common Wealth of Australia (2016). Wetland and Agriculture: Retrieve on 15th January 2021. Available online: https://www.environment.gov.au/system/files/resources/84887186-881a-4c83-b434-3d6a5606eafa/files/factsheet-wetlands-agriculture.pdf (accessed on 30 May 2021).
- Ghana Statistical Service (GSS). Statistics for Development and Progress Provisional 2017. Annual Gross Domestic Product. Poverty Reduction Strategies in Action: Perspectives and Lessons from Ghana. 2018. Available online: https://statsghana.gov.gh/ (accessed on 10 April 2019).
- Institute of Statistical; Social and Economic Research (ISSER). Ghana Social Development Outlook, 2012; University of Ghana: Accra, Ghana, 2012. [Google Scholar]
- Ministry of Food and Agriculture—Statistics, Research and Information (MoFA-SRID). Agriculture in Ghana: Facts and Figures (2012); MoFA-SRID: Accra, Ghana, 2012. [Google Scholar]
- Coronel, C.; Lançon, F. Study and Training on the Ghanaian Rice Commodity Chain; GRIB and JICA: Accra, Ghana, 2008. [Google Scholar]
- Manful, J.; Fofana, M. Postharvest Practices and the Quality of Rice in West Africa; Paper presented at CORAF/WECARD: Cotonou, Benin, 2010. [Google Scholar]
- Appiah, F.; Guisse, R.; Dartey, P.K.A. Postharvest losses of rice from harvesting to milling in Ghana. J. Stored Prod. Postharvest Res. 2011, 2, 64–71. [Google Scholar]
- Kipkemboi, J.; Van Dam, A.A.; Ikiara, M.M.; Denny, P. Integration of smallholder wetland aquaculture-agriculture system (fingerponds) into riparian farming systems on the shores of Lake Victoria, Kenya: Socio-economics and livelihoods. Geog. J. 2007, 173, 257–272. [Google Scholar] [CrossRef]
- Theis, J.G. Wetlands loss and agriculture: The failed federal regulation of farming activities under Section 404 of the Clean Water Act. Pace Environ. Law Rev. 1991, 9, 1–54. [Google Scholar]
- MoFA-SRID. Agriculture in Ghana: Facts and Figures (2017); MoFA-SRID: Accra, Ghana, 2018. [Google Scholar]
- Kirsten, D.S. Economic consequences of wetland degradation for local populations. Ecol. Econ. 2005, 53, 177–190. [Google Scholar] [CrossRef]
- Mekong River Commission (MRC). Biodiversity and Fisheries in the Mekong River Basin; Mekong River Commission: Phnom Penh, Cambodia, 2003. [Google Scholar]
- Yawson, S.K. Environmental Management and Water Quality in the Sakumo Catchment. Master’s Thesis, University of Ghana, Legon, Ghana, 2003. [Google Scholar]
- Asmah, R.; Dankwa, H.; Biney, C.A.; Amankwah, C.C. Trend analysis relating to pollution in Sakumo lagoon, Ghana. Afr. J. Aquat. Sci. 2008, 33, 87–93. [Google Scholar] [CrossRef]
- Edor, K.A. Pollution Studies on Sakumo Ramsar Site. Master’s Thesis, University of Ghana, Legon, Ghana, 2008. [Google Scholar]
- Nartey, V.K.; Edor, K.A.; Doamekpor, L.K.; Bobobee, L.H. Nutrient load of the Sakumo lagoon at the Sakumo Ramsar site Tema, Ghana. West Aft. J. Appl. Ecol. 2011, 19. [Google Scholar]
- Nonterah, C.; Xu, Y.; Osae, S.; Akiti, T.T.; Dampare, S.B. A review of the ecohydrology of the Sakumo wetland in Ghana. Environ. Monit. Assess. 2015, 187, 671. [Google Scholar] [CrossRef]
- Adade, R.; Nyarko, B.K.; Aheto, D.W.; Osei, K.N. Fragmentation of wetlands in the south eastern coastal savanna of Ghana. Reg. Stud. Mar. Sci. 2017, 12, 40–48. [Google Scholar] [CrossRef]
- Koranteng, K.A. Ghana Coastal Wetlands Management Project. Environmental Baseline Studies (Sakumo Ramsar Site); Ramsar Sites Information Service: Accra, Ghana, 1995; pp. 2–22. [Google Scholar]
- Ministry of Lands and Forestry. A National Wetlands Conservation Strategy; Ministry of Lands and Forestry: Accra, Ghana, 1999; p. 3. [Google Scholar]
- Oduor, F.O.; Raburu, P.O.; Mwakubo, S. Estimation of willingness to pay for conservation of Nyando wetlands, Kenya: A contingent valuation approach. Adv. Ecol. Environ. Res. 2016, 1, 1–16. [Google Scholar]
- Navrud, S.; Mungatana, E.D. Environmental valuation in developing countries: The recreational value of wildlife viewing. Ecol. Econ. 1994, 11, 135–151. [Google Scholar] [CrossRef]
- Ikiara, M.; Mwakubo, S.; Nyang’oro, O. To Conserve or Convert the Yala Wetland: An Economic Valuation; Kenya Institute for Public Policy Research and Analysis: Nairobi, Kenya, 2010. [Google Scholar]
- Makwinja, R.; Kosamu, I.B.M.; Kaonga, C.C. Determinants and values of willingness to pay for water quality improvement: Insights from Chia Lagoon, Malawi. Sustainability 2019, 11, 4690. [Google Scholar] [CrossRef] [Green Version]
- Limuwa, M.; Sitaula, B.; Njaya, F.; Storebakken, T. Evaluation of Small-Scale Fishers’ Perceptions on Climate Change and Their Coping Strategies Insights from Lake Malawi. Clime 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Stewart, T.; Downton, M. Perceptions of drought in the Ogallala Aquifer region. Environ. Behav. 1988, 20, 150–175. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kong, F.; Xiong, K.; Zhang, N. Determinants of farmers’ willingness to pay and its level for ecological compensation of Poyang Lake Wetland, China: A household-level survey. Sustainability 2014, 6, 6714–6728. [Google Scholar] [CrossRef] [Green Version]
- Emerton, L.; Iyango, L.; Luwum, P.; Malinga, A. The Present Economic Value of Nakivubo Urban Wetland, Uganda; IUCN, Eastern Africa Regional Office: Nairobi, Kenya, 1999; Available online: https://www.iucn.org/content/present-economic-value-nakivubo-urban-wetland-uganda (accessed on 25 December 2020).
- Palmer, R.W.; Turpie, J.; Marnewick, G.C.; Bachelor, A.L. Ecological and Economic Evaluation of Wetlands in the Upper Olifants River Catchment, South Africa; WRC: Pretoria, South Africa, 2002. [Google Scholar]
- Ghana Statistical Service. 2010 Population & Housing Census: Regional Analytical Report; Ghana Statistical Service: Accra, Ghana, 2013; Volume 1. [Google Scholar]
- MoFA/Japan International Cooperation Agency (JICA). Tensui Rice Project: Rice Extension Plan for 2018, Kumbungu: Sustainable Development of Rain-Fed Lowland Rice Production; MOFA/JICA: Accra, Ghana, 2018. [Google Scholar]
- OpenStreetMap. Data for This Region. (n.d.). From Geofabrik. Available online: http://download.geofabrik.de/africa.htm (accessed on 8 April 2019).
- Bakopoulou, S.; Polyzos, S.; Kungolos, A. Investigation of farmers’ willingness to pay for using recycled water for irrigation in the Thessaly region, Greece. Desalination 2010, 250, 329–334. [Google Scholar] [CrossRef]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; RFF Press: Washington, DC, USA, 1989. [Google Scholar]
- Spash, C.L. Ethics and environmental attitudes with implications for economic valuation. J. Environ. Manag. 1997, 50, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Aravossis, K.G.; Karydis, V. Combination of monetary valuation techniques and application to environmental impact receptors. Fresenius Environ. Bull 2004, 13, 283–288. [Google Scholar]
- Birol, E.; Karousakis, K.; Koundouri, P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecol. Econ. 2006, 60, 145–156. [Google Scholar] [CrossRef]
- Sauer, U.; Fischer, A. Willingness to pay, attitudes and fundamental values on the cognitive context of public preferences for diversity in agricultural landscapes. Ecol. Econ. 2010, 70, 1–9. [Google Scholar] [CrossRef]
- Johnson, B.K.; Whitehead, J.C.; Mason, D.S.; Walker, G.J. Willingness to pay for downtown public goods generated by large, sports-anchored development projects: The CVM approach. City Cult. Soc. 2012, 3, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuation? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Armbrecht, J. Use value of cultural experiences: A comparison of contingent valuation and travel cost. Tour. Manag. 2014, 42, 141–148. [Google Scholar] [CrossRef]
- Whittington, D. Improving the performance of contingent valuation studies in developing countries. Environ. Res. Econ. 2002, 22, 323–367. [Google Scholar] [CrossRef]
- Alvarez-Farizo, B.; Hanley, N.; Wright, R.; Macmillan, D. Estimating the benefits of agri-environmental policy: Econometric issues in open-ended contingent valuation studies. J. Environ. Plan Manag. 1999, 42, 23–43. [Google Scholar] [CrossRef]
- Loomis, J. Comparative reliability of the dichotomous choice and open-ended techniques in contingent valuation. J. Environ. Econ. Manag. 1990, 18, 78–87. [Google Scholar] [CrossRef]
- Brown, T.; Champ, P.; Bishop, R.; McCollum, D. Response formats and public good donations. Land Econ. 1996, 72, 152–166. [Google Scholar] [CrossRef]
- O’Conor, R.M.; Johannesson, M.; Johanesson, P. Stated preferences, real behavior and anchoring: Some empirical evidence. Environ. Econ. 1999, 13, 235–248. [Google Scholar] [CrossRef]
- Cooper, J.C. A comparison of approaches to calculating confidence intervals for benefit measures from dichotomous choice contingent valuation surveys. Land Econ. 1994, 70, 111–122. [Google Scholar] [CrossRef]
- Alberine, A.; Kanninen, B.; Carson, R.T. Modelling response incentive effects in dichotomous choice contingent valuation data. Land Econ. 1997, 73, 309–324. [Google Scholar] [CrossRef] [Green Version]
- Boyle, K.J.; Johnson, F.R.; McCollum, D.W.; Desvousges, W.H.; Dunford, R.W.; Hudson, S.P. Valuing public goods: Discrete versus continuous contingent-valuation responses. Land Econ. 1996, 72, 381–396. [Google Scholar] [CrossRef]
- Tolun, G.; Ergenekon, S.; Hocaoglu, S.; Donertas, A.; Cokacar, T.; Husrevoglu, S.; Baban, A. Socioeconomic response to water quality: A first experience in science and policy integration for the Izmit Bay coastal system. Ecol. Soc. 2012, 17, 40. [Google Scholar]
- de Groot, R.; Alkemade, R.; Braat, L.; Hein, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Kosamu, I.; de Groot, W.; Kasambara, A.; Kaonga, C.; Kambewa, P.; Nagoli, J. Population-based theories as an approach to natural resources management in developing countries: A narrative review of Machakos District in Kenya. J. Ecol. Nat. Environ. 2016, 8, 155–162. [Google Scholar]
- Pearce, D.; Turner, R. Economics of Natural Resources and the Environment; The John Hopkins University Press: Baltimore, MD, USA, 1990. [Google Scholar]
- Mutuli, D.A. Impact of Conservation Tillage Technologies on Smallholder Agriculture in Semi-Arid Lands of Kenya, Unpublished work. 2002.
- Mwakubo, M.A.; Obare, G.A. Vulnerability, livelihood assets and institutional dynamics in the management of wetlands in Lake Victoria Watershed Basin. Wetl. Ecol. Manag. 2009, 17, 613–626. [Google Scholar] [CrossRef]
- Adepoju, A.A.; Salimonu, K.K. Household Willingness to Pay for Improved Solid Waste Management in Osun State, Nigeria. In Proceedings of the 4th International Conference on Appropriate Technology, Accra, Ghana, November 2010; Available online: https://www.researchgate.net/publication/283452822_Household_Willingness_to_Pay_for_Improved_Solid_Waste_Management_in_Osun_State_Nigeria (accessed on 28 May 2021).
- Greene, W. Econometric Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Rabarison, K.; Bish, C.; Massoudi, M.; Giles, W. Economic evaluation enhances public health decision making. Pub. Health 2015, 3, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gujurati, D. Basic Econometrics, 4th ed.; McGraw-Hill Companies: New York, NY, USA, 2004. [Google Scholar]
- Rakthai, S. Willingness to pay for biological diversity conservation of the Lower Mekong River Basin in Thailand: A contingent valuation study. Songklanakarin J. Sci. Tech. 2018, 40, 570–576. [Google Scholar]
- McFadden, D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Secret Developments. Owles Foundation Discussion Paper No. 474. 1977; 35. [Google Scholar]
- Food and Agriculture Organization (FAO). The State of Food and Agriculture 2010-11. Women in Agriculture: Closing the Gender Gap for Development; FAO: Rome, Italy, 2011. [Google Scholar]
- Ghana Statistical Service. 2017/2018 Census of Agriculture National Report; Ghana Statistical Service: Accra, Ghana, 2019; Volume 23, pp. 11–14. [Google Scholar]
- Idachaba, F.S. Human Capital and African Agricultural Development. In Proceedings of the XXII International Development Conference of Agricultural Economist, Harare, Zimbabwe, 22–29 August 1994. [Google Scholar]
- Abatania, L.; Gyasi, K.O.; Terbobri, P.; Salifu, A.B. A Baseline Survey of Cowpea Production in Northern Ghana; IITA: Cotonou, Benin, 1999. [Google Scholar]
- Agrawal, A. Common property institutions and sustainable governance of resources. World Dev. 2001, 29, 1649–1672. [Google Scholar] [CrossRef]
- Bamire, A.S.; Fabiyi, Y.L.; Manyong, V.M. Adoption pattern of fertilizer technology among farmers in the ecological zones of south-western Nigeria: A tobit analysis. Aust. J. Agric. Res. 2002, 53, 901–910. [Google Scholar] [CrossRef]
- Challcharoenwattana, A.; Pharino, C. Wishing to finance a recycling program? Willingness-to-pay study for enhancing municipal solid waste recycling in urban settlements in Thailand. Habitat. Int. 2016, 51, 23–30. [Google Scholar] [CrossRef]
- Kyarisiima, C.C.; Nalukenge, I.; Kariuki, W.; Mesaki, S. Factors affecting sustainability of wetland agriculture within Lake Victoria basin in Uganda. J. Agric. Soc. Res. 2008, 8, 78–88. [Google Scholar] [CrossRef]
Explanatory Variables | Definition of Variables | Description of Variables |
---|---|---|
GH | Gender (male) of household head | Dummy variable where male = 1, female = 0 |
AH | Age of household head | Categorical (dummy variable where ages of 20–30 = 1, 31–40 = 2, 41–50 = 3, 51–60 = 4, >60 = 5; 20–30 is the left-out group) |
HS | Household size | Continuous variable |
ISH | Income source of household head | Dummy variable where farmers have other income source = 1, no other income source = 0 |
ALS | Arable land size | Dummy variable where if respondents consider large arable land size affects WTP decision = 1, if no = 0 |
WKH | Wetland knowledge of household head | Dummy variable where respondent is aware of wetland roles, uses, and benefits = 1, if no = 0 |
IH | Income of household head | Categorical (dummy variable where <500 USD = 1, 500–1000 USD = 2, 1100–2000 USD = 3, 2100–5000 USD = 4, 5100–10,000 USD = 5; <500 USD is the left-out group) |
Characteristic | Category | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 119 | 74.4 |
Female | 41 | 25.6 | |
Age (years) | 20–30 | 17 | 10.6 |
31–40 | 49 | 30.6 | |
41–50 | 54 | 33.8 | |
51–60 | 30 | 18.8 | |
>60 | 10 | 6.3 | |
Educational level | Primary | 24 | 15.0 |
Junior high school | 38 | 23.8 | |
Senior high school | 21 | 13.1 | |
Graduate | 22 | 13.8 | |
No formal education | 55 | 34.4 | |
Income sources | Mainly rice farm | 52 | 32.5 |
Other crop farms | 53 | 33.1 | |
Other job | 55 | 34.4 | |
Income level | |||
1100–2000 USD | 39 | 24.4 | |
2100–5000 USD | 26 | 16.3 | |
5100–10,000 USD | 18 | 11.2 |
WTP of Groups/Stakeholders (USD/Household/ha) | n | WTP | Std. Error | Std dev | Min | Max |
---|---|---|---|---|---|---|
All rice farmers and community members | 143 | 180.17 | 1.10 | 124.47 | 9.12 | 456.20 |
All rice farmers | 109 | 197.04 | 1.34 | 132.88 | 9.12 | 456.20 |
All community members | 34 | 125.57 | 1.23 | 67.72 | 22.81 | 273.72 |
Ashanti Region rice farmers | 52 | 230.74 | 1.39 | 123.74 | 36.50 | 456.20 |
Northern Region rice farmers | 57 | 54.90 | 1.17 | 50.66 | 9.12 | 182.48 |
Ashanti Region community members | 18 | 146.91 | 1.46 | 67.21 | 45.62 | 273.72 |
Northern Region community members | 16 | 76.43 | 1.18 | 35.80 | 22.81 | 136.86 |
Ashanti Region rice farmers and community members | 70 | 213.11 | 1.19 | 119.19475 | 36.50 | 456.20 |
Northern Region rice farmers and community members | 73 | 61.96 | 0.89 | 47.40 | 9.12 | 182.48 |
WTP | Coeff. | Std. Err | t | p > t | 95% Conf. Interval | |
---|---|---|---|---|---|---|
GH | −2.057221 | 0.7704232 | −2.67 | 0.008 ** | −3.567223 | −5472193 |
HS | −2774474 | 0.1312002 | −2.11 | 0.034 * | −0202997 | −5345952 |
ISH | −3856584 | 0.7077381 | −0.54 | 0.586 | −1.7728 | 1.001483 |
ALSH | −050718 | 0.6823467 | −0.07 | 0.941 | −1.388093 | 1.286657 |
WKH | 2.793243 | 0.8228993 | 3.39 | 0.001 ** | 1.18039 | 4.406096 |
AH_new2 | 0.8227511 | 1.058125 | 0.78 | 0.437 | −1.251136 | 2.896638 |
AH_new3 | −2485268 | 1.054697 | −0.24 | 0.814 | −2.315695 | 1.818642 |
AH_new4 | −1.788222 | 1.152716 | −1.55 | 0.121 | −4.047504 | 0.4710595 |
AH_new5 | −2.456424 | 1.596108 | −1.54 | 0.124 | −5.584738 | 0.6718892 |
IH_new2 | −1.057996 | 0.9824037 | −1.08 | 0.282 | −2.983472 | 0.8674799 |
IH_new3 | −2.258338 | 1.08728 | −2.08 | 0.038* | −4.389367 | −1273085 |
IH_new4 | −1036002 | 0.9916653 | −0.10 | 0.917 | −2.047228 | 1.840028 |
IH_new5 | 0.6722404 | 1.495099 | 0.45 | 0.653 | −2.2581 | 3.602581 |
_cons | 3.033772 | 1.494095 | 2.03 | 0.042 | 0.1053988 | 5.962145 |
Number of obs. | 160 | |||||
LR chi2 | 28.29 | |||||
Prob > chi2 | 0.0082 | |||||
Log Likelihood | −37.867997 | |||||
Pseudo R2 | 0.2720 |
WTP | Coeff. | Std. Err | z | p > |z| | 95% Conf. Interval |
---|---|---|---|---|---|
GH | −1.337855 | 0.641841 | −2.08 | 0.037 | −2.59584 to −0.0798699 |
HS | 0.1256963 | 0.0952228 | 1.32 | 0.187 | −0.060937 to 0.3123295 |
ISH | −0.2076186 | 0.6486109 | −0.32 | 0.749 | −1.478873 to 1.063635 |
ALSH | −0.1218091 | 0.6121863 | −0.20 | 0.842 | −1.321672 to 1.078054 |
WKH | 2.233148 | 0.7035524 | 3.17 | 0.002 | 0.854211 to 3.612086 |
IH_new2 | −1.086006 | 0.8981415 | −1.21 | 0.227 | −2.846331 to 0.6743186 |
IH_new3 | −2.130798 | 1.015058 | −2.10 | 0.036 | −4.120276 to −0.1413204 |
IH_new4 | −0.1335096 | 0.9429555 | −0.14 | 0.887 | −1.981668 to 1.714649 |
IH_new5 | −0.3163948 | 1.327994 | −0.24 | 0.812 | −2.919216 to 2.286427 |
_cons | 2.866088 | 1.368711 | 2.09 | 0.036 | 0.1834639 to 5.548712 |
Number of obs. | 160 | ||||
LR chi2 | 21.06 | ||||
Prob > chi2 | 0.0124 | ||||
Log Likelihood | −41.482145 | ||||
Pseudo R2 | 0.2025 |
WTP | Coeff. | Std. Err | z | p > |z| | [95% Conf. Interval] |
---|---|---|---|---|---|
GH | −1.357308 | 0.6396698 | −2.12 | 0.034 | −2.611037 to −0.1035781 |
HS | 0.1238556 | 0.0947688 | 1.31 | 0.191 | −0.0618879 to 0.3095991 |
ALSH | −0.1661746 | 0.5964772 | −0.28 | 0.781 | −1.335249 to 1.002899 |
WKH | 2.207216 | 0.6979194 | 3.16 | 0.002 | 0.8393192 to 3.575113 |
IH_new2 | −1.106059 | 0.8928604 | −1.24 | 0.215 | −2.856033 to 0.6439154 |
IH_new3 | −2.142427 | 1.014037 | −2.11 | 0.035 | −4.129902 to −0.1549512 |
IH_new4 | −0.1582033 | 0.9397089 | −0.17 | 0.866 | −1.999999 to 1.683592 |
IH_new5 | −0.34458 | 1.326647 | −0.26 | 0.795 | −2.94476 to 2.2556 |
_cons | 2.814874 | 1.355823 | 2.08 | 0.038 | 0.1575093 to 5.472238 |
Number of obs. | 160 | ||||
LR chi2 | 20.96 | ||||
Prob > chi2 | 0.00734 | ||||
Log Likelihood | −41.534062 | ||||
Pseudo R2 | 0.2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baffoe, J.D.; Mizunoya, T.; Yabar, H. Determinants of Rice Farmers’ Willingness to Pay for Conservation and Sustainable Use of Swampy Wetlands in Ghana’s Northern and Ashanti Regions. Agriculture 2021, 11, 507. https://doi.org/10.3390/agriculture11060507
Baffoe JD, Mizunoya T, Yabar H. Determinants of Rice Farmers’ Willingness to Pay for Conservation and Sustainable Use of Swampy Wetlands in Ghana’s Northern and Ashanti Regions. Agriculture. 2021; 11(6):507. https://doi.org/10.3390/agriculture11060507
Chicago/Turabian StyleBaffoe, Jonathan Darkwah, Takeshi Mizunoya, and Helmut Yabar. 2021. "Determinants of Rice Farmers’ Willingness to Pay for Conservation and Sustainable Use of Swampy Wetlands in Ghana’s Northern and Ashanti Regions" Agriculture 11, no. 6: 507. https://doi.org/10.3390/agriculture11060507
APA StyleBaffoe, J. D., Mizunoya, T., & Yabar, H. (2021). Determinants of Rice Farmers’ Willingness to Pay for Conservation and Sustainable Use of Swampy Wetlands in Ghana’s Northern and Ashanti Regions. Agriculture, 11(6), 507. https://doi.org/10.3390/agriculture11060507