IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production?
Abstract
:1. Introduction
2. Materials and Methods
2.1. IoFarm Decision-Support System
2.2. Site Description and Weather Conditions
2.3. Field Experiment
2.4. General Cultivation Management
- WB: 320 tsr m−2, KWS Meridian variety approx. 25 September, drill sowing.
- WW: 340 tsr m−2, Patras variety, approx. 5 October, drill sowing.
- SM: 9 tsr m−2, P8589 variety, approx. 25 April, precision seeding, row width 75 cm.
2.5. Crop and Soil Analysis
2.6. Statistical Analysis
3. Results
3.1. Comparison of Nutrient Supply and Fertilizer Use
3.2. Analysis of Variance
3.3. Effects on Protein Content in Cereals
3.4. Effects of IoFarm Decision Support System on Market Performance
3.5. Effects on Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAN | Calcium ammonium nitrate |
DAP | Diammonphosphat |
DM | Dry matter |
DSS | Decision support system |
Dt | Decitonne |
Tsr | Target seeding rate accounting for germination |
K | Potash |
Mg | Magnesium |
N | Nitrogen |
Nmin | mineral soil nitrogen |
P | Phosphate |
S | Sulfur |
SE | Standard error |
TSP | Triplesuperphosphate |
Appendix A
Geiselsberg: 2016 | | | IO | | | | | FM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code | | | SM | WB | WW | ||
Mar | | | 12: 18,46,0,0,0, −36 | | | 2.6 | | | 02: 27,0,0,4,0, −9 | | | 2.5 | 2.5 | |||
| | 21: 0,0,40,6,5,0 | | | 3.3 | | | | | |||||||
| | 26: 0,0,0,14,0,53 | | | 3.0 | | | | | |||||||
Apr | | | 12: 18,46,0,0,0, −36 | | | 1.8 | | | 02: 27,0,0,4,0, −9 | | | 1.0 | ||||
| | 24: 0,0,0,25,20,0 | | | 0.8 | | | 19: 0,0,46,0,0, −1 | | | 2.5 | |||||
| | 04: 46,0,0,0,0, −46 | | | 1.2 | | | 07: 21,0,0,0,24, −63 | | | 1.5 | |||||
| | | | | | 12: 18,46,0,0,0, −36 | | | 2.0 | |||||||
May | | | 04: 46,0,0,0,0, −46 | | | 2.1 | 1.7 | | | 02: 27,0,0,4,0, −9 | | | 2.0 | |||
| | 21: 0,0,40,6,5,0 | | | 1.4 | 4.7 | | | 04: 46,0,0,0,0,−46 | | | 3.0 | ||||
| | 12: 18,46,0,0,0, −36 | | | 2.4 | 2.6 | | | 12: 18,46,0,0,0,−36 | | | 2.0 | ||||
| | 07: 21,0,0,0,24, −63 | | | 0.8 | | | | | |||||||
| | 25: 0,0,0,0,2,50 | | | 3.0 | | | | | |||||||
| | 26: 0,0,0,14,0,53 | | | 6.1 | | | | | |||||||
Jun | | | 04: 46,0,0,0,0, −46 | | | 1.1 | | | 02: 27,0,0,4,0,−9 | | | 2.0 | ||||
Jul | | | 12: 18,46,0,0,0, −36 | | | 1.1 | | | | | ||||||
Geiselsberg: 2017 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Aug | 19: 0,0,46,0,0, −1 | | | 2.9 | 4.5 | | | | | ||||||
Oct | 26: 0,0,0,14,0,53 | | | 3.0 | 3.0 | | | | | ||||||
Nov | | | | | 26: 0,0,0,14,0,53 | | | 6.0 | 6.0 | ||||||
Mar | 02: 27,0,0,4,0, −9 | | | 1.3 | | | 02: 27,0,0,4,0,−9 | | | 2.5 | |||||
21: 0,0,40,6,5,0 | | | 0.8 | 0.8 | | | 19: 0,0,46,0,0,−1 | | | 1.5 | |||||
24: 0,0,0,25,20,0 | | | 0.8 | | | 13: 20,20,0,0,0,−31 | | | 3.5 | ||||||
Apr | 07: 21,0,0,0,24, −63 | | | 1.0 | | | 13: 20,20,0,0,0,−31 | | | 3.5 | |||||
02: 27,0,0,4,0, −9 | | | 2.5 | | | 02: 27,0,0,4,0,−9 | | | 2.0 | ||||||
| | | | 21: 0,0,40,6,5,0 | | | 2.0 | ||||||||
May | 04: 46,0,0,0,0, −46 | | | 2.0 | 3.0 | | | 02: 27,0,0,4,0,−9 | | | 1.0 | ||||
12: 18,46,0,0,0, −36 | | | 2.5 | | | 04: 46,0,0,0,0,−46 | | | 2.0 | ||||||
02: 27,0,0,4,0, −9 | | | 2.1 | | | 12: 18,46,0,0,0,−36 | | | 3.0 | ||||||
07: 21,0,0,0,24,−63 | | | 0.9 | | | | | ||||||||
Geiselsberg: 2018 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 04: 46,0,0,0,0, −46 | | | 1.5 | | | 02: 27,0,0,4,0,−9 | | | 2.5 | 3 | ||||
12: 18,46,0,0,0, −36 | | | 2.4 | | | 12: 18,46,0,0,0,−36 | | | 2 | ||||||
04: 46,0,0,0,0, −46 | | | 2 | | | 26: 0,0,0,14,0,53 | | | 3 | ||||||
07: 21,0,0,0,24, −63 | | | 0.8 | | | 19: 0,0,46,0,0,−1 | | | 5 | ||||||
12: 18,46,0,0,0, −36 | | | 0.8 | | | 22: 0,0,40,6,5,0 | | | 5 | ||||||
26: 0,0,0,14,0,53 | | | 3.7 | | | 24: 0,0,0,25,20,0 | | | 1.5 | ||||||
Apr | 07: 21,0,0,0,24, −63 | | | 0.8 | | | 04: 46,0,0,0,0,−46 | | | 1.7 | |||||
26: 0,0,0,14,0,53 | | | 7.3 | | | 12: 18,46,0,0,0,−36 | | | 4.5 | ||||||
02: 27,0,0,4,0, −9 | | | 4.7 | | | 21: 0,0,40,6,5,0 | | | 5 | ||||||
12: 18,46,0,0,0, −36 | | | 2.2 | | | 26: 0,0,0,14,0,53 | | | 13 | ||||||
May | 04: 46,0,0,0,0, −46 | | | 0.8 | 1.3 | | | 02: 27,0,0,4,0,−9 | | | 2.3 | 2.5 | |||
21: 0,0,40,6,5,0 | | | 1.2 | | | | | ||||||||
24: 0,0,0,25,20,0 | | | 2.9 | | | | | ||||||||
Jun | | | | | 02: 27,0,0,4,0,−9 | | | 1.5 | |||||||
Triesdorf: 2016 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 04: 46,0,0,0,0, −46 | | | 1.3 | 0.8 | | | 15: 15,15,15,0,2,−15 | | | 4.0 | ||||
12: 18,46,0,0,0, −36 | | | 0.8 | | | 17: 23,5,5,0,6,−23 | | | 2.5 | ||||||
21: 0,0,40,6,5,0 | | | 4.8 | | | | | ||||||||
Apr | 21: 0,0,40,6,5,0 | | | 8.4 | 5.6 | | | 04: 46,0,0,0,0,−46 | | | 2.5 | ||||
12: 18,46,0,0,0, −36 | | | 0.9 | | | 12: 18,46,0,0,0,−36 | | | 2.0 | ||||||
| | | | 06: 26,0,0,0,13,−49 | | | 2.0 | ||||||||
May | 04: 46,0,0,0,0, −46 | | | 2.1 | 0.8 | | | 06: 26,0,0,0,13,−49 | | | 1.5 | ||||
12: 18,46,0,0,0, −36 | | | 3.6 | 0.8 | 1.4 | | | | | ||||||
Jun | 04: 46,0,0,0,0, −46 | | | 1.1 | | | 06: 26,0,0,0,13,−49 | | | 2.0 | 2.7 | ||||
Jul | 12: 18,46,0,0,0, −36 | | | 2.2 | | | | | |||||||
Triesdorf: 2017 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Feb | 21: 0,0,40,6,5,0 | | | 1.6 | 0.8 | | | | | ||||||
Mar | 02: 27,0,0,4,0, −9 | | | 1.1 | 2.5 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | ||||
| | | | 20: 0,16,16,2,7,6 | | | 5.0 | 4.0 | |||||||
| | | | 18: 23,5,5,0,6,−23 | | | 2.5 | ||||||||
Apr | 11: 9,0,0,0,0, −9 | | | 2.4 | | | 05: 24,0,0,0,6,−34 | | | 2.0 | 1.5 | ||||
02: 27,0,0,4,0, −9 | | | 2.1 | | | | | ||||||||
21: 0,0,40,6,5,0 | | | 2.4 | | | | | ||||||||
May | 02: 27,0,0,4,0, −9 | | | 1,6 | 1.6 | 1.7 | | | 02: 27,0,0,4,0,−9 | | | 3.0 | |||
07: 21,0,0,0,24, −63 | | | 0.8 | 0.8 | 0.8 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | ||||
11: 9,0,0,0,0, −9 | | | 2.3 | | | 04: 46,0,0,0,0,−46 | | | 3.0 | ||||||
12: 18,46,0,0,0, −36 | | | 1.4 | 0.8 | | | 12: 18,46,0,0,0,−36 | | | 1.0 | |||||
04: 46,0,0,0,0, −46 | | | 1.8 | | | | | ||||||||
Jun | 11: 9,0,0,0,0, −9 | | | 1.1 | | | | | |||||||
Triesdorf: 2018 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 02: 27,0,0,4,0, −9 | | | 1.4 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | |||||
04: 46,0,0,0,0, −46 | | | 3.9 | 1.0 | | | 20: 0,16,16,2,7,6 | | | 1.7 | |||||
24: 0,0,0,25,20,0 | | | 0.9 | | | 22: 0,0,40,6,5,0 | | | 3.7 | 6.4 | |||||
| | | | 06: 26,0,0,0,13,−49 | | | 2.5 | ||||||||
| | | | 19: 0,0,46,0,0,−1 | | | 3.6 | ||||||||
| | | | 24: 0,0,0,25,20,0 | | | 2.0 | ||||||||
Apr | 02: 27,0,0,4,0, −9 | | | 1.0 | 1.8 | | | 14: 15,5,20,2,8,−14 | | | 8.0 | 10.0 | |||
24: 0,0,0,25,20,0 | | | 0.8 | | | 24: 0,0,0,25,20,0 | | | 1.3 | 1.8 | |||||
04: 46,0,0,0,0, −46 | | | 1.7 | | | 04: 46,0,0,0,0,−46 | | | 3.5 | ||||||
07: 21,0,0,0,24, −63 | | | 0.8 | | | 22: 0,0,40,6,5,0 | | | 5.8 | ||||||
12: 18,46,0,0,0, −36 | | | 1.2 | | | | | ||||||||
21: 0,0,40,6,5,0 | | | 1.2 | | | | | ||||||||
May | 04: 46,0,0,0,0, −46 | | | 1.1 | | | | | |||||||
12: 18,46,0,0,0, −36 | | | 0.9 | | | | | ||||||||
21: 0,0,40,6,5,0 | | | 7.4 | | | | | ||||||||
Jun | 02: 27,0,0,4,0, −9 | | | 0.8 | | | | | |||||||
Roggenstein: 2016 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 04: 46,0,0,0,0, −46 | | | 0.8 | 2.3 | | | 12: 18,46,0,0,0,−36 | | | 3 | 4 | |||
07: 21,0,0,0,24, −63 | | | 0.8 | | | 24: 0,0,0,25,20,0 | | | 0.5 | 0.5 | |||||
12: 18,46,0,0,0, −36 | | | 0.8 | 1 | | | | | |||||||
26: 0,0,0,14,0,53 | | | 5.5 | 4.1 | | | | | |||||||
21: 0,0,40,6,5,0 | | | 2.8 | | | | | ||||||||
Apr | 26: 0,0,0,14,0,53 | | | 5.1 | | | 02: 27,0,0,4,0,−9 | | | 2.6 | |||||
May | 04: 46,0,0,0,0, −46 | | | 3.3 | 1.2 | | | 02: 27,0,0,4,0,−9 | | | 3.1 | 1.7 | |||
12: 18,46,0,0,0, −36 | | | 4 | 0.8 | 0.8 | | | 04: 46,0,0,0,0,−46 | | | 2.5 | ||||
21: 0,0,40,6,5,0 | | | 8.4 | 1.5 | 1.8 | | | 12: 18,46,0,0,0,−36 | | | 3 | ||||
| | | | 21: 0,0,40,6,5,0 | | | 10 | ||||||||
| | | | 26: 0,0,0,14,0,53 | | | 10 | ||||||||
Jun | 12: 18,46,0,0,0, −36 | | | 1.6 | 2.3 | | | 02: 27,0,0,4,0,−9 | | | 3.2 | ||||
Jul | 03: 28,0,0,0,0, −28 | | | 1.7 | | | | | |||||||
Sep | | | | | 26: 0,0,0,14,0,53 | | | 12 | 12 | ||||||
Roggenstein: 2017 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Feb | 21: 0,0,40,6,5,0 | | | 1.9 | 0.8 | | | | | ||||||
Mar | 02: 27,0,0,4,0, −9 | | | 2.8 | | | 02: 27,0,0,4,0,−9 | | | 2.2 | 2.2 | ||||
26: 0,0,0,14,0,53 | | | 4.7 | 8.6 | | | | | |||||||
03: 28,0,0,0,0, −28 | | | 5.7 | | | | | ||||||||
Apr | 11: 9,0,0,0,0, −9 | | | 0.8 | | | 01: 27,0,0,0,0,−15 | | | 2.8 | |||||
26: 0,0,0,14,0,53 | | | 10 | | | 10: 46,0,0,0,0,−46 | | | 2.5 | ||||||
07: 21,0,0,0,24, −63 | | | 1.1 | | | 07: 21,0,0,0,24,−63 | | | 1.5 | 1 | |||||
10: 46,0,0,0,0, −46 | | | 2.7 | | | 12: 18,46,0,0,0,−36 | | | 3 | 3 | 2.5 | ||||
12: 18,46,0,0,0, −36 | | | 2.1 | | | 22: 0,0,40,6,5,0 | | | 10 | ||||||
May | 04: 46,0,0,0,0, −46 | | | 1.2 | | | 01: 27,0,0,0,0,−15 | | | 2 | |||||
07: 21,0,0,0,24, −63 | | | 0.8 | 0.8 | | | | | |||||||
12: 18,46,0,0,0, −36 | | | 3.1 | 2.5 | | | | | |||||||
Jun | 12: 18,46,0,0,0, −36 | | | 0.8 | | | | | |||||||
Roggenstein: 2018 | | | IO | | | | | FM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 02: 27,0,0,4,0, −9 | | | 1.1 | 1 | | | 06: 26,0,0,0,13,−49 | | | 2.5 | 2.3 | |||
04: 46,0,0,0,0, −46 | | | 1.9 | 1.5 | | | | | |||||||
12: 18,46,0,0,0, −36 | | | 2.7 | | | | | ||||||||
07: 21,0,0,0,24, −63 | | | 0.8 | | | | | ||||||||
Apr | 26: 0,0,0,14,0,53 | | | 4.5 | 3.2 | | | 01: 27,0,0,0,0,−15 | | | 1.2 | 1.4 | |||
02: 27,0,0,4,0, −9 | | | 2 | | | 02: 27,0,0,4,0,−9 | | | 0.7 | ||||||
04: 46,0,0,0,0, −46 | | | 2 | | | 12: 18,46,0,0,0,−36 | | | 3.5 | 3.7 | 2.3 | ||||
12: 18,46,0,0,0, −36 | | | 3.6 | | | 26: 0,0,0,14,0,53 | | | 4.5 | ||||||
21: 0,0,40,6,5,0 | | | 8.1 | | | 22: 0,0,40,6,5,0 | | | 11 | ||||||
May | 04: 46,0,0,0,0, −46 | | | 1.5 | | | 01: 27,0,0,0,0,−15 | | | 3.5 | 2.9 | ||||
21: 0,0,40,6,5,0 | | | 0.8 | 5 | | | | | |||||||
12: 18,46,0,0,0, −36 | | | 1.5 | | | | | ||||||||
Triesdorf: 2016 | | | oIO | | | | | oFM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 28: Digestate | | | 13 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | 2.5 | ||||
04: 46,0,0,0,0, −46 | | | 1.3 | | | | | ||||||||
21: 0,0,40,6,5,0 | | | 2.5 | 4.3 | | | | | |||||||
Apr | 12: 18,46,0,0,0, −36 | | | 1.7 | | | 28: Digestate | | | 18 | 22 | ||||
May | 07: 21,0,0,0,24, −63 | | | 0.8 | | | 07: 21,0,0,0,24,−63 | | | 2 | |||||
28: Digestate | | | 48 | 20 | | | 28: Digestate | | | 40 | |||||
04: 46,0,0,0,0, −46 | | | 1 | | | | | ||||||||
12: 18,46,0,0,0, −36 | | | 1.4 | | | | | ||||||||
Jun | 04: 46,0,0,0,0, −46 | | | 1 | | | 05: 24,0,0,0,6,−34 | | | 2 | 2 | ||||
Triesdorf: 2017 | | | oIO | | | | | oFM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 03: 28,0,0,0,0, −28 | | | 1.1 | 3.5 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | 2.5 | |||
28: Digestate | | | 13 | | | 20: 0,16,16,2,7,6 | | | 5 | ||||||
Apr | 28: Digestate | | | 13 | 43 | 13 | | | 28: Digestate | | | 25 | 35 | 20 | |
May | 07: 21,0,0,0,24, −63 | | | 0.8 | 0.8 | | | 12: 18,46,0,0,0,−36 | | | 1 | ||||
11: 9,0,0,0,0, −9 | | | 1.9 | 1.3 | | | 05: 24,0,0,0,6,−34 | | | 1 | 2 | ||||
12: 18,46,0,0,0, −36 | | | 0.8 | 0.8 | | | | | |||||||
07: 21,0,0,0,24, −63 | | | 0.8 | | | | | ||||||||
Jun | 11: 9,0,0,0,0, −9 | | | 0.8 | | | | | |||||||
Triesdorf: 2018 | | | oIO | | | | | oFM | |||||||
Fertilizer Code * | | | SM | WB | WW | | | Fertilizer Code * | | | SM | WB | WW | ||
Mar | 02: 27,0,0,4,0,−9 | | | 1.4 | | | 06: 26,0,0,0,13,−49 | | | 2 | |||||
04: 46,0,0,0,0,−46 | | | 2.8 | | | 19: 0,0,46,0,0,−1 | | | 0.8 | ||||||
24: 0,0,0,25,20,0 | | | 0.8 | | | 05: 24,0,0,0,6,−34 | | | 2.5 | ||||||
| | | | 20: 0,16,16,2,7,6 | | | 5 | ||||||||
| | | | 24: 0,0,0,25,20,0 | | | 2.2 | ||||||||
Apr | 28: Digestate | | | 13 | 24 | 44 | | | 04: 46,0,0,0,0,−46 | | | 1.4 | |||
04: 46,0,0,0,0,−46 | | | 1.3 | | | 02: 27,0,0,4,0,−9 | | | 1 | 1.5 | |||||
| | | | 28: Digestate | | | 20 | 20 | 40 | ||||||
| | | | 20: 0,16,16,2,7,6 | | | 1.2 | ||||||||
| | | | 24: 0,0,0,25,20,0 | | | 1.5 | ||||||||
May | 02: 27,0,0,4,0,−9 | | | 2.2 | | | 02: 27.0.0.4.0.−9 | | | 2 | |||||
12: 18,46,0,0,0,−36 | | | 0.8 | | | 15: 15,15,15,0,2,−15 | | | 4 | ||||||
24: 0,0,0,25,20,0 | | | 1.3 | | | | | ||||||||
07: 21,0,0,0,24,−63 | | | 0.8 | | | | | ||||||||
Jun | 12: 18,46,0,0,0,−36 | | | 1.7 | | | | |
Site → | Geiselsberg | | | Triesdorf | | | Roggenstein | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variant → | IO | FM | | | IO | FM | oIO | oFM | | | IO | FM | |||
Crop and | Nmin | Nmin | YEX ** | | | Nmin | Nmin | Nmin | Nmin | YEX ** | | | Nmin | Nmin | YEX ** |
Date ↓ | kg ha−1 | dt ha−1 | | | kg ha−1 | kg ha−1 | dt ha−1 | | | kg ha−1 | dt ha−1 | ||||
Winter Barley | | | | | |||||||||||
02/2016 | 41 | 41 | 75 | | | 46 | 46 | 46 | 46 | 75 | | | 26 | 26 | 80 |
04/2016 | 75 | | | 70 | | | 80 | ||||||||
07/2016 | H * | | | H * | | | H * | ||||||||
08/2016 | 82 | 83 | 75 | | | 65 | 69 | 72 | 67 | 75 | | | 62 | 74 | 80 |
02/2017 | 62 | 65 | 75 | | | 41 | 43 | 45 | 42 | 75 | | | 19 | 12 | 80 |
06/2017 | 70 | | | 70 | | | 75 | ||||||||
07/2017 | H * | | | H * | | | H * | ||||||||
08/2017 | 161 | 85 | 75 | | | 126 | 175 | 90 | 98 | 75 | | | 33 | 80 | |
02/2018 | 39 | 44 | 75 | | | 31 | 33 | 34 | 35 | 75 | | | 23 | 23 | 80 |
07/2018 | H * | | | H * | | | H * | ||||||||
Winter Wheat | | | | | |||||||||||
02/2016 | 52 | 52 | 85 | | | 50 | 50 | 50 | 50 | 85 | | | 30 | 30 | 89 |
04/2016 | 85 | | | 70 | | | 89 | ||||||||
08/2016 | 106 | 74 | H * | | | 49 | 41 | 43 | 37 | H * | | | 24 | 21 | H * |
09/2016 | 85 | | | 85 | | | 89 | ||||||||
02/2017 | 76 | 83 | 85 | | | 51 | 50 | 44 | 46 | 85 | | | 20 | 16 | 89 |
04/2017 | 85 | | | 80 | | | 89 | ||||||||
06/2017 | 75 | | | 75 | | | 89 | ||||||||
07/2017 | H * | | | H * | | | H * | ||||||||
08/2017 | 108 | 116 | | | | | |||||||||
09/2017 | 85 | | | 85 | | | 89 | ||||||||
10/2017 | 85 | | | 64 | 60 | 62 | 56 | 85 | | | 67 | 89 | |||
02/2018 | 49 | 44 | 85 | | | 45 | 34 | 43 | 41 | 85 | | | 32 | 32 | 89 |
07/2018 | H * | | | H * | | | H * | ||||||||
Silage Maize | | | | | |||||||||||
04/2016 | 41 | 41 | 176 | | | 49 | 49 | 49 | 49 | 160 | | | 26 | 26 | 192 |
08/2016 | 89 | 95 | 176 | | | 91 | 85 | 95 | 92 | 160 | | | 50 | 192 | |
09/2016 | H * | | | H * | | | H * | ||||||||
03/2017 | 38 | 51 | 176 | | | 38 | 23 | 26 | 30 | 160 | | | 30 | 28 | 192 |
05/2017 | 176 | | | 160 | | | 176 | ||||||||
08/2017 | 88 | 98 | 176 | | | 104 | 88 | 89 | 90 | 160 | | | 176 | ||
09/2017 | H * | | | H * | | | H * | ||||||||
10/2017 | 176 | | | 160 | | | 192 | ||||||||
03/2018 | 18 | 25 | 176 | | | 32 | 32 | 36 | 35 | 160 | | | 15 | 15 | 192 |
09/2018 | H * | | | H * | | | H * |
References
- Tröster, M.F.; Sauer, J. IoFarm: A novel decision support system to reduce fertilizer expenditures at the farm level. Comput. Electron. Agric. under review.
- Tian, C.; Zhou, X.; Liu, Q.; Peng, J.; Zhang, Z.; Song, H.; Ding, Z.; Zhran, M.A.; Eissa, M.A.; Kheir, A.M.S.; et al. Increasing yield, quality and profitability of winter oilseed rape (Brassica napus) under combinations of nutrient levels in fertiliser and planting density. Crop Pasture Sci. 2020, 71, 1010. [Google Scholar] [CrossRef]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; et al. Corn nitrogen rate recommendation tools’ performance across eight US midwest corn belt states. Agron. J. 2020, 112, 470–492. [Google Scholar] [CrossRef] [Green Version]
- Hlisnikovský, L.; Vach, M.; Abrhám, Z.; Mensik, L.; Kunzová, E. The effect of mineral fertilisers and farmyard manure on grain and straw yield, quality and economical parameters of winter wheat. Plant Soil Environ. 2020, 66, 249–256. [Google Scholar] [CrossRef]
- Mi, W.; Gao, Q.; Guo, X.; Zhao, H.; Xie, B.; Wu, L. Evaluation of Agronomic and Economic Performance of Controlled and Slow-Release Nitrogen Fertilizers in Two Rice Cropping Systems. Agron. J. 2019, 111, 210–216. [Google Scholar] [CrossRef]
- Schätzl, R.; Reisenweber, J.; Schägger, M.; Frank, J. LfL Deckungsbeiträge und Kalkulationsdaten. Available online: https://www.stmelf.bayern.de/idb/winterweizen.html (accessed on 14 October 2019).
- Mariappan, P. Operations Research: An Introduction; Dorling Kindersley: New Delhi, India, 2013; ISBN 9789332517813. [Google Scholar]
- Scharf, P.C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-Based Nitrogen Applications Out-Performed Producer-Chosen Rates for Corn in On-Farm Demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar] [CrossRef]
- Jame, Y.W.; Cutforth, H.W. Crop growth models for decision support systems. Can. J. Plant Sci. 1996, 76, 9–19. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Gowda, P.H.; Afewerk, A.; Abadi, B.; Foster, A.J. Modeling irrigation and nitrogen management of wheat in northern Ethiopia. Agric. Water Manag. 2019, 216, 264–272. [Google Scholar] [CrossRef]
- Übelhör, A.; Munz, S.; Graeff-Hönninger, S.; Claupein, W. Evaluation of the CROPGRO model for white cabbage production under temperate European climate conditions. Sci. Hortic. Amst. 2015, 182, 110–118. [Google Scholar] [CrossRef]
- Chuan, L.; He, P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.; Xu, X.; Zhao, S.; Qiu, S.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crop Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- Sønderskov, M.; Fritzsche, R.; de Mol, F.; Gerowitt, B.; Goltermann, S.; Kierzek, R.; Krawczyk, R.; Bøjer, O.M.; Rydahl, P. DSSHerbicide: Weed control in winter wheat with a decision support system in three South Baltic regions—Field experimental results. Crop Prot. 2015, 76, 15–23. [Google Scholar] [CrossRef]
- Mandrini, G.; Bullock, D.S.; Martin, N.F. Modeling the economic and environmental effects of corn nitrogen management strategies in Illinois. Field Crop Res. 2021, 261, 108000. [Google Scholar] [CrossRef]
- Smart Fertilizer Management. Smart Fertilizer; London. Available online: https://www.smart-fertilizer.com/ (accessed on 20 June 2021).
- Bueno-Delgado, M.V.; Molina-Martínez, J.M.; Correoso-Campillo, R.; Pavón-Mariño, P. Ecofert: An Android application for the optimization of fertilizer cost in fertigation. Comput. Electron. Agric. 2016, 121, 32–42. [Google Scholar] [CrossRef]
- Pagán, F.J.; Ferrández-Villena, M.; Fernández-Pacheco, D.G.; Rosillo, J.J.; Molina-Martínez, J.M. Optifer: AN application to optimize fertiliser costs in fertigation. Agric. Water Manag. 2015, 151, 19–29. [Google Scholar] [CrossRef]
- Offenberger, K.; Wendland, M. Düngebedarfsermittlung; Bayerische Landesanstalt für Landwirtschaft, Freising. Available online: https://www.stmelf.bayern.de/npk/app/demo?3 (accessed on 20 June 2021).
- Kersebaum, K.C. Die Simulation der Stickstoff-Dynamik von Ackerböden. Ph.D. Thesis, University of Hannover, Hannover, Germany, 1989. [Google Scholar]
- Vanclooster, M.; Viaene, P.; Diels, J.; Christiaens, K. WAVE; Institute for Land and Water Management: Leuven, Belgium, 1996. [Google Scholar]
- Abrahamsen, P.; Hansen, S. Daisy: An open soil-crop-atmosphere system model. Environ. Modell. Softw. 2000, 15, 313–330. [Google Scholar] [CrossRef]
- Nendel, C.; Specka, X.; Berg, M. MONICA—The Model for Nitrogen and Carbon in Agro-Ecosystems. Available online: https://www.monica.agrosystems-modles.com (accessed on 20 June 2021).
- Wendland, M.; Diepolder, M.; Offenberger, K.; Raschbacher, S. Leitfaden für die Düngung von Acker- und Grünland, Freising. 2018. Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/leitfaden-duengung-acker-gruenland_gelbes-heft_lfl-information.pdf (accessed on 20 October 2019).
- Waldren, R.; Flowerday, A. Growth Stages and Distribution of Dry Matter, N, P and K in Winter Wheat. Agron. J. 1979, 71, 391–397. [Google Scholar] [CrossRef]
- Reiner, L.; Dörre, R. Weizen Aktuell, 2nd ed.; DLG-Verlag: Frankfurt am Main, Germany, 1992; ISBN 3769004973. [Google Scholar]
- Lütke Entrup, N. (Ed.) Lehrbuch des Pflanzenbaues; Verlag Th. Mann: Gelsenkirchen, Germany, 2000; ISBN 378620117X. [Google Scholar]
- Agrarmeteorologie Bayern. Weather Data in Bavaria. Available online: https://www.wetter-by.de/Internet/global/inetcntr.nsf/dlr_web_full.xsp?src=98OE9BL691&p1=6BH7UJ4826&p3=S313638Z32&p4=YNDMXE6MAN# (accessed on 17 November 2019).
- Rajsic, P.; Weersink, A. Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year. Agric.Syst. 2008, 97, 56–67. [Google Scholar] [CrossRef]
- Tröster, M.F.; Sauer, J. Characteristics of Cost Efficient Fertilization Strategies at Farm Level. manuscript in preperation.
- StataCorp. Stata Statistical Software; StataCorp LLC.: College Station, TX, USA, 2017. [Google Scholar]
- Salkind, N.J. Encyclopedia of Research Design; SAGE Publications: Thousand Oaks, CA, USA, 2010; ISBN 9781412961271. [Google Scholar]
- Directive (EU) 2016/2284 of the European Parliament and of the Council on the Reduction of National Emissions of Certain Atmospheric Pollutants: NEC Directive. Off. J. Eur. Union 2016, L344, 1–31.
- Villalobos, F.J.; Delgado, A.; López-Bernal, Á.; Quemada, M. FertiliCalc: A Decision Support System for Fertilizer Management. Int. J. Plant Prod. 2020, 14, 299–308. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef]
- Evangelou, E.; Stamatiadis, S.; Schepers, J.S.; Glampedakis, A.; Glampedakis, M.; Dercas, N.; Tsadilas, C.; Nikoli, T. Evaluation of sensor-based field-scale spatial application of granular N to maize. Precis. Agric. 2020, 21, 1008–1026. [Google Scholar] [CrossRef]
Site | GB | TD | RS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Plots | {1, … 9} | {10, … 18} | {18, … 27} | {1, … 15} | {16, … 30} | {31, … 45} | {1, … 9} | {10, … 18} | {19, … 27} | |
Soil type | Cambisol | Planosol | Cambisol | |||||||
Soil texture | Loam | Sandy Loam | Silty Clay | |||||||
Soil pH | 6.6 | 6.6 | 6.9 * | 7.3 * | 7.3 * | 7.3 * | 6.1 | 6.0 | 6.0 | |
Usable field capacity % | 17.5 | 16.2 | 16.2 | 12.7 | 15.5 | 16.0 | 24.5 | 21.8 | 23.7 | |
Bulk density | g cm−3 | 1.25 | 1.27 | 1.29 | 1.24 | 1.33 | 1.35 | 1.43 | 1.45 | 1.50 |
Organic matter | % | 2.1 | 2.2 | 2.9 | 2.5 | 2.6 | 2.4 | 1.7 | 1.7 | 1.7 |
P2O5 | mg100 g−1 | 12 | 6 | 8 | 17 | 19 | 24 | 7 | 7 | 7 |
K2O | mg100 g−1 | 36 | 28 | 22 | 17 | 18 | 19 | 14 | 15 | 16 |
MgO | mg100 g−1 | 9 | 6 | 7 | 20 | 19 | 18 | 4 | 5 | 3 |
Site: | Geiselsberg | Roggenstein | Triesdorf | Triesdorf | ||||
---|---|---|---|---|---|---|---|---|
Treatment: | FM | IO | FM | IO | FM | IO | oFM | oIO |
Silage maize | ||||||||
N + Nmin | 199 | 193 | 186 | 231 | 190 | 199 | 196 | 209 |
P2O5 | 146 | 116 | 140 | 149 | 46 | 85 | 72 | 80 |
K2O | 93 | 11 | 407 | 219 | 77 | 138 | 167 | 220 |
MgO | 100 | 74 | 108 | 99 | 27 | 25 | 44 | 48 |
S | 12 | 36 | 48 | 34 | 22 | 27 | 38 | 25 |
Winter barley | ||||||||
N + Nmin | 201 | 204 | 188 | 211 | 206 | 209 | 217 | 223 |
P2O5 | 116 | 161 | 161 | 125 | 52 | 71 | 37 | 52 |
K2O | 0 | 73 | 0 | 83 | 141 | 95 | 81 | 109 |
MgO | 28 | 57 | 92 | 103 | 27 | 30 | 19 | 15 |
S | 5 | 19 | 22 | 22 | 90 | 22 | 31 | 21 |
Winter wheat | ||||||||
N + Nmin | 235 | 234 | 247 | 242 | 236 | 220 | 234 | 190 |
P2O5 | 130 | 122 | 127 | 151 | 119 | 58 | 102 | 70 |
K2O | 67 | 79 | 0 | 111 | 199 | 194 | 167 | 65 |
MgO | 73 | 67 | 73 | 84 | 43 | 44 | 44 | 28 |
S | 30 | 28 | 25 | 26 | 105 | 34 | 70 | 25 |
Total crop rotation | ||||||||
N + Nmin | 212 | 210 | 207 | 228 | 211 | 210 | 216 | 207 |
P2O5 | 131 | 133 | 143 | 142 | 72 | 71 | 70 | 67 |
K2O | 53 | 54 | 136 | 138 | 139 | 143 | 138 | 132 |
MgO | 67 | 66 | 91 | 95 | 32 | 33 | 36 | 30 |
S | 16 | 28 | 32 | 27 | 72 | 28 | 46 | 24 |
Dependent Variable | Y (Yield) | P (Protein) | MP (Revenue) | Y_SM (Yield) | Y_WB (Yield) | Y_WW (Yield) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
Model | 32.1 | 0.000 | 13.1 | 0.000 | 16.5 | 0.000 | 3.2 | 0.000 | 17.1 | 0.000 | 26.9 | 0.000 |
f | 513.9 | 0.000 | 424.8 | 0.000 | 798.6 | 0.000 | 64.4 | 0.000 | 590.7 | 0.000 | 655.6 | 0.000 |
r | 0.5 | 0.613 | 1.8 | 0.233 | 0.6 | 0.581 | 0.5 | 0.646 | 1.2 | 0.343 | 0.9 | 0.453 |
e(F#R) | ||||||||||||
c | 2772.2 | 0.000 | 3797.9 | 0.000 | 386.8 | 0.000 | --- | --- | --- | --- | --- | --- |
c#f | 5.4 | 0.001 | 41.2 | 0.000 | 39.3 | 0.000 | --- | --- | --- | --- | --- | --- |
e(R#C#F) | ||||||||||||
Obs. | 297 | 198 | 297 | 99 | 99 | 99 | ||||||
Adj R2 | 0.822 | 0.640 | 0.697 | 0.240 | 0.697 | 0.788 |
P | MP | Y_SM | Y_WB | Y_WW | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ø | SE | Gr. | Ø | SE | Gr. | Ø | SE | Gr. | Ø | SE | Gr. | Ø | SE | Gr. | |
0V | 9.17 | 0.22 | B | 760.5 | 32.5 | C | 142.1 | 6.85 | B | 44.7 | 2.58 | B | 40.9 | 2.33 | C |
FM | 12.13 | 0.23 | A | 1442.9 | 32.6 | A | 195.4 | 6.85 | A | 95.3 | 2.58 | A | 99.6 | 2.33 | A |
IO | 11.96 | 0.24 | A | 1440.2 | 32.7 | A | 203.1 | 6.85 | A | 93.8 | 2.58 | A | 97.5 | 2.33 | A |
oFM | 11.11 | 0.38 | A | 1338.0 | 56.2 | AB | 188.1 | 11.87 | A | 91.5 | 4.47 | A | 89.5 | 4.04 | AB |
oIO | 11.03 | 0.38 | A | 1256.2 | 56.2 | B | 171.3 | 11.87 | AB | 91.7 | 4.47 | A | 83.7 | 4.04 | B |
Crop | Year | 2016 | 2017 | 2018 |
---|---|---|---|---|
SM | EUR (dt DM)−1 | 8.13 | 8.00 | 8.20 |
WB | EUR dt−1 | 11.68 | 12.60 | 14.36 |
WW <12% XP | EUR dt−1 | 12.62 | 14.16 | 14.90 |
WW >12% XP | EUR dt−1 | 14.01 | 14.73 | 15.41 |
WW >13% XP | EUR dt−1 | 14.52 | 15.21 | 15.97 |
WW >14% XP | EUR dt−1 | 15.80 | 16.74 | 17.27 |
Variant: | 0V | FM | IO | oFM | oIO |
---|---|---|---|---|---|
Thousand-grain mass (g) | |||||
Winter barley | |||||
GB | 45 | 46 | 46 | ||
RS | 42 | 45 | 49 | ||
TD | 47 | 49 | 49 | 49 | 49 |
Winter wheat | |||||
GB | 55 | 50 | 51 | ||
RS | 47 | 51 | 51 | ||
TD | 53 | 54 | 56 | 55 | 56 |
Spikes per square meter (number) | |||||
Winter barley | |||||
GB | 484 | 721 | 756 | ||
RS | 357 | 609 | 622 | ||
TD | 392 | 732 | 657 | 665 | 611 |
Winter wheat | |||||
GB | 372 | 602 | 544 | ||
RS | 466 | 568 | 502 | ||
TD | 309 | 483 | 452 | 470 | 449 |
Grains per spike (number) | |||||
Winter barley | |||||
GB | 27 | 31 | 29 | ||
RS | 21 | 34 | 29 | ||
TD | 25 | 28 | 31 | 29 | 31 |
Winter wheat | |||||
GB | 29 | 34 | 37 | ||
RS | 16 | 37 | 41 | ||
TD | 22 | 36 | 35 | 35 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tröster, M.F.; Sauer, J. IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production? Agriculture 2021, 11, 571. https://doi.org/10.3390/agriculture11060571
Tröster MF, Sauer J. IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production? Agriculture. 2021; 11(6):571. https://doi.org/10.3390/agriculture11060571
Chicago/Turabian StyleTröster, Michael Friedrich, and Johannes Sauer. 2021. "IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production?" Agriculture 11, no. 6: 571. https://doi.org/10.3390/agriculture11060571
APA StyleTröster, M. F., & Sauer, J. (2021). IoFarm in Field Test: Does a Cost-Optimal Choice of Fertilization Influence Yield, Protein Content, and Market Performance in Crop Production? Agriculture, 11(6), 571. https://doi.org/10.3390/agriculture11060571