Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. IoT System
2.2.1. Structure of System
2.2.2. Hardware of IoT System
2.2.3. Software of IoT System
2.3. Data Preprocessing and Correlation Analysis
2.4. Deep Bidirectional LSTM Networks
2.5. Multi-Layer Neural Network (MLNN)
2.6. Performance Criteria of the Models
3. Results
3.1. Model Training Settings
3.2. Performance of Models
3.3. Performance of Model Fitting
3.4. Method of Model Selection
4. Discussion
5. Conclusions
- The IoT system built in this paper aimed to collect environmental information, including the SM, SEC, ST, air temperature, air humidity, wind speed, and precipitation.
- Compared to the predicted values and measured values using regression fitting, the Bid-LSTM model showed better performance than the MLNN model, even though the former model showed a higher deviation in a few cases due to the negative impact of environmental factors. The R2 criteria showed that the Bid-LSTM model was more reliable than the MLNN model.
- The AIC values showed that the Bid-LSTM model was reliable in most situations compared with the MLNN model.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Licciardello, G.; Ferraro, R.; Scuderi, G.; Russo, M.; Catara, A.F. A Simulation of the Use of High Throughput Sequencing as Pre-Screening Assay to Enhance the Surveillance of Citrus Viruses and Viroids in the EPPO Region. Agriculture 2021, 11, 400. [Google Scholar] [CrossRef]
- Huang, R.; Yao, T.; Zhan, C.; Zhang, G.; Zheng, Y. A Motor-Driven and Computer Vision-Based Intelligent E-Trap for Monitoring Citrus Flies. Agriculture 2021, 11, 460. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Karatzas, G.P. A Modeling Approach for Agricultural Water Management in Citrus Orchards: Cost-Effective Irrigation Scheduling and Agrochemical Transport Simulation. Environ. Monit. Assess. 2015, 187, 462. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, Z.; Zheng, Z.; Lan, Y.; Dai, F. Field Detection and Classification of Citrus Huanglongbing Based on Hyperspectral Reflectance. Comput. Electron. Agric. 2019, 167, 105006. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil Water Balance Models for Determining Crop Water and Irrigation Requirements and Irrigation Scheduling Focusing on the FAO56 Method and the Dual Kc Approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Panigrahi, P.; Srivastava, A.K. Effective Management of Irrigation Water in Citrus Orchards under a Water Scarce Hot Sub-Humid Region. Sci. Hortic. 2016, 210, 6–13. [Google Scholar] [CrossRef]
- Jin, X.; Chen, M.; Fan, Y.; Yan, L.; Wang, F. Effects of Mulched Drip Irrigation on Soil Moisture and Groundwater Recharge in the Xiliao River Plain, China. Water 2018, 10, 1755. [Google Scholar] [CrossRef] [Green Version]
- García-Tejero, I.; Jiménez-Bocanegra, J.A.; Martínez, G.; Romero, R.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Positive Impact of Regulated Deficit Irrigation on Yield and Fruit Quality in a Commercial Citrus Orchard [Citrus Sinensis (L.) Osbeck, Cv. Salustiano]. Agric. Water Manag. 2010, 97, 614–622. [Google Scholar] [CrossRef]
- Huang, J.; Scudiero, E.; Choo, H.; Corwin, D.L.; Triantafilis, J. Mapping Soil Moisture across an Irrigated Field Using Electromagnetic Conductivity Imaging. Agric. Water Manag. 2016, 163, 285–294. [Google Scholar] [CrossRef]
- Yu, G.; Wang, W.; Xie, J.; Lu, H.; Lin, J.; Mo, H. Information Acquisition and Expert Decision System in Litchi Orchard Based on Internet of Things. Trans. Chin. Soc. Agric. Eng. 2016, 32, 144–152. [Google Scholar]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors 2017, 17, 447. [Google Scholar] [CrossRef]
- Sawant, S.; Durbha, S.S.; Jagarlapudi, A. Interoperable Agro-Meteorological Observation and Analysis Platform for Precision Agriculture: A Case Study in Citrus Crop Water Requirement Estimation. Comput. Electron. Agric. 2017, 138, 175–187. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Liu, Q.; Alemohammad, S.H.; Gentine, P.; Aida, K.; Asanuma, J.; Bircher, S.; Caldwell, T.; Colliander, A.; et al. Estimating Surface Soil Moisture from SMAP Observations Using a Neural Network Technique. Remote Sens. Environ. 2018, 204, 43–59. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Ren, C.; Wang, H.; Huang, Y.; Zheng, Z. Research on Soil Moisture Inversion Method Based on GA-BP Neural Network Model. Int. J. Remote Sens. 2019, 40, 2087–2103. [Google Scholar] [CrossRef]
- Martínez-Gimeno, M.A.; Jiménez-Bello, M.A.; Lidón, A.; Manzano, J.; Badal, E.; Pérez-Pérez, J.G.; Bonet, L.; Intrigliolo, D.S.; Esteban, A. Mandarin Irrigation Scheduling by Means of Frequency Domain Reflectometry Soil Moisture Monitoring. Agric. Water Manag. 2020, 235, 106151. [Google Scholar] [CrossRef]
- Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Popli, S.; Jha, R.K.; Jain, S. A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and Challenges. IEEE Access 2019, 7, 16739–16776. [Google Scholar] [CrossRef]
- Watteyne, T.; Doherty, L.; Simon, J.; Pister, K. Technical Overview of SmartMesh IP. In Proceedings of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Taichung, Taiwan, 3–5 July 2013; pp. 547–551. [Google Scholar]
- Hindle, A.; Herraiz, I.; Shihab, E.; Jiang, Z.M. Mining Challenge 2010: FreeBSD, GNOME Desktop and Debian/Ubuntu. In Proceedings of the 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), Cape Town, South Africa, 2–3 May 2010; pp. 82–85. [Google Scholar]
- Zhuo, L.; Dai, Q.; Zhao, B.; Han, D. Soil Moisture Sensor Network Design for Hydrological Applications. Hydrol. Earth Syst. Sci. 2020, 24, 2577–2591. [Google Scholar] [CrossRef]
- Dursun, M.; Özden, S. Optimization of Soil Moisture Sensor Placement for a PV-Powered Drip Irrigation System Using a Genetic Algorithm and Artificial Neural Network. Electr. Eng. 2017, 99, 407–419. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Wu, Q.S. Effects of Soil Tillage and Planting Grass on Arbuscular Mycorrhizal Fungal Propagules and Soil Properties in Citrus Orchards in Southeast China. Soil Tillage Res. 2016, 155, 54–61. [Google Scholar] [CrossRef]
- Majhi, B.; Naidu, D.; Mishra, A.P.; Satapathy, S.C. Improved Prediction of Daily Pan Evaporation Using Deep-LSTM Model. Neural Comput. Appl. 2019. [Google Scholar] [CrossRef]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman’s Correlation Coefficients for Exploratory Data Analysis on Big Dataset. Concurr. Comput. Pract. Exp. 2016, 28, 3866–3878. [Google Scholar] [CrossRef]
- Tufaner, F.; Demirci, Y. Prediction of Biogas Production Rate from Anaerobic Hybrid Reactor by Artificial Neural Network and Nonlinear Regressions Models. Clean Technol. Environ. Policy 2020, 22, 713–724. [Google Scholar] [CrossRef]
- Jin, X.; Yang, N.; Wang, X.; Bai, Y.; Su, T.; Kong, J. Integrated Predictor Based on Decomposition Mechanism for PM2.5 Long-Term Prediction. Appl. Sci. 2019, 9, 4533. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Bu, S.; Kim, I. An Enhanced Algorithm of RNN Using Trend in Time-Series. Symmetry 2019, 11, 912. [Google Scholar] [CrossRef] [Green Version]
- Madan, R.; Mangipudi, P.S. Predicting Computer Network Traffic: A Time Series Forecasting Approach Using DWT, ARIMA and RNN. In Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2–4 August 2018; pp. 1–5. [Google Scholar]
- Canizo, M.; Triguero, I.; Conde, A.; Onieva, E. Multi-Head CNN–RNN for Multi-Time Series Anomaly Detection: An Industrial Case Study. Neurocomputing 2019, 363, 246–260. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Jha, R.; Singh, A.; Kumar, D. Long Short-Term Memory (LSTM) Recurrent Neural Network for Low-Flow Hydrological Time Series Forecasting. Acta Geophys. 2019, 67, 1471–1481. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Liu, G.; Guo, J. Bidirectional LSTM with Attention Mechanism and Convolutional Layer for Text Classification. Neurocomputing 2019, 337, 325–338. [Google Scholar] [CrossRef]
- Kiperwasser, E.; Goldberg, Y. Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations. Trans. Assoc. Comput. Linguist. 2016, 4, 313–327. [Google Scholar] [CrossRef]
- Yildirim, Ö. A Novel Wavelet Sequence Based on Deep Bidirectional LSTM Network Model for ECG Signal Classification. Comput. Biol. Med. 2018, 96, 189–202. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, X.; Zhang, Y. A Multitask Learning Neural Network for Short-Term Traffic Speed Prediction and Confidence Estimation. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2019: Deep Learning, Munich, Germany, 17–19 September 2019; Tetko, I.V., Kůrková, V., Karpov, P., Theis, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 434–449. [Google Scholar]
- Dai, H.; Ying, W.; Xu, J. Multi-Layer Neural Network for Received Signal Strength-Based Indoor Localisation. IET Commun. 2016, 10, 717–723. [Google Scholar] [CrossRef]
- Hosamani, B.R.; Abbas Ali, S.; Katti, V. Assessment of Performance and Exhaust Emission Quality of Different Compression Ratio Engine Using Two Biodiesel Mixture: Artificial Neural Network Approach. Alex. Eng. J. 2021, 60, 837–844. [Google Scholar] [CrossRef]
- Ćalasan, M.; Aleem, S.H.A.; Zobaa, A.F. On the Root Mean Square Error (RMSE) Calculation for Parameter Estimation of Photovoltaic Models: A Novel Exact Analytical Solution Based on Lambert W Function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [Google Scholar] [CrossRef]
- Eryılmaz, E.E.; Şahin, D.Ö.; Kılıç, E. Filtering Turkish Spam Using LSTM from Deep Learning Techniques. In Proceedings of the 2020 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut, Lebanon, 1–2 June 2020; pp. 1–6. [Google Scholar]
- Zarei, A.; Asadi, E.; Ebrahimi, A.; Jafari, M.; Malekian, A.; Mohammadi Nasrabadi, H.; Chemura, A.; Maskell, G. Prediction of Future Grassland Vegetation Cover Fluctuation under Climate Change Scenarios. Ecol. Indic. 2020, 119, 106858. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, P.; Wu, D.; Cheng, C.; Huang, H. Time Series Model for Forecasting the Number of New Admission Inpatients. BMC Med. Inform. Decis. Mak. 2018, 18, 39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D. A Coefficient of Determination for Generalized Linear Models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Calado, J.; Carvalho, M.D. Integration of Soil Electrical Conductivity and Indices Obtained through Satellite Imagery for Differential Management of Pasture Fertilization. AgriEngineering 2019, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, PH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Velasco, J.A.; González-Salazar, C. Akaike Information Criterion Should Not Be a “Test” of Geographical Prediction Accuracy in Ecological Niche Modelling. Ecol. Inform. 2019, 51, 25–32. [Google Scholar] [CrossRef]
- Cheng, H.; Xie, Z.; Wu, L.; Yu, Z.; Li, R. Data Prediction Model in Wireless Sensor Networks Based on Bidirectional LSTM. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 203. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Pan, M.; Shen, C. The Value of SMAP for Long-Term Soil Moisture Estimation with the Help of Deep Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2221–2233. [Google Scholar] [CrossRef]
- Hateffard, F.; Dolati, P.; Heidari, A.; Zolfaghari, A.A. Assessing the Performance of Decision Tree and Neural Network Models in Mapping Soil Properties. J. Mt. Sci. 2019, 16, 1833–1847. [Google Scholar] [CrossRef]
Environmental Factors | SM | SEC | ||
---|---|---|---|---|
Correlation Coefficient | p-Value | Correlation Coefficient | p-Value | |
Max temperature | 0.40 | 0.35 | ||
Min temperature | 0.50 | 0.43 | ||
Mean temperature | 0.45 | 0.41 | ||
Precipitation | 0.30 | 0.13 | ||
Air humidity | 0.53 | 0.27 | ||
Soil temperature | 0.55 | 0.49 |
Node | Models | AIC | |
---|---|---|---|
SM | SEC | ||
1 | MLNN | 448 | 379 |
Bid-LSTM | 335 | 76.33 | |
2 | MLNN | 611 | 525 |
Bid-LSTM | 440 | 471 | |
3 | MLNN | 660 | 506 |
Bid-LSTM | 530 | 405 | |
4 | MLNN | 657 | 528 |
Bid-LSTM | 369 | 612 | |
5 | MLNN | 117 | 65 |
Bid-LSTM | 126 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Chen, W.; Liang, G.; Chen, Y.; Han, X.; Wang, W. Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM. Agriculture 2021, 11, 635. https://doi.org/10.3390/agriculture11070635
Gao P, Xie J, Yang M, Zhou P, Chen W, Liang G, Chen Y, Han X, Wang W. Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM. Agriculture. 2021; 11(7):635. https://doi.org/10.3390/agriculture11070635
Chicago/Turabian StyleGao, Peng, Jiaxing Xie, Mingxin Yang, Ping Zhou, Wenbin Chen, Gaotian Liang, Yufeng Chen, Xiongzhe Han, and Weixing Wang. 2021. "Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM" Agriculture 11, no. 7: 635. https://doi.org/10.3390/agriculture11070635
APA StyleGao, P., Xie, J., Yang, M., Zhou, P., Chen, W., Liang, G., Chen, Y., Han, X., & Wang, W. (2021). Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM. Agriculture, 11(7), 635. https://doi.org/10.3390/agriculture11070635