A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland
Abstract
:1. Introduction
2. Review Search Methodology and Literature Summary
3. Grassland Sward Heterogeneity
4. Conventional Grass Measurement
5. Pasture Sampling Techniques
6. Grass Quality Analysis by Means of Near Infrared Spectroscopy
7. Terrestrial Sensing
8. Proximal Spectral Sensing
9. Remote Sensing
10. Decision Support Systems for Grassland Measurement
11. Current Challenges Relating to Precision Pasture Measurement
12. Future of Grassland Measurement
13. Conclusions
- The dominant factors that need to be addressed with regard to the development of precision grassland measurement technologies are sward heterogeneity and measurement labour and cost
- There are no established technologies for determining real-time in-situ pasture quality. The development of such technologies is vital for a more precise management of pasture.
- The development and integration of holistic grassland management and measurement systems is necessary to achieve precision grassland management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study | Year | Title | Study Focus | Region | Grass Species | Measurement System | No. of Grazing Seasons | Trial Scale |
---|---|---|---|---|---|---|---|---|
Grassland sward heterogeneity | ||||||||
Jordan et al. [34] | 2003 | Sampling strategies for mapping “within-field” variability in the dry matter yield and mineral nutrient status of forage grass crops in cool temperate climes | Develop a protocol to measure and map DM | Ireland | PRG | Herbage cuts | 1 | Paddock |
Klootwijk et al. [9] | 2019 | Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows | Measure the extent of rejected patches within pasture | The Netherlands | PRG | RPM | 2 | Paddock |
Barthram et al. [8] | 2005 | Frequency distributions of sward height under sheep grazing | Measure the range and distribution of grass height within pasture | Scotland | PRG/mixed | Sward stick | 2 | Paddock |
Wilkinson et al. [23] | 2014 | Variation in composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012 | Measure the variation of grass quality in UK pasture | UK | Mixed | NIRS | 7 | Paddock |
Conventional grass measurement systems | ||||||||
Cayley & Bird [43] | 1996 | Techniques for measuring pastures | Critical analysis of conventional pasture measurement techniques | Australia | - | Herbage cuts, RPM, capacitance meter, sward stick | - | Paddock |
Klootwijk et al. [28] | 2019 | The effect of intensive grazing systems on the rising plate meter calibration for perennial ryegrass pastures | Investigate the effect of grazing systems on RPM calibration | The Netherlands | PRG | RPM | 2 | Paddock |
Martin et al. [42] | 2005 | A comparison of methods used to determine biomass on naturalized swards | Comparison of conventional pasture measurement methods | Nova Scotia, Canada | Mixed | Visual estimation, sward stick, RPM | 1 | Paddock |
Mannetje [44] | 2000 | Measuring biomass of grassland vegetation | Comparison of conventional pasture measurement methods | The Netherlands | - | Visual estimation, sward stick, RPM, remote sensing | - | Paddock |
Thomson [45] | 1983 | Factors influencing the accuracy of herbage mass determinations with a capacitance meter | Calibration of capacitance meter | New Zealand | Mixed | Capacitance meter | 2 | Paddock |
Earle & Mc Gowan [46] | 1979 | Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture | Calibration of RPM | Victoria, Australia | PRG | RPM | 2 | Paddock |
Ferraro et al. [47] | 2002 | Seasonal variation in the rising plate meter calibration for forage mass | Calibration of RPM | Ohio, USA | Mixed | RPM | 3 | Paddock |
O’ Donovan et al. [48] | 2002 | Visual assessment of herbage mass | Calibration of visual assessment | Ireland | PRG | Visual assessment | 2 | Paddock |
O’ Donovan et al. [26] | 2002 | A comparison of four methods of herbage mass estimation | Comparison of conventional pasture measurement methods | Ireland | PRG | Visual estimation, sward stick, RPM, capacitance meter | 2 | Paddock |
Campbell [49] | 1973 | The visual assessment of pasture yield | Calibration of visual assessment | Western, Australia | Mixed | Visual assessment | 1 | Paddock |
Stockdale [50] | 1984 | Evaluation of techniques for estimating the yield of irrigated pastures intensively grazed by dairy cows 1. Visual assessment | Assessment of double sampling technique involving herbage cuts and visual assessment | Victoria, Australia | PRG/WC/mixed | herbage cuts and visual assessment | 1 | Paddock |
L’Huillier & Thomson [51] | 1988 | Estimation of herbage mass in ryegrass/white clover dairy pastures | Comparison of conventional pasture measurement methods | New Zealand | PRG/WC | Visual estimation, sward stick, RPM, capacitance meter | 2 | Paddock |
Thomson et al. [52] | 1997 | Estimation of dairy pastures-the need for standardisation | Investigate causes of variation in pasture measurement across regions | New Zealand | PRG/WC | Visual assessment, RPM | 2 | Paddock |
Lile et al. [53] | 2001 | Practical use of the rising plate meter (RPM) on New Zealand dairy farms | Assess the measurement precision of the RPM | New Zealand | PRG/WC | Visual assessment, RPM | 3 | Paddock |
O’ Sullivan et al. [54] | 1987 | The Value of Pasture Height in the Measurement of Dry Matter Yield | Development of a double sampling technique for measuring pasture | Ireland | PRG | Herbage cuts, RPM | 1 | Paddock |
McSweeney et al. [55] | 2019 | Micro-sonic sensor technology enables enhanced grass height measurement by a Rising Plate Meter | Development of GPS enabled rising plate meter | Ireland | - | RPM | 1 | - |
Defrance et al. [56] | 2004 | Greater understanding the density of grass to calculate the growth and biomass of a plot and the stock of grass available on a farm | Calibration of rising plate meter | France | PRG/WC | RPM | 13 | Paddock |
Holshof et al. [57] | 2015 | Calibration of five rising plate meters in the Netherlands | Comparison of different rising plate meter models | The Netherlands | PRG | RPM | 1 | Plots |
Sanderson et al. [27] | 2001 | Estimating forage mass with a commercial capacitance meter, rising plate meter and pasture ruler | Comparison of conventional pasture measurement methods | Eastern, USA | Mixed | Sward stick, RPM, capacitance meter | 2 | Paddock |
Creighton et al. [21] | 2011 | A survey analysis of grassland dairy farming in Ireland, investigating grassland management, technology adoption and sward renewal | Investigate grassland management practices in Ireland | Ireland | PRG | - | 1 | Paddock |
Murphy et al. [59] | 2021 | Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter | Calibration of rising plate meter using state of the art modelling techniques | Ireland | PRG | RPM | 3 | Paddock/Plots |
Mannetje [60] | 2002 | Advances in grassland science | Review of advancement of grassland science and measurement techniques | The Netherlands | - | Herbage cuts, remote sensing | - | Paddock |
Beukes et al. [22] | 2019 | Regular estimates of herbage mass can improve profitability of pasture-based dairy systems | Investigate the effect of grass measurement on farm profitability | New Zealand | PRG | - | 1 | Paddock |
Pasture sampling techniques | ||||||||
Murphy et al. [29] | 2020 | Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards | Assessment of RPM measurement precision and sampling protocol | Ireland | PRG/WC | RPM | 2 | Paddock/Plot |
Nakagami [10] | 2016 | A method for approximate on-farm estimation of herbage mass by using two assessments per pasture | Development of a double measurement method for pasture | Japan | Mixed | Visual assessment, herbage cuts, RPM | 1 | Paddock |
Hall et al. [64] | 2019 | Understanding Tasmanian dairy farmer adoption of pasture management practices: A Theory of Planned Behaviour approach | Investigate farmer behaviour with regard the adoption of grass measurement technology | Tasmania | - | - | 1 | Paddock |
Eastwood et al. [65] | 2020 | Developing an approach to assess farmer perceptions of the value of pasture assessment technologies | Identify perceived value of grass measurement | New Zealand | - | - | 1 | Paddock |
Hutchinson [66] | 2016 | A protocol for sampling pastures in hill country | Develop a grass measurement protocol | New Zealand | Mixed | RPM, C-DAX | 3 | Paddock |
Bernardi et al. [68] | 2016 | Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil | Map and evaluate the spatial variation of forage yield | Brazil | Alfalfa | Herbage cuts | 1 | Paddock |
Higgins & Bailey [69] | 2017 | The role of precision agriculture in optimising soil nutrient status and grassland productivity in Northern Ireland, while reducing nutrient losses to air or water | Review of the potential for precision agriculture in grassland agriculture | Ireland | - | - | - | Paddock |
Deming et al. [63] | 2018 | Measuring labour input on pasture-based dairy farms using a smartphone | Quantification of labour input for specific tasks on Irish dairy farms | Ireland | PRG | Herbage cuts, RPM, visual assessment | 1 | Paddock |
State of the art grass measurement systems | ||||||||
Togeiro de Alckmin et al. [58] | 2020 | Comparing methods to estimate perennial ryegrass biomass: canopy height and spectral vegetation indices | Comparison of RPM and remote sensing | Tasmania | PRG | RPM, hyperspectral | 1 | Plot |
Murphy et al. [35] | 2020 | Development of a grass measurement optimisation tool to efficiently measure herbage mass on grazed pastures | Development of a decision support tool to optimise grass measurement | Ireland | PRG | RPM | 3 | Paddock/Plot |
Posudin [70] | 2007 | Practical spectroscopy in agriculture and food science | Review of the fundamentals of agri-spectroscopy | USA | - | NIRS | - | - |
de Boever et al. [72] | 1995 | The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle | Development of NIRS for concentrate feed quality analysis | Belgium | - | NIRS | - | - |
Norris et al. [73] | 1976 | Predicting Forage Quality by Infrared Reflectance Spectroscopy | Development of NIRS for dried and milled forage quality analysis | USA | - | NIRS | - | - |
Lahart et al. [74] | 2019 | Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis | Development of NIRS to predict dry matter intake | Ireland | PRG/WC | NIRS | 3 | Paddock |
Jafari et al. [75] | 2003 | A Note on Estimation of Quality Parameters in Perennial Ryegrass by near Infrared | Development NIRS calibrations to predict quality of dried and milled grass | Ireland | PRG | NIRS | 2 | Paddock/Plot |
Burns et al. [76] | 2014 | A note on the comparison of three near infrared reflectance spectroscopy calibration strategies for assessing herbage quality of ryegrass | Development NIRS calibrations to predict quality of dried and milled grass | Ireland | PRG, Italian & hybrid grass | NIRS | 2 | Plot |
Burns et al. [30] | 2013 | Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme | Development NIRS calibrations to predict quality of dried and milled grass | Ireland | PRG | NIRS | 3 | Plot |
Alomar et al. [77] | 2003 | Effect of preparation method on composition and NIR spectra of forage samples | Development NIRS calibrations to predict quality of dried and milled grass | Chile | Mixed | NIRS | 1 | Paddock |
McClure et al. [78] | 2002 | Near infrared technology for precision environmental measurements: Part 1. Determination of nitrogen in green- and dry-grass tissue | Potential of NIRS to analysis fresh grass N content | Australia | Fescue | NIRS | 1 | Plot |
Reddersen & Wachendorf [79] | 2013 | Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass | Development in NIRS to analysis standing sward quality | Germany | Mixed | NIRS | 2 | Plot |
Thomson et al. [80] | 2018 | Assessing the accuracy of current near infra-red reflectance spectroscopy analysis for fresh grass-clover mixture silages and development of new equations for this purpose | Development of NIRS for grass-clover silage analysis | UK | Mixed/WC | NIRS | 3 | Paddock |
Alomar et al. [81] | 2009 | Prediction of the composition of fresh pastures by near infrared reflectance or interactance-reflectance spectroscopy | Development of NIRS to analysis fresh grass quality | Chile | Mixed | NIRS | 1 | Paddock |
Dale et al. [82] | 2017 | Impact of sampling and storage technique, and duration of storage, on the composition of fresh grass when analysed using near-infrared reflectance spectroscopy | Use of fresh grass NIRS to analysis the impact of sample storage and preparation techniques | Ireland | PRG | NIRS | 1 | Plot |
Lobos et al. [83] | 2019 | Calibration models for the nutritional quality of fresh pastures by near-infrared reflectance spectroscopy | Development of NIRS to analysis fresh grass quality | Chile | Mixed | NIRS | 2 | Paddock |
Murphy et al. [84] | 2021 | A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures | Development of NIRS to analysis fresh grass quality | Ireland | PRG | NIRS | 3 | Paddock/Plot |
Berzaghi et al. [85] | 2005 | Prediction performances of portable near infrared instruments for at farm forage analysis | Evaluation of maize silage quality with portable NIRS | Italy | Maize | Portable NIRS | 3 | Paddock |
Teixeira et al. [86] | 2013 | A review on the applications of portable near-infrared spectrometers in the agro-food industry | Review of the use of NIRS in Agriculture | Portugal | - | NIRS | - | - |
Feuerstein & Paul [87] | 2007 | NIR-Spectroscopy of non-dried forages as a tool in breeding for higher quality–laboratory tests and online investigations on plot harvesters | Development of portable NIRS to analysis fresh grass quality | Germany | Mixed | Portable NIRS | 6 | Plot |
Mendarte et al. [88] | 2010 | Use of portable NIRS equipment in field conditions to determine the nutritional value of mountain pastures | Development of portable NIRS to analysis fresh grass quality | Basque Country | Mixed | Portable NIRS | 1 | Paddock |
Smith et al. [89] | 2020 | Machine learning algorithms to predict forage nutritive value of in situ perennial ryegrass plants using hyperspectral canopy reflectance data | Development of hyperspectral sensing for grass quality analysis | Victoria, Australia | PRG | Hyperspectral | 1 | Plot |
Bell et al. [90] | 2018 | The Use of Mobile Near-Infrared Spectroscopy for Real-Time Pasture Management | Development of portable NIRS to analysis fresh grass quality | UK | Mixed/PRG/WC | Portable NIRS | 1 | Paddock |
Patton et al. [91] | 2018 | Portable NIRS: a novel technology for the prediction of forage nutritive quality | Assessment of portable NIRS for fresh grass quality analysis | Ireland | PRG | Portable NIRS | 1 | Paddock |
Hart et al. [92] | 2020 | Comparison of Spectral Reflectance-Based Smart Farming Tools and a Conventional Approach to Determine Herbage Mass and Grass Quality on Farm | Comparison of remote sensing and conventional grass measurement technologies | Switzerland | Mixed | Portable NIRS, Multispectral | 1 | Plot |
Vogel et al. [93] | 2019 | Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing | Use of multispectral UAV and proximal sensing to evaluate biomass variability | Germany | Mixed | Multispectral, proximal sensing | 1 | Paddock |
Reddersen et al. [94] | 2014 | A multi-sensor approach for predicting biomass of extensively managed grassland | The use of hyperspectral sensing and ultrasound to predict grass quality and quantity | Germany | Mixed | Ultrasound, Hyperspectral | 2 | Plot |
Safari et al. [96] | 2016 | Comparing mobile and static assessment of biomass in heterogeneous grassland with a multi-sensor system | The use of a mobile muti-sensor unit to measure grass quantity and quality | Germany | Mixed | Ultrasound, Hyperspectral | 2 | Paddock |
Moeckel et al. [97] | 2017 | Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure | The use of hyperspectral sensing and ultrasound to predict grass quality and quantity | Germany | Mixed | Ultrasound, Hyperspectral | 1 | Paddock |
Legg & Bradley [98] | 2019 | Ultrasonic Proximal Sensing of Pasture Biomass | Development of ultrasonic sensors for rapid measurement of grass height | New Zealand | PRG | Ultrasound | 1 | Plot |
Rennie et al. [99] | 2009 | Calibration of the C-DAX Rapid Pasturemeter and the rising plate meter for kikuyu-based Northland dairy pastures | Calibration of the C-DAX to measure grass quantity | New Zealand | PRG/WC | C-DAX | 1 | Paddock |
Lawrence et al. [100] | 2007 | Pasture Monitoring Technologies | Review of precision agriculture tools for pasture measurement and mapping | New Zealand | - | C-DAX, NIRS | - | Paddock |
King et al. [101] | 2010 | Pasture Mass Estimation by the C-DAX Pasture Meter: Regional Calibrations for New Zealand | Comparison of RPM, C-AX and herbage cuts for grass measurement | New Zealand | PRG/WC/Mixed | C-DAX | 1 | Paddock |
Oudshoorn et al. [102] | 2011 | Calibration of the C-DAX pasture meter in a Danish grazing system | Calibration of C-DAX for grass quantity measurement | Denmark | PRG/WC | C-DAX | 2 | Plot |
Schori et al. [103] | 2015 | Sward surface height estimation with a rising plate meter and the C-Dax Pasturemeter | Comparison of RPM and C-DAX for grass measurement | Switzerland | Mixed | C-DAX | 4 | Paddock |
Dennis et al. [104] | 2015 | Pasture yield mapping: why & how | Development of measurement protocol for the C-DAX to map pasture yield | New Zealand | - | C-DAX | 2 | Paddock |
Manderson & Hunt [105] | 2013 | Introducing the Agri-Rover: An Autonomous on-the-go sensing rover for science and farming | Automation of C-DAX using robotics | New Zealand | - | C-DAX | - | Paddock |
Gobor et al. [106] | 2015 | Advanced pasture management through innovative robotic pasture maintenance | Development of pasture care and management robots | Germany | Mixed | Laser, NIRS | 1 | Paddock |
Marin et al. [107] | 2018 | Urban Lawn Monitoring in Smart City Environments | Comparison of remote and ground automated grass measurement | Spain | - | RGB sensing | 1 | Plot |
Viscarra Rossel et al. [109] | 2011 | Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time | Calibration of proximal sensing techniques for soil analysis | France, Australia | - | NIRS | - | - |
Pullanagari et al. [110] | 2012 | In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture | Calibration of hyperspectral sensing for grass quality measurement | New Zealand | Mixed | Hyperspectral | 1 | Paddock |
Ancin-Murguzur et al. [111] | 2019 | Yield Estimates by a Two-Step Approach Using Hyperspectral Methods in Grasslands at High Latitudes | Calibration of proximal and satellite hyperspectral sensing for grass measurement | Norway | Mixed | Hyperspectral | 4 | Paddock |
Pullanagari et al. [112] | 2011 | Pasture quality measurement tools for decision making | Investigation of optical sensor for the measurement of pasture quality | New Zealand | - | Multispectral, Hyperspectral | 1 | Paddock |
Askari et al. [113] | 2019 | Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques | Calibration of proximal and remote sensing methods for pasture quantity and quality measurement | Ireland | PRG/WC | Multispectral, Hyperspectral | 2 | Paddock |
Rueda-Ayala et al. [108] | 2019 | Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley | Evaluation of aerial and ground based method for grass quantity measurement | Norway | Mixed | RGB-Depth sensor | 1 | Paddock |
Capolupo et al. [114] | 2015 | Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches | Statistical modelling methods for hyperspectral grass measurement data | Germany | - | Hyperspectral | 1 | Plot |
Pullanagari et al. [115] | 2012 | Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry | Measuring the variability of pasture quality using proximal sensing | New Zealand | PRG/WC | Multispectral | 1 | Paddock |
Oliveira et al. [116] | 2020 | Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry | Utilisation of UAV sensing to measure silage grass quality | Finland | Mixed | RGB, Hyperspectral | 1 | Paddock |
Obanawa et al. [117] | 2020 | Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods | Development of LiDAR to measure grass height | Japan | Italian ryegrass | LiDAR | 1 | Plot |
Vázquez-Arellano et al. [118] | 2016 | 3-D Imaging Systems for Agricultural Applications—A Review | Review of 3D image technology for precision agriculture applications | Germany | - | 3-D imaging systems | - | Paddock |
Cooper et al. [119] | 2017 | Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid non-destructive field measurement of grass biomass | Comparison of LiDAR and RPM for grass quantity measurement | South Dakota, USA | Smooth Brome | LiDAR, RPM | 1 | Plot |
Sibanda et al. [120] | 2016 | Comparing the spectral settings of the new generation broad and narrow band sensors in estimating biomass of native grasses grown under different management practices | Comparison of proximal and satellite sensing for grass quantity measurement | South Africa | Mixed | Multispectral, Hyperspectral | 1 | Plot |
Barrett et al. [122] | 2014 | Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches | Calibration of satellite radar for grassland classification | Ireland | PRG/WC | Satellite radar | - | Paddock |
Ali et al. [123] | 2017 | Application of Repeat-Pass TerraSAR-X Staring Spotlight Interferometric Coherence to Monitor Pasture Biophysical Parameters: Limitations and Sensitivity Analysis | Calibration of satellite radar for grass quantity measurement | Ireland | PRG | Satellite radar | 1 | Paddock |
Grass measurement decision support systems | ||||||||
Hanrahan et al. [20] | 2017 | PastureBase Ireland: A grassland decision support system and national database | Development of grassland management decision support tool and national database | Ireland | PRG | Rising plate meter, Visual estimation | 2 | Paddock/Plot |
Delaby et al. [124] | 2015 | Pastur’Plan: a dynamic tool to support grazing management decision making in a rotational grazing system | Introduction to a decision support tool for grassland measurement and management | France | - | RPM | - | Paddock |
Zom & Holshof [125] | 2011 | GrazeVision: A versatile grazing decision support model | Development of a decision support model for grassland management | The Netherlands | - | - | - | Paddock |
O’ Leary & O’ Donovan [127] | 2019 | PastureBase Ireland—getting Ireland utilising more grass. Moorepark ’19 Irish Dairy | Development of grassland management decision support tool and national database | Ireland | PRG | Rising plate meter, Visual estimation | - | Paddock |
McDonnell et al. [128] | 2019 | Weather forecasts to enhance an Irish grass growth model | The use of weather forecasting to predict grass growth | Ireland | PRG | Grass growth model | 4 | Paddock |
Ruelle et al. [129] | 2018 | Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems | Development of a grass growth model for Irish pasture | Ireland | PRG | Grass growth model | 2 | Paddock |
Romera et al. [130] | 2010 | Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms | Development of a grass growth model for New Zealand pasture | New Zealand | PRG | Grass growth model | 1 | Paddock |
Herrmann et al. [131] | 2005 | Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather-A simulation study | Calibration of forage growth and quality model | Germany | PRG/WC/mixed | Grass growth model | 3 | Plot |
Murphy et al. [132] | 2019 | GrassQ-a holistic precision grass measurement and analysis system to optimize pasture based livestock production | Development of decision support system to process data from multiple measurement systems | Ireland | PRG | RPM, Hyperspectral, multispectral | 2 | Paddock |
O’ Brien et al. [133] | 2019 | Modelling precision grass measurements for a web-based decision platform to aid grassland management | Development of decision support system to process data from multiple measurement systems | Ireland | PRG | RPM, Hyperspectral, multispectral | 2 | Paddock |
References
- Herrero, M.; Wirsenius, S.; Henderson, B.; Rigolot, C.; Thornton, P.; Havlík, P.; De Boer, I.; Gerber, P.J. Livestock and the Environment: What Have We Learned in the Past Decade? Annu. Rev. Environ. Resour. 2015, 40, 177–202. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, C.; De Vliegher, A.; Van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Éditions Quae: Versailles, France, 2014. [Google Scholar] [CrossRef]
- Hennessy, D.; Delaby, L.; van den Pol-van Dasselaar, A.; Shalloo, L. Increasing Grazing in Dairy Cow Milk Production Systems in Europe. Sustainability 2020, 12, 2443. [Google Scholar] [CrossRef] [Green Version]
- Van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of dairy cows in europe-an in-depth analysis based on the perception of grassland experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, D.; Delaby, L.; Van den Pol-van Dasselaar, A.; Shalloo, L. Possibilities and constraints for grazing in high output dairy systems. In Proceedings of the 18th Symposium European Grassland Federation, Wageningen, The Netherland, 15–17 June 2015; Van den Pol-van Dasselaar, A., Aarts, H.F.M., De Vliegher, A., Elgersma, A., Reheul, D., Reijneveld, J.A., Verloop, J., Hopkins, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 151–162. [Google Scholar]
- Barthram, G.T.; Duff, E.I.; Elston, D.A.; Griffiths, J.H.; Common, T.G.; Marriott, C.A. Frequency distributions of sward height under sheep grazing. Grass Forage Sci. 2005, 60, 4–16. [Google Scholar] [CrossRef]
- Klootwijk, C.W.; Holshof, G.; de Boer, I.J.; Van den Pol-Van Dasselaar, A.; Engel, B.; Van Middelaar, C.E. Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows. J. Dairy Sci. 2019, 102, 10451–10459. [Google Scholar] [CrossRef]
- Nakagami, K. A method for approximate on-farm estimation of herbage mass by using two assessments per pasture. Grass Forage Sci. 2016, 71, 490–496. [Google Scholar] [CrossRef]
- O’ Donovan, M.; Lewis, E.; O’ Kiely, P. Requirements of future grass-based ruminant production systems in Ireland. Ir. J. Agric. Food Res. 2011, 50, 1–21. [Google Scholar]
- Weiss, F.; Leip, A. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 2012. [Google Scholar] [CrossRef]
- O’ Brien, D.; Capper, J.L.; Garnsworthy, P.C.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.; Delaby, L.; Hennessy, D.; McCarthy, B.; Ryan, W.; Pierce, K.; Brennan, A.; Horan, B. The effect of stocking rate on soil solution nitrate concentrations beneath a free-draining dairy production system in Ireland. J. Dairy Sci. 2015, 98, 4211–4224. [Google Scholar] [CrossRef]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [Green Version]
- Finneran, E.; Crosson, P.; O’ Kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Stochastic simulation of the cost of home-produced feeds for ruminant livestock systems. J. Agric. Sci. 2012, 150, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Maher, J.; Bogue, F.; Douglas, J. Grass10 campaign. Moorepark. In Proceedings of the 19 Irish Dairy—Growing Sustainability, Moorepark, Fermoy, Teagasc, Ireland, 3 July 2019; pp. 62–64. [Google Scholar]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Creighton, P.; Kennedy, E.; Shalloo, L.; Boland, T.; Donovan, M. A survey analysis of grassland dairy farming in Ireland, investigating grassland management, technology adoption and sward renewal. Grass Forage Sci. 2011, 66, 251–264. [Google Scholar] [CrossRef]
- Beukes, P.C.; McCarthy, S.; Wims, C.M.; Gregorini, P.; Romera, A.J. Regular estimates of herbage mass can improve profitability of pasture-based dairy systems. Anim. Prod. Sci. 2019, 59, 359. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Allen, J.D.; Tunnicliffe, R.; Smith, M.; Garnsworthy, P.C. Variation in composition of pre-grazed pasture herbage in the United Kingdom, 2006–2012. Anim. Feed. Sci. Technol. 2014, 196, 139–144. [Google Scholar] [CrossRef]
- Shalloo, L.; Donovan, M.O.; Leso, L.; Werner, J.; Ruelle, E.; Geoghegan, A.; Delaby, L.; O’Leary, N. Review: Grass-based dairy systems, data and precision technologies. Animal 2018, 12, S262–S271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, P. Achieving high dry-matter intake from pasture with grazing dairy cows. In Fresh Herb. Dairy Cattle Key to a Sustainable Food Chain; Elgersma, A., Dijkstra, J., Tamminga, S., Eds.; Springer: New York, NY, USA, 2006; pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- O’ Donovan, M.; Dillon, P.; Rath, M.; Stakelum, G. A Comparison of Four Methods of Herbage Mass Estimation. Ir. J. Agric. Food Res. 2002, 41, 17–27. [Google Scholar]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef] [Green Version]
- Klootwijk, C.W.; Holshof, G.; Dasselaar, A.V.D.P.-V.; Van Helvoort, K.L.; Engel, B.; De Boer, I.J.; Van Middelaar, C.E. The effect of intensive grazing systems on the rising plate meter calibration for perennial ryegrass pastures. J. Dairy Sci. 2019, 102, 10439–10450. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J.; O’ Brien, B.; Hennessy, D.; Hurley, M.; Murphy, M.D. Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precis. Agric. 2020. [Google Scholar] [CrossRef]
- Burns, G.A.; Gilliland, T.J.; Grogan, D.; Watson, S.; O’ Kiely, P. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. J. Agric. Sci. 2013, 151, 331–346. [Google Scholar] [CrossRef]
- Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Google. Google Scholar. 2021. Available online: https://scholar.google.com/ (accessed on 4 October 2016).
- Elsevier. ScienceDirect. 2021. Available online: https://www.sciencedirect.com/ (accessed on 4 October 2016).
- Jordan, C.; Shi, Z.; Bailey, J.S.; Higgins, A.J. Sampling strategies for mapping “within-field” variability in the dry matter yield and mineral nutrient status of forage grass crops in cool temperate climes. Precis. Agric. 2003, 4, 69–86. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’ Brien, B.; Murphy, M.D. Development of a grass measurement optimisation tool to efficiently measure herbage mass on grazed pastures. Comput. Electron. Agric. 2020, 178. [Google Scholar] [CrossRef]
- Stakelum, G.; Dillon, P. The effect of grazing pressure on rotationally grazed pastures in spring/early summer on subsequent sward characteristics. Ir. J. Agric. Food Res. 2007, 46, 15–28. [Google Scholar]
- Enriquez-Hidalgo, D.; Egan, M.; Gilliland, T.; Lynch, M.B.; Hennessy, D. Grass-only and grass-white clover (Trifolium repens L.) swards: Dairy cow production. In Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, 7–11 September 2014; Hopkins, A., Collins, R.P., Fraser, M.D., King, V.R., Lloyd, D.C., Moorby, J.M., Robson, P.R.H., Eds.; pp. 789–791. [Google Scholar]
- O’Donovan, M.; Delaby, L. Grazed grass in the dairy cow diet—How this can be achieved better! In Proceedings of the 26th General Meeting of the European Grassland Federation Trondheim, Trondheim, Norway, 4–8 September 2016; Höglind, M., Bakken, A.K., Hovstad, K.A., Kallioniemi, E., Riley, H., Steinshamn, H., Østrem, L., Eds.; pp. 350–365. [Google Scholar]
- Höglind, F.-L. Growing point dynamics and spring growth of white clover in a mixed sward and the effects of nitrogen application. Grass Forage Sci. 1998, 53, 338–345. [Google Scholar] [CrossRef]
- Moloney, T.; Sheridan, H.; Grant, J.; O’ Riordan, E.G.; O’ Kiely, P. Yield of binary- and multi-species swards relative to single-species swards in intensive silage systems. Ir. J. Agric. Food Res. 2020, 59, 12–26. [Google Scholar] [CrossRef]
- Beecher, M.; Hennessy, D.; Boland, T.M.; McEvoy, M.; O’Donovan, M.; Lewis, E. The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility. Grass Forage Sci. 2015, 70, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.C.; Astatkie, T.; Cooper, J.M.; Fredeen, A.H. A Comparison of Methods Used to Determine Biomass on Naturalized Swards. J. Agron. Crop. Sci. 2005, 191, 152–160. [Google Scholar] [CrossRef]
- Cayley, J.W.D.; Bird, P.R. Techniques for Measuring Pastures; Victoria Dept of Agriculture, Energy and Minerals: Hamilton, Australia, 1996; Volume 2. [Google Scholar] [CrossRef]
- Mannetje, L.T. Field and laboratory methods for grassland and animal production research. In Measuring Biomass of Grassland Vegetation; Mannetje, L.T., Jones, R.M., Eds.; CABI Publishing: Oxon, UK, 2000; pp. 151–178. [Google Scholar]
- Thomson, N.A. Factors influencing the accuracy of herbage mass determinations with a capacitance meter. N. Z. J. Exp. Agric. 1983, 11, 171–176. [Google Scholar] [CrossRef]
- Earle, D.F.; Mc Gowan, A.A. Evaluation and calibration of an automated rising plate meter for estimating dry matter yield of pasture. Aust. J. Exp. Agric. 1979, 19, 337–343. [Google Scholar] [CrossRef]
- Ferraro, F.P.; Nave, R.L.G.; Sulc, R.M.; Barker, D.J. Seasonal variation in the rising plate meter calibration for forage mass. Agron. J. 2012, 104, 1–6. [Google Scholar] [CrossRef]
- O’ Donovan, M.; Connolly, J.; Dillon, P.; Rath, M.; Stakelum, G. Visual Assessment of Herbage Mass. J. Agric. Food Res. 2002, 41, 201–211. [Google Scholar]
- Campbell, N.A. The visual assessment of pasture yield. Aust. J. Exp. Agric. 1973, 13, 263–267. [Google Scholar] [CrossRef]
- Stockdale, C.R. Evaluation of techniques for estimating the yield of irrigated pastures intensively grazed by dairy cows 1. Visual assessment. Aust. J. Exp. Agric. Anim. Husb. 1984, 24, 300–304. [Google Scholar] [CrossRef]
- L’Huillier, P.J.; Thomson, N.A. Estimation of herbage mass in ryegrass/white clover dairy pastures. J. N. Z. Grassl. 1988, 49, 117–139. [Google Scholar] [CrossRef]
- Thomson, N.A.; Mccallum, D.A.; Howse, S.; Holmes, C.W.; Matthews, P.N.P.; Matthew, C. Estimation of dairy pastures—the need for standardisation. J. N. Z. Grassl. 1997, 59, 221–225. [Google Scholar]
- Lile, J.; Blackwell, M.; Thomson, N.; Penno, J.; Macdonald, K.; Nicholas, P.; Lancaster, J.; Coulter, M. Practical use of the rising plate meter (RPM) on New Zealand dairy farms. J. N. Z. Grassl. 2001, 63, 159–164. [Google Scholar] [CrossRef]
- O’ Sullivan, M.; O’ Keeffe, W.F.; Flynn, M.J. The Value of Pasture Height in the Measurement of Dry Matter Yield. Ir. J. Agric. Res. 1987, 26, 63–68. [Google Scholar]
- McSweeney, D.; Coughlan, N.E.; Cuthbert, R.N.; Halton, P.; Ivanov, S. Micro-sonic sensor technology enables enhanced grass height measurement by a Rising Plate Meter. Inf. Process. Agric. 2019, 6, 279–284. [Google Scholar] [CrossRef]
- Defrance, P.; Delaby, L.; Seuret, J.M. Mieux connaître la densité de l’herbe pour calculer la croissance, la biomasse d’une parcelle et le stock d’herbe disponible d’une exploitation. In Proceedings of the Rencontres Autour des Rech. sur les Ruminants, INRAE, Paris, France, 8 December 2004; pp. 291–294. [Google Scholar]
- Holshof, G.; Stienezen, M.; Galama, P. Calibration of five rising plate meters in the Netherlands. In Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, The Netherlands, 15–17 June 2015; Van den Pol-van Dasselaar, A., Aarts, H.F.M., Vliegher, A., De Elgersma, A., Reheul, D., Reijneveld, J.A., Verloop, J., Hopkins, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 233–235. [Google Scholar]
- De Alckmin, T.G.; Kooistra, L.; Rawnsley, R.; Lucieer, A. Comparing methods to estimate perennial ryegrass biomass: Canopy height and spectral vegetation indices. Precis. Agric. 2020, 205–225. [Google Scholar] [CrossRef]
- Murphy, D.J.; Shine, P.; O’ Brien, B.; O’ Donovan, M.; Murphy, M.D. Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter. Precis Agric. 2021. [Google Scholar] [CrossRef]
- Mannetje, L.T. Advances in grassland science. Neth. J. Agric. Sci. 2002, 50, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Mawby, W.D. Make Your Destructive, Dynamic, and Attribute Measurement System Work for You; ASQ Quality Press: Milwaukee, WI, USA, 2006. [Google Scholar]
- Webster, R.; Lark, R.M. Field Sampling for Environmental Science and Management; Routledge: Oxon, UK, 2012. [Google Scholar]
- Deming, J.; Gleeson, D.; O’ Dwyer, T.; Kinsella, J.; O’ Brien, B. Measuring labor input on pasture-based dairy farms using a smartphone. J. Dairy Sci. 2018, 101, 9527–9543. [Google Scholar] [CrossRef]
- Hall, A.; Turner, L.; Kilpatrick, S. Understanding Tasmanian dairy farmer adoption of pasture management practices: A Theory of Planned Behaviour approach. Anim. Prod. Sci. 2019, 59, 1941–1950. [Google Scholar] [CrossRef]
- Eastwood, C.; Dela Rue, B.; Kerslake, J. Developing an approach to assess farmer perceptions of the value of pasture assessment technologies. Grass Forage Sci. 2020, 75, 474–485. [Google Scholar] [CrossRef]
- Hutchinson, K.; Scobie, D.; Beautrais, J.; Mackay, A.; Rennie, G.; Moss, R.; Dynes, R. A protocol for sampling pastures in hill country. J. N. Z. Grassl. 2016, 78, 203–210. [Google Scholar] [CrossRef]
- Delmelle, E. Spatial Sampling. In Handbook of Applied Spatial Analysis; Fotheringham, A.S., Rogerson, P.A., Eds.; SAGE: Los Angeles, CA, USA, 2009; pp. 165–186. [Google Scholar]
- Bernardi, A.C.C.; Bettiol, G.M.; Ferreira, R.P.; Santos, K.E.L.; Rabello, L.M.; Inamasu, R.Y. Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precis. Agric. 2016, 17, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Higgins, S.; Bailey, J.S. The role of precision agriculture in optimising soil nutrient status and grassland productivity in Northern Ireland, while reducing nutrient losses to air or water. In Science Policy: Nutrient Management Challenges for the Next Generation; Currie, L.D., Hedley, M.J., Eds.; Massey University: Palmerston North, New Zealand, 2017. [Google Scholar]
- Posudin, Y.I. Practical Spectroscopy in Agriculture and Food Science; Science Publishers: Enfield, NH, USA, 2007. [Google Scholar]
- NIRS Forage and Feed Testing Consortium. NIRS White Paper. 2008. Available online: http://www.uwex.edu/ces/forage/NIRS/home-page.htm (accessed on 5 June 2020).
- De Boever, J.L.; Cottyn, B.G.; Vanacker, J.M.; Boucqué, C.V. The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle. Anim. Feed. Sci. Technol. 1995, 51, 243–253. [Google Scholar] [CrossRef]
- Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting Forage Quality by Infrared Reflectance Spectroscopy. J. Anim. Sci. 1976, 43, 889–897. [Google Scholar] [CrossRef]
- Lahart, B.; McParland, S.; Kennedy, E.; Boland, T.M.; Condon, T.; Williams, M.; Galvin, N.; McCarthy, B.; Buckley, F. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. J. Dairy Sci. 2019, 102, 8907–8918. [Google Scholar] [CrossRef]
- Jafari, A.; Connolly, V.; Frolich, A.; Walsh, E.J. A Note on Estimation of Quality Parameters in Perennial Ryegrass by near Infrared. Ir. J. Agric. Food Res. 2003, 42, 293–299. [Google Scholar]
- Burns, G.A.; O’ Kiely, P.; Grogan, D.; Gilliland, T.J. A note on the comparison of three near infrared reflectance spectroscopy calibration strategies for assessing herbage quality of ryegrass. Ir. J. Agric. Food Res. 2014, 53, 199–204. [Google Scholar]
- Alomar, D.; Fuchslocher, R.; De Pablo, M. Effect of preparation method on composition and NIR spectra of forage samples. Anim. Feed. Sci Technol. 2003, 107, 191–200. [Google Scholar] [CrossRef]
- McClure, W.F.; Crowell, B.; Stanfield, D.L.; Mohapatra, S.; Morimoto, S.; Batten, G. Near infrared technology for precision environmental measurements: Part 1. Determination of nitrogen in green- and dry-grass tissue. J. Near Infrared Spectrosc. 2002. [Google Scholar] [CrossRef]
- Reddersen, B.; Fricke, T.; Wachendorf, M. Effects of sample preparation and measurement standardization on the NIRS calibration quality of nitrogen, ash and NDFom content in extensive experimental grassland biomass. Anim. Feed. Sci. Technol. 2013, 183, 77–85. [Google Scholar] [CrossRef]
- Thomson, A.L.; Humphries, D.J.; Rymer, C.; Archer, J.E.; Grant, N.W.; Reynolds, C.K. Assessing the accuracy of current near infra-red reflectance spectroscopy analysis for fresh grass-clover mixture silages and development of new equations for this purpose. Anim. Feed. Sci. Technol. 2018, 239, 94–106. [Google Scholar] [CrossRef]
- Alomar, D.; Fuchslocher, R.; Cuevas, J.; Mardones, R.; Cuevas, E. Prediction of the composition of fresh pastures by near infrared reflectance or interactance-reflectance spectroscopy. Chil. J. Agric. Res. 2009, 69, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Dale, A.J.; Gordon, A.W.; Archer, J.; Ferris, C.P. Impact of sampling and storage technique, and duration of storage, on the composition of fresh grass when analysed using near-infrared reflectance spectroscopy. Grass Forage Sci. 2017, 72, 614–625. [Google Scholar] [CrossRef]
- Lobos, I.; Moscoso, C.J.; Pavez, P. Calibration models for the nutritional quality of fresh pastures by near-infrared reflectance spectroscopy. Cience Investig. Agrar. 2019, 46, 234–242. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’ Brien, B.; O’ Donovan, M.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2021. [Google Scholar] [CrossRef]
- Berzaghi, P.; Serva, L.; Piombino, M.; Mirisola, M.; Benozzo, F. Prediction performances of portable near infrared instruments for at farm forage analysis. Ital. J. Anim. Sci. 2005, 4, 145–147. [Google Scholar] [CrossRef]
- Dos Santos, T.C.A.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef]
- Feuerstein, U.; Paul, C. NIR-Spectroscopy of non-dried forages as a tool in breeding for higher quality—laboratory tests and online investigations on plot harvesters. In Proceedings of the XXVIIth EUCARPIA Symposium on Improvement of Fodder Crops and Amenity Grasses, Copenhagen, Denmark, 19–23 August 2007; Lübberstedt, T., Studer, B., Graugaard, S., Eds.; European Association for Research on Plant Breeding: Wageningen, The Netherlands, 2007; pp. 110–114. [Google Scholar]
- Mendarte, S.; Ibarra, A.; Garbisu, C.; Besga, G. Use of portable NIRS equipment in field conditions to determine the nutritional value of mountain pastures. In Proceedings of the 23th General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; Schnyder, H., Isselstein, J., Taube, F., Auerswald, K., Schellberg, J., Wachendorf, M., Herrmann, A., Gierus, M., Wrage, N., Hopkins, A., Eds.; pp. 244–246. [Google Scholar]
- Smith, C.; Karunaratne, S.; Badenhorst, P.; Cogan, N.; Spangenberg, G.; Smith, K. Machine learning algorithms to predict forage nutritive value of in situ perennial ryegrass plants using hyperspectral canopy reflectance data. Remote Sens. 2020, 12, 928. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Mereu, L.; Davis, J. The Use of Mobile Near-Infrared Spectroscopy for Real-Time Pasture Management. Front. Sustain. Food Syst. 2018, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Patton, L.; McConnell, D.; Archer, J.; O’ Donovan, M.; Gilliland, T. Portable NIRS: A novel technology for the prediction of forage nutritive quality. In Proceedings of the General Meeting of the European Grassland Federation, Moorepark, Cork, Ireland, 17–21 June 2018; Hennessy, D., O’Donovan, M., Kennedy, E., McCarthy, B., Finn, J.A., O’Brien, B., Eds.; pp. 892–894. [Google Scholar]
- Hart, L.; Huguenin-Elie, O.; Latsch, R.; Simmler, M.; Dubois, S.; Umstatter, C. Comparison of Spectral Reflectance-Based Smart Farming Tools and a Conventional Approach to Determine Herbage Mass and Grass Quality on Farm. Remote Sens. 2020, 12, 3256. [Google Scholar] [CrossRef]
- Vogel, S.; Gebbers, R.; Oertel, M.; Kramer, E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors 2019, 19, 4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [Google Scholar] [CrossRef]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Safari, H.; Fricke, T.; Reddersen, B.; Möckel, T.; Wachendorf, M. Comparing mobile and static assessment of biomass in heterogeneous grassland with a multi-sensor system. J. Sens. Sens. Syst. 2016, 5, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sens. 2017, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Legg, M.; Bradley, S. remote sensing Ultrasonic Proximal Sensing of Pasture Biomass. Remote Sens. 2019, 11, 2459. [Google Scholar] [CrossRef] [Green Version]
- Rennie, G.M.; King, W.M.; Puha, M.R.; Dalley, D.E.; Dynes, R.A.; Upsdell, M.P. Calibration of the C-DAX Rapid Pasturemeter and the rising plate meter for kikuyu-based Northland dairy pastures. J. N. Z. Grassl. 2009, 71, 49–55. [Google Scholar] [CrossRef]
- Lawrence, H.; Yule, I.; Murray, R. Pasture Monitoring Technologies. In Proceedings of the South Island Dairy Event Conference 8, South Island Dairy Event, Lincoln, New Zealand, 20 June 2007; pp. 126–131. [Google Scholar]
- King, W.M.; Rennie, G.M.; Dalley, D.E.; Dynes, R.A.; Upsdell, M.P. Pasture Mass Estimation by the C-DAX Pasture Meter: Regional Calibrations for New Zealand. In Proceedings of the 4th Australasain Dairy Science Symposium 2010, Lincoln University, Lincoln, New Zealand, 31 August–2 September 2010; The New Zealand Veterinary Association: Wellington, New Zealand, 2010; pp. 233–238. [Google Scholar]
- Oudshoorn, F.W.; Hansson, S.L.; Hansen, H.H. Calibration of the C-dax pasture meter in a Danish grazing system. In Proceedings of the 16th Symposium of the European Grassland Federation, Gumpenstein, Austria, 29–31 August 2011; Pötsch, E.M., Krautzer, B., Hopkins, A., Eds.; Agricultural Research and Education Centre (AREC): Irdning, Austria, 2011; pp. 166–168. [Google Scholar]
- Schori, F. Sward surface height estimation with a rising plate meter and the C-Dax Pasturemeter. In Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, The Netherlands, 15–17 June 2015; Dasselaar, A.v.d.P., Aarts, H.F.M., Vliegher ADe Elgersma, A., Reheul, D., Reijneveld, J.A., Verloop, J., Hopkins, A., Eds.; The Nederlandse Vereniging voor Weide- en Voederbouw: Wageningen, The Netherlands, 2015; pp. 310–312. [Google Scholar]
- Dennis, S.J.; Taylor, A.L.; O’Neill, K.; Clarke-Hill, W.; Dynes, R.A.; Cox, N.; Van Koten, C.; Jowett, T.W.D. Pasture yield mapping: Why & how. J. N. Z. Grassl. 2015, 77, 41–46. [Google Scholar]
- Manderson, A.; Hunt, C. Introducing the Agri-Rover: An Autonomous on-the-go sensing rover for science and farming. In Proceedings of the 26th Annual Farmed Landscapes Research Centre Workshop, Palmerston North, New Zealand, 12–14 February; Currie, L., Christensen, C.L., Eds.; Massey University: Palmerston North, New Zealand, 2013. [Google Scholar]
- Gobor, Z.; Cariou, C.; Seiferth, B.; Thurner, S.; Feucker, W.; Tessier, C.; Tekin, B.; Berducat, M. Advanced pasture management through innovative robotic pasture maintenance. In Proceedings of the IROS Workshop Agri-Food Robot, Hambourg, Germany, 2 October 2015; Kootstra, G., Edan, Y., Henten, E.v.B.M., Eds.; HAL: Lyon, France, 2015. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.; Parra, L.; Rocher, J.; Sendra, S.; Lloret, J.; Mauri, P.V.; Masaguer, A. Urban Lawn Monitoring in Smart City Environments. J. Sens. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Ayala, V.; Peña, J.; Höglind, M.; Bengochea-Guevara, J.; Andújar, D. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 2019, 19, 535. [Google Scholar] [CrossRef] [Green Version]
- Rossel, V.R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. 243–291. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. In-field hyperspectral proximal sensing for estimating quality parameters of mixed pasture. Precis. Agric. 2012, 13, 351–369. [Google Scholar] [CrossRef]
- Ancin-Murguzur, F.; Taff, G.; Davids, C.; Tømmervik, H.; Mølmann, J.; Jørgensen, M. Yield Estimates by a Two-Step Approach Using Hyperspectral Methods in Grasslands at High Latitudes. Remote Sens. 2019, 11, 400. [Google Scholar] [CrossRef] [Green Version]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.; Dynes, R.; King, W. Pasture Quailty Measurement Tools for Decsion Making 2011. Available online: https://www.massey.ac.nz/~flrc/workshops/11/Manuscripts/Pullanagari_2011.pdf (accessed on 21 June 2020).
- Askari, M.S.; McCarthy, T.; Magee, A.; Murphy, D.J. Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing Techniques. Remote Sens. 2019, 11, 1835. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2012, 68, 110–119. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Näsi, R.; Niemeläinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L.; et al. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
- Obanawa, H.; Yoshitoshi, R.; Watanabe, N.; Sakanoue, S. Portable LiDAR-Based Method for Improvement of Grass Height Measurement Accuracy: Comparison with SfM Methods. Sensors 2020, 20, 4809. [Google Scholar] [CrossRef]
- Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D Imaging Systems for Agricultural Applications-A Review. Sensors 2016, 16, 618. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, M.; Mutanga, O.; Rouget, M. Comparing the spectral settings of the new generation broad and narrow band sensors in estimating biomass of native grasses grown under different management practices. GISci. Remote Sens. 2016, 53, 614–633. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 2020. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 22 June 2020).
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Barrett, B.; Cawkwell, F.; Green, S.; Dwyer, E.; Neumann, M. Application of Repeat-Pass TerraSAR-X Staring Spotlight Interferometric Coherence to Monitor Pasture Biophysical Parameters: Limitations and Sensitivity Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3225–3231. [Google Scholar] [CrossRef] [Green Version]
- Delaby, L.; Duboc, G.; Cloet, E.; Martinot, Y. Pastur’Plan: A dynamic tool to support grazing management decision making in a rotational grazing system. In Proceedings of the 18th Symposium of the European Grassland Federation, Wageningen, The Netherlands, 15–17 June 2015; Van den Pol-van Dasselaar, A., Aarts, H.F.M., Vliegher, A., De Elgersma, A., Reheul, D., Reijneveld, J.A., Verloop, J., Hopkins, A., Eds.; pp. 200–202. [Google Scholar]
- Zom, R.L.G.; Holshof, G. GrazeVision: A versatile grazing decision support model. In Proceedings of the 16th Symposium of the European Grassland Federation, Organising Committee of the 16th Symposium of the European Grassland Federation 2011 and Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria, 28–31 August 2011; Pötsch, E.M., Krautzer, B., Hopkins, A., Eds.; pp. 226–228. [Google Scholar]
- Byrne, N.; Gilliland, T.J.; Mchugh, N.; Delaby, L.; Geoghegan, A.; O’donovan, M. Establishing phenotypic performance of grass varieties on Irish grassland farms. J. Agric. Sci. 2017, 155, 1633–1645. [Google Scholar] [CrossRef]
- O’ Leary, M.; O’ Donovan, M. PastureBase Ireland—getting Ireland utilising more grass. In Proceedings of the Moorepark ’19 Irish Dairy—Growing Sustainability, Teagasc, Moorepark, Ireland, 3 July 2019; pp. 60–61. [Google Scholar]
- McDonnell, J.; Brophy, C.; Ruelle, E.; Shalloo, L.; Lambkin, K.; Hennessy, D. Weather forecasts to enhance an Irish grass growth model. Eur. J. Agron. 2019, 105, 168–175. [Google Scholar] [CrossRef]
- Ruelle, E.; Hennessy, D.; Delaby, L. Development of the Moorepark St Gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems. Eur. J. Agron. 2018, 99, 80–91. [Google Scholar] [CrossRef]
- Romera, A.J.; Beukes, P.; Clark, C.; Clark, D.; Levy, H.; Tait, A. Use of a pasture growth model to estimate herbage mass at a paddock scale and assist management on dairy farms. Comput. Electron. Agric. 2010, 74, 66–72. [Google Scholar] [CrossRef]
- Herrmann, A.; Kelm, M.; Kornher, A.; Taube, F. Performance of grassland under different cutting regimes as affected by sward composition, nitrogen input, soil conditions and weather—A simulation study. Eur. J. Agron. 2005, 22, 141–158. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’Brien, B.; Askari, M.S.; McCarthy, T.; Magee, A.; Burke, R.; Murphy, M.D. GrassQ—a holistic precision grass measurement and analysis system to optimize pasture based livestock production. In Proceedings of the ASABE Annual Interantional Meeting, American Society of Agricultural and Biological Engineers, St. Joseph, MI, USA, 7–10 July 2019; pp. 2–9. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, B.; Murphy, D.; Askari, M.S.; Burke, R.; Magee, A.; Umstätter, C.; Hart, L.; Oudshoorn, F.; Murphy, M.; Kaivosoja, J.; et al. Modelling precision grass measurements for a web-based decision platform to aid grassland management. In Proceedings of the 9th European Conference on Precision Livestock Farming, Moorepark, Cork, Ireland, 26-29 August 2019; O’Brien, B., Hennessy, D., Shalloo, L., Eds.; Teagasc, Animal & Grassland Research and Innovation Centre: Fermoy, Ireland, 2015; pp. 858–863. [Google Scholar]
Study | Year | Grass Species | Region | Sward Type | Measurement Parameter | Sward Heterogeneity * |
---|---|---|---|---|---|---|
Murphy et al. [29] | 2020 | PRG/WC | Ireland | Dairy pasture | HM (kg DM ha−1) | 36% |
Jordan et al. [34] | 2003 | PRG | Ireland | Silage field | HM (kg DM ha−1) | 25% |
Murphy et al. [29] | 2020 | PRG/WC | Ireland | Dairy pasture | CSH (mm) | 29% |
Klootwijk et al. [9] | 2019 | PRG | The Netherlands | Dairy pasture | CSH (mm) | 28% |
Barthram et al. [8] | 2005 | PRG/WC | Scotland | Sheep pasture | Height (mm) | 46% |
Study | Analyte | Region | Species | Parameters | Sample No. | R2 | Error (g kg−1) | RPD |
---|---|---|---|---|---|---|---|---|
Murphy et al. (2021) | Fresh grass | Ireland | PRG | DM, CP | 1812 | 0.85, 0.84 | 9.5, 20.4 | 2.57, 2.37 |
Lobos et al. (2019) | Fresh grass | Chile | Permanent pasture | DM, CP | 915 | 0.93, 0.84 | 11.3, 22.2 | 3.7, 2.5 |
Parrini et al. (2019) | Fresh grass | Italy | Natural pasture | DM, CP | 100 | 0.87, 0.88 | 2.75, 2.14 | 2.75, 2.26 |
Bonnal et al. (2013) | Fresh grass | France | Mixed swards | CP | 103 | 0.93 | 1.55 | 1.97 |
Alomar et al. (2009) | Fresh grass | Chile | Mixed swards | DM, CP | 107 | 0.99, 0.91 | 6.55, 18.4 | 7.15, 3.69 |
McClure et al. (2002) | Fresh grass | USA | Fescue | N | 31 | 0.88 | 6 | - |
Park et al. (1998) | Fresh grass silage | Ireland | - | DM, N | 136 | 0.85, 0.78 | 23.3, 28.1 | -, 4.8 |
Burns et al. (2014) | Dried & milled grass | Ireland | PRG | CP | 2076 | 0.98 | 5.1 | - |
Jafari et al. (2003) | Dried & milled grass | Ireland | PRG | CP | 153 | 0.96 | 6.8 | - |
System | Relevant Studies | Region | Measure | Prediction | Sample No. | Herbage Quantity | Herbage Quality | Advantage | Disadvantage | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Conventional systems | |||||||||||
R2 | Error (kg DM ha−1 a, mm b) | R2 | Error (g kg c, g kg DM−1 d, % e, % DM f) | ||||||||
Rising plate meter | Murphy et al. [59] | Ireland | Compressed sward height | HM | 1977 | 0.77 | 354 a,* | - | - | Rapid, usability, cost | Labour intensive, accuracy |
Visual assessment | O’ Donovan et al. [26] | Ireland | Perceived herbage cover | HM | 2205 | 0.95 | 193 a,Ɨ | - | - | Minimal labour | High subjectivity |
NIRS | Murphy et al. [84] | Ireland | Spectral absorption | DM, CP | 1812 | - | - | 0.86, 0.84 | 9.46 c, 20.38 d,Ɨ | Accuracy | High cost, lab based, destructive |
State of the art | |||||||||||
Light sensing (C-DAX) | Schori [103] | Switzerland | Sward surface height | HM | 439 | 0.77 | 311 a,Ɨ | - | - | Rapid, automation | Accuracy |
LiDAR | Obanawa et al. [117] | Japan | Sward surface height | SSH | 25 | 0.93 | 12 b,** | - | - | Remote sensing | High cost, wind error, accuracy |
Ultrasonic | Reddersen et al. [94] | Germany | Sward surface height | HM | 167 | 0.76 | 880 a,* | - | - | Rapid, automation | Accuracy |
Portable NIRS | Smith et al. [89] | Victoria, Australia | Spectral absorption | DM, DMD, WSC CP | 540 | - | - | 0.69, 0.82,0.49,0.74 | 3.14 e, 2.70, 2.77, 2.02 f,* | In-situ quality analysis | Accuracy |
Hyperspectral sensing | Askari et al. [113] | Ireland | Spectral absorption | HM, CP | 84 | 0.88 | 160 a,* | 0.82 | 10 d,* | Remote sensing, accuracy | High cost |
Multispectral sensing | Askari et al. [113] | Ireland | Spectral absorption | HM, CP | 126 | 0.78 | 215 a,* | 0.77 | 13.6 d,* | Remote sensing, cost | Lack of long term studies |
Satellite multispectral | Askari et al. [113] | Ireland | Spectral absorption | HM, CP | 176 | 0.82 | 600 a,* | 0.62 | 13.3 d,* | Remote sensing | Cloud cover, accuracy |
Synthetic Aperture radar | Ali et al. [123] | Ireland | Sward surface height | HM | 264 | 0.75 | - | - | - | Satellite sensing | Lack of research |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, D.J.; Murphy, M.D.; O’Brien, B.; O’Donovan, M. A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture 2021, 11, 600. https://doi.org/10.3390/agriculture11070600
Murphy DJ, Murphy MD, O’Brien B, O’Donovan M. A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture. 2021; 11(7):600. https://doi.org/10.3390/agriculture11070600
Chicago/Turabian StyleMurphy, Darren J., Michael D. Murphy, Bernadette O’Brien, and Michael O’Donovan. 2021. "A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland" Agriculture 11, no. 7: 600. https://doi.org/10.3390/agriculture11070600
APA StyleMurphy, D. J., Murphy, M. D., O’Brien, B., & O’Donovan, M. (2021). A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture, 11(7), 600. https://doi.org/10.3390/agriculture11070600